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Peter–Weyl Iwahori Algebras

Dan Barbasch and Allen Moy

Abstract. he Peter–Weyl idempotent eP of a parahoric subgroupP is the sum of the idempotents of
irreducible representations ofP that have a nonzero Iwahori ûxed vector. he convolution algebra as-
sociated with eP is called a Peter–Weyl Iwahori algebra. We show that any Peter–Weyl Iwahori algebra
is Morita equivalent to the Iwahori–Hecke algebra. Both the Iwahori–Hecke algebra and a Peter–Weyl
Iwahori algebra have a natural conjugate linear anti-involution⋆, and theMorita equivalence preserves
irreducible hermitian and unitary modules. Both algebras have another anti-involution, denoted by ●,
and the Morita equivalence preserves irreducible and unitary modules for ●.

1 Introduction

Let k be a non-archimedean local ûeld with ring of integers Rk and prime ideal ℘k .
Suppose G = G(k) is the group of k-rational points of a split reductive group deûned
over k (for convenience, we also assume simple). A�er the choice of a Haar measure
on G, the vector space C∞c (G) of locally constant compactly supported functions is a
convolution algebra, and any smooth representation (π,Vπ) of G integrates to a rep-
resentation of C∞c (G). he algebra C∞c (G) has a conjugate linear anti-involution ⋆
given by f ⋆(g) = f (g−1). So while C∞c (G) is a ⋆-algebra, since it is not complete, we
cannot call it aC⋆-algebra. he algebraC∞c (G) is used to transfer problems of analysis
on the group G to algebraic problems. In particular, we are interested in the Bernstein
component of (smooth irreducible) representations with nonzero Iwahori ûxed vec-
tors. In this setting, we ûx an Iwahori subgroup I and replace C∞c (G) by the Iwahori–
Hecke algebraH ∶= H(G, I) of I−bi-invariant locally constant compactly supported
functions. he Iwahori–Hecke algebra inherits a star operation from C∞c (G).

Deûnition 1.1 A smooth representation (π,Vπ) of G admits an invariant hermitian
form if there is a nontrivial hermitian form ⟨ ⋅ , ⋅ ⟩ satisfying

⟨π(x)v1 , π(x)v2⟩ = ⟨v1 , v2⟩.

For f ∈ C∞c (G), we get ⟨π( f )v1 , v2⟩ = ⟨v1 , π( f ⋆)v2⟩. If (π,Vπ) is irreducible, the
form is unique up to a nonzero scalar. he representation (π,Vπ) is said to be unita-
rizable if Vπ admits a positive deûnite invariant hermitian form.
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Peter–Weyl Iwahori Algebras 1305

he results in [BM1] and [BM2] establish that a representation V with Iwahori-
ûxed vectors is unitary if and only if the representation ofH on VI is unitary. In this
setting, the fact that I is invariant under ⋆ is essential, but appears so obvious that it is
hardly ever mentioned. he ⋆-operation on the Iwahori–Hecke algebra can be given
explicitly in terms of the generators and relations ofH (see section 5 [BM2]). So the
problem of unitarity is reduced to the problem of classifying the ûnite dimensional
unitary representations for ⋆ for H.

Loosely, the Lefschetz principle states that results for real reductive groups should
have analogues for the corresponding p-adic groups. It is natural towant to investigate
the possibility of duplicating the work in [ALTV] for the Iwahori–Hecke algebra and
more generally for the whole unitary dual of a p-adic group. It is extremely useful
to consider the relation between signatures of several ⋆ operations at the same time.
Such a comparison leads to algorithms for computing signatures of hermitian forms.
Inmore detail, ⋆ operations correspond to real forms of a complex group. A particular
real form is then compared to the compact form.
For the case of the Iwahori–Hecke algebra, an analogue of the ⋆ of the compact real

form is ● deûned at the end of Section 2. It makes sense to consider hermitian and
unitary modules for the ●-involution. A comparison between hermitian modules for
● and ⋆ (with a view towards the aforementioned goal) was initiated in [BC]. Modules
that are unitary for ● have striking properties, such as being semisimple with respect
to the vector part of the Iwahori–Hecke algebra. hey are also closely related to local
factors of automorphic forms.

It is natural to ask the question whether ● comes from a conjugate linear anti-
involution of the whole group (as in the real case). A natural candidate, in view of the
relation between ⋆ an ●, would be to twist ⋆ by Ad(x) for an appropriately chosen
element x . he natural candidate for x would be a pullback of the long Weyl group
element. his cannot work, precisely because of the earlier observation that w0I ≠ I.

In this paper we investigate this issue from a diòerent perspective. We look for
an extension of ● to the Bernstein block. To achieve this, we associate diòerent alge-
bras with the Bernstein block of unramiûed representations, whichwe call Peter–Weyl
Iwahori algebras; ● has a more natural connection to the group in this context. he
methods of this paper are elementary and rely on the existence of full idempotents.
his elementary observation has previously not been exploited much. It provides an
explicit equivalence between the two categories as a tensoring process. To the extent
that the arguments are formal, they apply to more general types as well.
Casselman and Borel originally established that every subquotient of an unram-

iûed principal series contains a non-zero Iwahori ûxed vector, and conversely, if an
irreducible representation has a non-zero Iwahori ûxed vector, then it occurs as quo-
tient of an unramiûed principal series. hey did their work in the context of admissi-
ble representations. Later Bernstein discovered the best context to formulate results
of this type is in the category of smooth representations. In particular, the unramiûed
twists of a cuspidal representation of a Levi subgroup determine a direct summand
of the category of smooth representations. Contemporaneous eòorts to describe this
summand representation theoretically in terms of representations of compact open
subgroups were pioneered by Howe–Moy and Bushnell–Kutzko. A general notion of
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1306 D. Barbasch and A. Moy

a special idempotent can be found in [BK], and they establish necessary conditions
for a test function to be a special idempotent. hese can be veriûed for our eP. he re-
sults in [BM1,BM2] establish the preservation of the ⋆-structure, and are generalized
in [BC] and [C], so some of the results are not new. As already mentioned, the main
focus of this paper is ●. We have provided a uniform treatment of both ⋆ and ●. We
believe the Peter–Weyl Iwahori algebras are the more natural setting for the results in
[BM1, BM2], and that the uniûed treatment of both ⋆ and ● sheds new light on the
role of conjugate anti-automorphisms.

In Bernstein’s treatment, he gives a realization of the Iwahori–Hecke algebra as
End(P), for the projectiveP associated with this block. For his presentation, it is nat-
ural to use the ⋆ that takes an operator to its hermitian dual. Results in [BC] show
that, under the natural equivalence to the usualH, this ⋆ corresponds to ●. So hermit-
ian and unitary is not preserved under this equivalence. In our opinion, this makes
the study of the Peter–Weyl algebras of additional interest.

he graded Hecke algebra possesses analogous ⋆ and ● anti-involutions. he ⋆
involution is deûned in terms of generators and relations in [BM2], while both invo-
lutions are treated from a diòerent point of view in [Op].

We now give a more detailed version of the results in the paper. An important mo-
tivation to study the idempotents eP for parahoric subgroups is that they are canon-
ically attached to a facet f (P) in the Bruhat–Tits building B(G) of the group G. he
group G acts simplicially on the building B(G), and the correspondence f (P) ↦ eP is
an equivariant process. One can then consider the Euler–Poincaré sum over the facets
of the building. In [BCM], we prove that this Euler–Poincaré sum is a presentation of
the Bernstein projector for a Bernstein component.

SupposeP is a parahoric subgroup containing our chosen Iwahori subgroup I. Set
Ξ to be the set of irreducible representations of P that contain the trivial representa-
tion of I. We deûne the Peter–Weyl idempotent to be the idempotent

eP ∶= 1
meas(P) ∑σ∈Ξ

deg(σ)Θσ ,

and we deûne the Peter–Weyl Iwahori algebra as

H(G, eP) ∶= eP ⋆ C∞c (G) ⋆ eP .

When P equals I, the Peter–Weyl Iwahori algebra H(G, eP) is the Iwahori–Hecke
algebra. For any P ⊃ I, it is known (see Proposition 3.4) that eP ⋆ eI = eI = eI ⋆ eP;
consequently,H(G, eI) ⊂H(G, eP).

he Peter–Weyl Iwahori algebra H(G, eP) inherits a ⋆-algebra structure from
C∞c (G). he problem we are concerned with in this paper, is to show the following:

(i) Each Peter–Weyl Iwahori algebra is Morita equivalent to the Iwahori–Hecke
algebra, and furthermore, the Morita equivalence preserves ⋆-hermitian and
unitary modules. he equivalence is established by showing the idempotent
eI ∈H(G, eP) is a full idempotent, i.e., eP ∈H(G, eP) ⋆ eI ⋆H(G, eP). In fact,
eI belongs to H(P, eP) and is already a full idempotent, i.e., eP ∈ H(P, eP) ⋆
eI ⋆H(P, eP).
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(ii) Each Peter–Weyl Iwahori algebra possesses an anti-involution ● that restricts
to the ● involution on the Iwahori–Hecke algebra, and the Morita equivalence
preserves ●-hermitian and unitary modules.

A recent paper, [C], gives alternatives to the techniques in [BM1,BM2]. he results
on the cocenter used to prove preservation of unitarity are more complicated than
ours. We rely on the explicit equivalence and Rieòel’s version [R] of Morita equiva-
lence. We only use the algebraic considerations in [R], so the completeness assump-
tion for C⋆-algebras is not relevant.

2 Preliminaries on the Iwahori–Hecke Algebra

2.1 Notation

● k ⊃ Rk ⊃ ℘k , G, G = G(k) are as in the introduction. Set F = Rk/℘k , and let q
denote the order of F.
● For any k-subgroup L ⊂ G, let L = L(k) denote the group of k-rational points.

Denote by g and l the obvious Lie subalgebras of (Lie(G))(k).
● Let S ⊂ G denote a maximal split k-torus (which we can, in fact, assume deûned

over R), and S = S(k). So the characters Y = Hom(S,Gm) are naturally paired with
the cocharacters X = Hom(Gm , S). Set S0 = S(R), and denote by S+ the maximal
pro-p-subgroup of S0.
● R is the set of roots of G with respect to S. For a root α, we denote by Uα ⊂ G

and Uα = Uα(k) ⊂ G, the corresponding root groups. For a choice R+ ⊂ R of positive
roots R+, let B and B = B(k) be the associated Borel subgroups and Π ⊂ R+, the
simple roots.

he choice of a Chevalley basis of g allows us to deûneG andUα over the integers
Rk and thus over F too (we write G ×Rk F for the group over F), so that G ×Rk F is
a connected reductive split F-group and there is a canonical identiûcation of the root
systems of G and G ×Rk F.
● LetB denote the Bruhat–Tits building of G. he torus S (deûned overRk) yields

an apartment A ⊂ B, and B is the union of all its apartments. he Chevalley basis
above allows us to do the following:
(i) embed Y insideA, so that the origin 0 becomes a hyperspecial point;
(ii) deûne the set of aõne roots Ψ = {α + j ∣ α ∈ R, j ∈ Z} on A and for each aõne

root ψ an aõne root groups Uψ ⊂ Ugrad(ψ).
he assumption that G is split simple means B is a simplicial complex. For any facet
E ⊂ B, let GE be the associated parahoric subgroup. When E ⊂ A,

GE = subgroup of G generated by S0 and Uψ

(ψ satisfying ψ(x) ≥ 0 for all x ∈ E),
G+E = subgroup of G generated by S+, and Uψ

(ψ satisfying ψ(x) > 0 for all x ∈ E).

● Fix a Haar measure on G and therefore a convolution product ⋆ on C∞c (G).
For any open compact subgroup J ⊂ G, let 1J denote the characteristic function,
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1308 D. Barbasch and A. Moy

and set

eJ ∶=
1

meas(J) 1J .

When a facet E ⊂ B is of maximal dimension, i.e., E is a chamber, the parahoric
subgroup J = GE is an Iwahori subgroup. Set

H(G, J) ∶ = eJ ⋆ C∞c (G) ⋆ eJ (Iwahori–Hecke algebra with respect to J).

We recall that any two chambers ofB belong to the same G orbit, so any two Iwahori
subgroups are conjugate in G.

he choices of a set of positive roots R+ and a Chevalley basis singles out a particu-
lar Iwahori subgroup I that can be described as follows. For the facet {0} ⊂ A and its
maximal parahoric subgroupG{0}, we consider the quotientmapG{0}→(G{0}/G+{0})
= (G×Rk F)(F). hen, I is the inverse image of the Borel subgroup of (G×Rk F)(F)
corresponding to the positive roots R+.

We recall that the Iwahori–Hecke algebraH(G, I) has a presentation in terms of
the ûnite Iwahori–Hecke agebra H(G{0} , I) and X (which can viewed as a rational
functions on the torus Y ⊗Z C×), given as follows:
(i) LetN (deûned overRk) be the normalizer of S. For each n ∈ N(Rk) ⊂ G{0}, set

Tn =
1

meas(I) 1InI ∈ C
∞
c (G) (depends only on the coset nS0).

If n1 , n2 ∈ N(Rk) have the length property that ℓ(n1n2) = ℓ(n1) + ℓ(n2), then
Tn1 ⋆ Tn2 = Tn1n2 .
For each simple root α, let tα ∈ N(Rk) be an element whose action on X is the
re�ection sα , and set

Tsα =
1

meas(I) 1ItαI .

hen T2
sα = (q − 1)Tsα + qI.

(ii) here is an embedding, due to Bernstein (see [Lz1, §3], [Lz2, §4]),
X Ð→H(G, I)
x Ð→ Θx

satisfying

ΘxTsα = TsαΘsα(x) + (q − 1)
Θx −Θsα(x)

1 −Θ−α
.

(iii) he set of elements {ΘxTn ∣ x ∈ X , n ∈ N(Rk)/S0} is a (complex) basis of
H(G, I).

● he space of functions C∞c (G) admits a natural anti-involution ⋆ given by

(2.1) f ⋆(g) ∶= f (g−1).
hat I is a subgroup means the anti-involution restricts to an anti-involution of
H(G, I).
● he algebraH(G, I) has another anti-involution ● (see [BC]) deûned in terms

of the generators Tn (n ∈ N(Rk)), and Θx (x ∈ X), given by

T●
n = Tn−1 for n ∈ N(Rk) and Θ●

x = Θx for x ∈ X .
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● Let n0 ∈ N(Rk) be a representative for the longest element in the Weyl group
N(k)/S. here is an involution a of the group G so that S, N = N(k), and I are
a-invariant, and

a(x) = n0x−1n−1
0 ∀x ∈ S,

a(n) = n0nn−1
0 modS ∀n ∈ N.

For the case of the group GL(n), and the standard representation realization of clas-
sical groups, the involution a is

a(g) = n0(g−1)Tn−1
0 ,

where T is transpose, and n0 ∈ N(Rk) is a monomial matrix representative of the
longest Weyl element.

he involution a, deûnes an involution of the Iwahori–Hecke algebraH(G, I), and
the relationship between the two anti-involutions ⋆ and ● is:

●(y) = T−1
n0
a(y⋆)Tn0 ∀y ∈H(G, I).

3 Idempotents

Let J be an Iwahori subgroup. he collection of pairs consisting of a minimal k-Levi
subgroup of G, i.e., a maximal split torus T, and the unramiûed characters of T is
the cuspidal data to parametrize a full subcategory Ω (Bernstein component) of the
smooth representations (of G). Equivalently, Ω is the full subcategory of represen-
tations generated by their J ûxed vectors. Furthermore, there is an essentially com-
pact distribution PΩ (representable by a locally L1-function on the regular compact
elements of G), so that for any smooth representation (π,Vπ), the endomorphism
π(PΩ) ∈ EndG(Vπ) is an idempotent that projects to the Ω component of Vπ .

Suppose F ⊂ B is a chamber (so GF is an Iwahori subgroup), and E is a facet in F
(so GE ⊃ GF ⊃ G+F ⊃ G+E). he group GF/G+E is a Borel subgroup of GE/G+E . Let ρ be the
quotient map from GE to GE/G+E . We deûne the Peter–Weyl idempotent associated
with the facet E as (see also [BCM])

eE ∶=
1

meas(GE)
(∑

σ∈Ξ
deg(σ)Θσ ○ ρ) ,

where Ξ is the collection of irreducible representations of GE/G+E that contain a
nonzero (Borel) GF/G+E-ûxed vector, and Θσ is the character of σ .
(i) If F′ is another chamber containing E, thenGF′/G+E is a Borel subgroup ofGE/G+E

too, and the right side of the above deûnition yields the same idempotent eE .
(ii) For a chamber F, the idempotent eF equals eGF . In this situation, we will use

both notations.

Deûnition 3.1 he Peter–Weyl Iwahori algebra associated with the idempotent eE
is the algebra

HE ∶= eE ⋆ C∞c (G) ⋆ eE .
For convenience, we sometimes abbreviate the name to Peter–Weyl algebra. If F is a
chamber, then HF is the Iwahori–Hecke algebraH(G,GF).
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Proposition 3.2 Let PΩ be the projector for the unramiûed Bernstein component Ω.
Suppose E ⊂ B is a facet. hen

eE = PΩ ⋆
1

meas(G+E)
1G+E .

To prove Proposition 3.2, we ûrst establish the following lemma.

Lemma 3.3 If ϕ,ψ ∈ C∞c (G) satisfy π(ϕ) = π(ψ) for all (irreducible, smooth) π,
then ϕ = ψ.

Proof Let dµ denote the Plancherel measure on Ĝtemp. By the Plancherel formula,

∀F ∈ C∞c (G) ∶ F(1) = ∫
Ĝtemp

trace(π(F))dµ(π).

For ϕ ∈ C∞c (G) and x ∈ G, set Fx(ϕ) = δx ⋆ ϕ, so Fx(ϕ)(g) = ϕ(x−1g). If ϕ,
ψ ∈C∞c (G) and π(ϕ)= π(ψ) for all π, then for all x ∈Gwehave π(Fx(ϕ))= π(δx⋆ϕ)=
π(δx ⋆ ψ) = π(Fx(ψ)). hus,

ϕ(x−1) = Fx(ϕ)(1) = ∫
Ĝtemp

trace(π(Fx(ϕ))dµ(π)

= ∫
Ĝtemp

trace(π(Fx(ψ))dµ(π) = Fx(ψ)(1) = ψ(x−1).

So ϕ = ψ. ∎

Wenote that we can replaceG by a compact group J, and the analogous result holds
for any two ϕ,ψ ∈ C∞c (J).

Proof of Proposition 3.2 Suppose (π,Vπ) is a smooth irreducible representation.
he operator π(PΩ) ∈ End(Vπ) is the scalar 1 if π has a nonzero Iwahori GF-ûxed
vector and the scalar 0 otherwise. he operator π(PΩ ⋆ eG+E ) is projection to the sub-
space VG+E

π . By [MP1, heorem 5.2] and [MP2, Proposition 6.2], if π has a nonzero
GF-vector, i.e., an unreûned depth zero minimalK-type consisting of the trivial rep-
resentation ofGF , then any other irreducible representation ofGE inVG+E

π must contain
a nonzero GF-ûxed vector. Clearly (from the representation theory of ûnite groups)
for any irreducible representation π, the operator π(eE) is projection to the subspace
VG+E

π . It follows that π(PΩ ⋆ eG+E ) = π(eE), and so, by Lemma 3.3, PΩ ⋆ eG+E = eE . ∎

Suppose E is a facet inside a chamber F. We recall that G+E ⊂ G+F ⊂ GF ⊂ GE and
G+E is a normal subgroup of GE . he idempotents eG+E , eF , and eE belong to the ûnite
dimensional algebra

H ∶= eG+E ⋆ C
∞
c (GE) ⋆ eG+E .

his algebra is equal to the canonical embedding of C∞c (GE/G+E) in C∞c (GE) via the
quotient map ρ ∶ GE → GE/G+E . It is a consequence of the normality of G+E in GE that
C∞c (GE)⋆eF = H⋆eF and eF⋆C∞c (GE) = eF⋆H. If κ is an irreducible representation
of GE , with character Θκ , let

eκ ∶=
1

meas(GE)
deg(κ)Θκ
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be the (central) idempotent in C∞c (GE) associated with κ. Clearly, eκ ⋆ C∞c (GE) ⋆
eF ⋆ C∞c (GE) ⋆ eκ is an ideal of C∞c (GE) that is either a minimal ideal or zero.
Deûne

Hfin
E ∶= eE ⋆ C∞c (GE)⋆eE , Hfin

F ∶= eF ⋆ C∞c (GE)⋆eF ,

EH
fin
F
∶= eE⋆C∞c (GE)⋆eF , FH

fin
E
∶= eF⋆C∞c (GE)⋆eE .

Proposition 3.4 he (ûnite dimensional) vector space C∞c (GE)⋆eF⋆C∞c (GE) is a
bi-module for C∞c (GE), i.e., an ideal of C∞c (GE), and
(i) it equals Hfin

E ;
(ii) it is the span of matrix coeõcients of the representations with GF-ûxed vectors;
(iii) eE ∈ C∞c (GE)⋆eF⋆C∞c (GE), i.e., eF ∈ C∞c (GE)⋆eGF⋆C∞c (GE) is a full idempo-

tent;
(iv) eE⋆eF = eF⋆eE = eF ;
(v) Hfin

E = EH
fin
F
⋆ FH

fin
E
andHfin

F = FH
fin
E
⋆ EH

fin
F

.

Proof To prove statement (i), suppose h1⋆eGF⋆h2 ∈ C∞c (GE)⋆eF⋆C∞c (GE). For
any representation κ of GE , we have κ(h1⋆eF⋆h2) = κ(h1)κ(eF)κ(h2). When κ is
irreducible, we deduce that eκ ⋆C∞c (GE)⋆eF⋆C∞c (GE)⋆ eκ is zero if and only if κ(eF)
is zero.

Suppose (σ ,Vσ) is an irreducible representation of GE/G+E that contains a nonzero
GF/G+E-ûxed vector, i.e., σ ∈ Ξ. Set κ = σ ○ ρ. hen κ(eF) is nonzero, which means
that eκ ⋆ C∞c (GE)⋆eF⋆C∞c (GE) ⋆ eκ is a nonzero ideal of C∞c (GE) that is contained
in the minimal ideal eκ ⋆ C∞c (GE) ⋆ eκ . herefore,

eκ ⋆ C∞c (GE)⋆eF⋆C∞c (GE) ⋆ eκ = eκ ⋆ C∞c (GE) ⋆ eκ .

Since eE = ∑σ∈Ξ eσ○ρ , we deduce statement (i).
For the sake of completeness, we consider when (κ,Vκ) is an irreducible represen-

tation of GE that does not contain a nonzero GF-ûxed vector; i.e., κ(eF) is zero. hen
κ(h1⋆eF⋆h2) = 0. Consequently, κ(F) = 0 for any F ∈ C∞c (GE) ⋆ eF ⋆ C∞c (GE). his
means that eκ ⋆ C∞c (GE)⋆eF⋆C∞c (GE) ⋆ eκ is zero.

Statements (ii) and (iii) follow from statement (i).
For statement (iv), the equality eE⋆eF = eF⋆eE follows from the fact that eE is

a central element of C∞c (GE). he equality eF⋆eE = eF follows from the fact that
κ(eE⋆eGF ) = κ(eGF ) for any irreducible representation κ of GE and from Lemma 3.3.

Statement (v) is a consequence of statement (i). ∎

Suppose F is a chamber in the building, so the algebra HF ∶= eF ⋆ C∞c (G)⋆eF
is an Iwahori–Hecke algebra. If E is a facet of F, we have previously named the al-
gebra HE ∶= eE ⋆ C∞c (G)⋆eE (which contains HF) the Peter–Weyl Iwahori algebra
(associated with E).

Proposition 3.5 Suppose E is a facet inside a chamber F.
(i) he idempotent eF ∈HE satisûesHE ⋆ eF ⋆HE =HE ; i.e., it is a full idempotent.
(ii) Deûne EHF ∶= eE⋆C∞c (G)⋆eF and FHE ∶= eF⋆C∞c (G)⋆eE . henHE = EHF ⋆ FHE

andHF = FHE ⋆ EHF .
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Proof he proof of statement (i) is based on the analogous fact in Proposition 3.4
for the ûnite dimensional algebraHfin

E . We haveHfin
E = Hfin

E ⋆ eF ⋆Hfin
E . SinceHfin

E
contains the identity element eE ofHE , we haveHE ⋆Hfin

E =HE =Hfin
E ⋆HE .

herefore,

HE ⋆ eF ⋆HE =HE ⋆Hfin
E ⋆ eF ⋆Hfin

E ⋆HE ⊃HE ⋆ eE ⋆HE =HE ,

and so eF is a full idempotent ofHE , too.
Statement (ii) can be obtained from statement (i) as follows:

HE =HE ⋆ eF ⋆HE =HE ⋆ eF ⋆ eF ⋆HE

= EHF ⋆ EHF (since EHF =HE ⋆ eF and FHE = eF ⋆HE).

Similarly,HF = eF ⋆HE ⋆ eF = eF ⋆HE ⋆HE ⋆ eF = FHE ⋆ EHF ∎

Proposition 3.6 Suppose F is a chamber of B, and E is a facet contained in F.
(i) he le� HE-module EHF is cyclic with generator eF . Similarly, the right HE-

module FHE is cyclic with generator eF .
(ii) he le�HF-module FHE is ûnitely generated. Similarly, the rightHF-module EHF

is ûnitely generated.

Proof heûrst assertion of statement (i) follows from the fact that eE⋆eF = eF , while
the second follows from eF⋆eE = eF .

To see statement (ii), we use the fact that for any two open compact subgroups J
and J′ ofG, the space eJ⋆C∞c (G)⋆eJ′ is a ûnitely generated eJ⋆C∞c (G)⋆eJ module. We
take J = GF and J′ = G+E to see that eGF⋆C∞c (G)⋆eG+E (eGF is eF) is a ûnitely generated
HF-module. If we convolve on the right by eE , we deduce FHE is a ûnitely generated
le� HF-module.

Similar reasoning shows EHF is a ûnitely generated right HF−module. ∎

4 Morita Equivalence

Let C(HE), Cfg(HE), and Cfin(HE) denote the categories of le�, le� ûnitely gener-
ated, and le� ûnite-dimensionalHE-modules, respectively, and let C(HF), Cfg(HF),
and Cfin(HF) be the analogous categories of (le�) HF-modules.

heorem 4.1 he algebras HE andHF are Morita equivalent.
(i) he two maps

EHF ⊗HF FHE Ð→ HE

f ⊗HF g z→ f ⋆ g
and FHE ⊗HE EHF Ð→ HF

g ⊗HE f z→ g ⋆ f
are isomorphisms.

(ii) he maps

C(HF) Ð→ C(HE)
X z→ EHF ⊗HF X

and
C(HE) Ð→ C(HF)

Y z→ FHE ⊗HE Y
are inverses of each other and give an equivalence between the categories of le�
HE-modules and le� HF-modules.
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(iii) he category equivalences of part (i) restrict to equivalences between Cfg(HE)
and Cfg(HF) and between Cfin(HE) and Cfin(HF).

Proof he statements follow from the fact that eF ∈ HE is a full idempotent (HE =
HE ⋆ eF ⋆HE) (see [Lm, Chapter 18]). ∎

We remark that there is a similar Morita equivalence between Hfin
F andHfin

E .
he Morita equivalence of HE and HF means their centers are isomorphic. he

center of the Peter–Weyl algebra HE can be obtained from the (well known) center
of the Iwahori–Hecke algebraHF via the following result.

Corollary 4.2 Express eE as eE = ∑r
i=1a i ⋆ b i with a i ∈ EHF and b i ∈ FHE . hen

the isomorphism of centers in the Morita equivalence ofHF andHE is given by

z Ð→
r

∑
i=1
a i ⋆ z ⋆ b i .

Proof If z is in the center ofHF , then for any X ∈ C(HF), themap x → zx commutes
with any self-morphism of X; i.e., it is in the center of the category. Under the functor
X → EHF ⊗HF X, we have a similar self-morphism ( f ⊗HF x) → ( f ⊗HF zx) of
EHF ⊗HF X in the category C(HE). We compute

f ⊗HF zx = (eE ⋆ f ) ⊗HF zx =
r

∑
i=1
a i ⋆ b i ⋆ f ⊗HF zx

=
r

∑
i=1
a i ⊗HF (b i ⋆ f )zx (since b i ⋆ f ∈HF)

=
r

∑
i=1
a i ⊗HF z ⋆ (b i ⋆ f )x =

r

∑
i=1
a i ⋆ (z ⋆ (b i ⋆ f )) ⊗HF x

= (
r

∑
i=1
a i ⋆ z ⋆ b i)( f ⊗HF x).

So the element∑r
i=1a i ⋆ z ⋆ b i is the central element ofHE corresponding to z. ∎

5 Matrix Coefficients

We ûx a Haar measure on G and make C∞c (G) into a convolution algebra. he map
⋆ deûned in (2.1) is an anti-involution. For any facet E, the idempotent eE is ûxed
by ⋆, i.e., e⋆E = eE , and therefore ⋆ is an anti-involution of the Peter–Weyl algebraHE .
When F is a chamber, the ⋆ anti-involution on the Iwahori–Hecke algebraHF is the
one mentioned in the introduction.

In the Iwahori–Hecke algebra situation, using generators, [BC] deûned an anti-
involution ●. In this section we show that given a facet E and a chamber F containing
E (so HF ⊂ HE), we can deûne an anti-involution that we also denote as ●. he
involution depends on the chamber chosen (equivalently the Iwahori subgroup in-
side GE); but, since any two Iwahori subgroups are conjugate, the diòerence is up to a
conjugation. To deûne ●, we need to exhibit a decomposition ofHE in terms ofHF .
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In the next section we show theMorita equivalence between the Iwahori–Hecke alge-
braHF and the Peter–Weyl Iwahori algebraHE preserves ⋆-hermitian and ⋆-unitary
representations as well as ●-hermitian and ●-unitary representations.

5.1 Preliminaries

Lemma 5.1 Suppose (σ ,Vσ) and (τ,Vτ) are irreducible representations of a compact
group K, with invariant positive deûnite forms ⟨ ⋅ , ⋅ ⟩σ and ⟨ ⋅ , ⋅ ⟩τ . If the two represen-
tations are equivalent, we assume they are equal (and abbreviate the inner product to
⟨ ⋅ , ⋅ ⟩). Suppose x1 , x2 ∈ Vσ and y1 , y2 ∈ Vτ . hen

∫
K
⟨x1 , σ(h)x2⟩σ⟨y1 , τ(h)y2⟩τdh =

⎧⎪⎪⎨⎪⎪⎩

0 if σ is not equivalent to τ,
meas(K)
deg(σ) ⟨x1 , y1⟩⟨x2 , y2⟩ if σ = τ.

Proof hese are the Schur orthogonality relations. he case when the representa-
tions are inequivalent is clear. When they are equivalent, denote them both by σ . he
tensor productVσ⊗Vσ has two (K×K)-invariant form given by ⟨x1⊗y1 , x2⊗y2⟩σ⊗σ =
⟨x1 , y1⟩⟨x2 , y2⟩ and ⟨⟨x1⊗ y1 , x2⊗ y2⟩⟩ ∶= ∫K ⟨x1 , σ(h)x2⟩⟨y1 , σ(h)y2⟩dh, and so they
must be scalar multiples of one another. Evaluation of the scalar yields

⟨⟨ ⋅ , ⋅ ⟩⟩ = meas(K)
deg(σ) ⟨ ⋅ , ⋅ ⟩σ⊗σ . ∎

When (σ ,Vσ) is an irreducible representation of K, and u, v ∈ Vσ , we deûne the
matrix coeõcient mσ

u ,v as

(5.1) mσ
u ,v(k) ∶= ⟨u, σ(k)v⟩.

Corollary 5.2 (i) With the same notation as in Lemma 5.1,

mσ
x1 ,x2 ⋆mτ

y1 ,y2 =
⎧⎪⎪⎨⎪⎪⎩

0 if σ is not equivalent to τ,
meas(K)
deg(σ) ⟨x2 , y1⟩mσ

x1 ,y2 if σ = τ.

(ii) If v ∈ Vσ satisûes

(5.2) ⟨v , v⟩ = deg(σ)
meas(GE)

,

then the function mσ
v ,v is a convolution idempotent.

Proof his is obvious. ∎

Recall that (mσ
x1 ,x2)

⋆(k) = ⟨x1 , σ(k−1)x2⟩ = ⟨σ(k)x1 , x2⟩ = ⟨x2 , σ(k)x1⟩ = mσ
x2 ,x1 .

hus,

(mσ
x1 ,x2)

⋆⋆mσ
y1 ,y2 = mσ

x2 ,x1⋆m
σ
y1 ,y2 =

meas(K)
deg(σ) ⟨x1 , y1⟩mσ

x2 ,y2 .
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We also note that if λh (resp. ρh) is the le� (resp. right) translation representation, i.e.,
(λh( f ))(k) = f (h−1k) and (ρh( f ))(k) = f (kh), then

λh(mσ
u ,v) = mσ

σ(h)u ,v and ρh(mσ
u ,v) = mσ

u ,σ(h)v .

5.2 Decompositions

Suppose F is a chamber in B, and E is a facet in F. Assume (σ ,Vσ) and (τ,Vτ) are
irreducible representations ofGE with a nonzeroGF ûxed vector. We ûx invariant pos-
itive deûnite forms ⟨ ⋅ , ⋅ ⟩σ and ⟨ ⋅ , ⋅ ⟩τ on Vσ and Vτ respectively. For any x , y ∈ Vσ
and k ∈ GE , deûne the matrix coeõcient mσ

x ,y(k) ∶= ⟨x , σ(k)y⟩ as in (5.1). Sup-
pose a, b ∈ Vσ . When v ∈ VGF

σ , we note that the function mσ
a ,v (resp. mσ

v ,b) is right
(resp. le�) GF-invariant. We further observe the following.
(i) If v ∈ VGF

σ satisûes the normalization (5.2), thenmσ
v ,v is both a convolution idem-

potent and GF-bi-invariant.
(ii) If {v i} is an orthogonal basis of Vσ with every basis vector v i satisfying the nor-

malization (5.2), then the idempotents mσ
v i ,v i

are mutually orthogonal and

eσ ∶=
deg(σ)
∑
i=1

mσ
v i ,v i

∈ eE⋆C∞c (GE)⋆eE

is the central idempotent attached to σ . Set

Ξ ∶= collection of irreducible representations (σ ,Vσ)
of GE that have nonzero GF-ûxed vectors.

hen

(5.3) eE = ∑
σ∈Ξ
eσ = ∑

σ∈Ξ

deg(σ)
∑
i=1

mσ
vσ
i ,v

σ
i
,

where {vσ
i } is a orthogonal basis of Vσ satisfying (5.2).

Proposition 5.3 Assume F ⊂ B is a chamber and E ⊂ F is a facet. With the above
notation, suppose (σ ,Vσ) ∈ Ξ. hen there exist (ûnitely many) aσ

k ∈ EHF so that

Θσ = ∑
k
aσ
k⋆(aσ

k)⋆ .

Hence, there exist (ûnitely many) b j ∈ EHF so that eE = ∑ j b j⋆b⋆j .

Proof We take {u i} to be an orthogonal basis for Vσ and v ∈ VGF
σ so that {mσ

u i ,u i
},

and mσ
v ,v are idempotents. he coeõcient aσ

k = mσ
uk ,v is right GF-invariant, and

aσ
k⋆(aσ

k)⋆ = mσ
uk ,v⋆m

σ
v ,uk

= mσ
uk ,uk

,

and so Θσ = ∑k mσ
uk ,uk

= ∑k aσ
k⋆(aσ

k)⋆. ∎

Proposition 5.4 For each σ ∈ Ξ, let {vσ
i } and {wσ

i } be two orthogonal bases of Vσ .
Assume all these vectors satisfy the normalization (5.2). hen HE has a direct sum
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decomposition

(5.4) HE = ⊕
σ ,τ∈Ξ

deg(σ)
⊕
i=1

deg(τ)
⊕
j=1

mσ
vσ
i ,v

σ
i
⋆C∞c (G)⋆mτ

w τ
j ,w

τ
j
.

In particular, any f ∈HE can be written uniquely as

(5.5) f = ∑
σ∈Ξ

deg(σ)
∑
i=1
∑
τ∈Ξ

deg(τ)
∑
j=1

fσ , i ,τ , j ,

where fσ , i ,τ , j = mσ
vσ
i ,v

σ
i
⋆ f ⋆mτ

w τ
j ,w

τ
j
.

Proof Suppose f ∈ HE . Since f = eE ⋆ f ⋆ eE , the decomposition (5.3) of eE then
yields the sum (5.5); i.e., HE is a sum of the indicated subspaces in (5.4). To see the
sum is direct, we note that convolution on the le� bymσ

vσ
i ,v

σ
i
and on the right bymσ

w τ
j ,w

τ
j

is zero on mκ
vκ
r ,vκ

r
⋆C∞c (G)⋆mλ

w λ
s ,w λ

s
unless (σ , i , τ, j) = (κ, r, λ, s), and is the identity

(since vσ
i , vτ

j are properly normalized) on mσ
vσ
i ,v

σ
i
⋆C∞c (G)⋆mτ

w τ
j ,w

τ
j
. hus, the sum is

direct. ∎

6 Involutions and Forms

6.1 Extension of an Anti-involution of HF to HE

We continue with the assumption that F ⊂ B is a chamber and E ⊂ F a facet. Let
⋆ be the anti-involution (2.1). Suppose the Iwahori–Hecke algebra HF has an anti-
involution ○ satisfying

(6.1) ∀ f ∈ eF ⋆ C∞c (GE) ⋆ eF ∶ f ○ = f ⋆

We show here that it is possible to extend the anti-involution ○ of HF to an anti-
involution ofHE .

Lemma 6.1 For each κ ∈ Ξ, choose two bases, {vκ
i } and {wκ

i }, of Vκ , and choose two
elements yκ , zκ ∈ VGF

κ satisfying the normalization (5.2).
(i) he GF-bi-invariant function mσ

yσ ,vσ
i
⋆ f ⋆mτ

w τ
j ,z

τ is convolution le� invariant for
mσ

yσ ,yσ and convolution right invariant for mτ
zτ ,zτ .

(ii) For all f ∈ C∞c (G) and σ , τ ∈ Ξ,

mσ
vσ
i ,v

σ
i
⋆ f ⋆mτ

w τ
j ,w

τ
j
= mσ

vσ
i ,y

σ ⋆ Fyσ ,zτ ⋆mτ
zτ ,w τ

i
,

where Fyσ ,zτ = mσ
yσ ,vσ

i
⋆ f ⋆mτ

w τ
j ,z

τ belongs to HF .

Proof his is clear. ∎

Remarks
● A consequence of statement (ii) is that

HE = (eE ⋆ C∞c (GE) ⋆ eF) ⋆HF ⋆ (eF ⋆ C∞c (GE) ⋆ eE).
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● In statement (ii), if we replace the collection of (normalized) GF-invariant vec-
tors {yκ} and {zκ} by {yκ

†} and {zκ†}, then the two GF-bi-invariant functions Fyσ ,zτ

and Fyσ
† ,z

τ
†
are related by

Fyσ
† ,z

τ
†
= mσ

yσ
† ,yσ⋆Fyσ ,zτ⋆mσ

zτ ,zτ
†
.

Assume we are in the situation of Lemma 6.1. hen any f ∈HE is decomposed as
in (5.5); thus,

f = ∑
σ∈Ξ

deg(σ)
∑
i=1
∑
τ∈Ξ

deg(τ)
∑
j=1

mσ
vσ
i ,y

σ⋆(mσ
yσ ,vσ

i
⋆ f ⋆mτ

v τ
j ,z

τ)⋆mτ
zτ ,v τ

j
,

and each function (mσ
yσ ,vσ

i
⋆ f ⋆mτ

v τ
j ,z

τ) is GF-bi-invariant. Another choice {yσ
† , zσ

† ∈
VGF

σ ∣ σ ∈ Ξ} yields

f = ∑
σ∈Ξ

deg(σ)
∑
i=1
∑
τ∈Ξ

deg(τ)
∑
j=1

mσ
vσ
i ,y

σ
†
⋆(mσ

yσ
† ,v

σ
i
⋆ f ⋆mτ

v τ
j ,z

τ
†
)⋆mτ

zτ
† ,v

τ
j
.

We can combine these two expressions for f with the following assumptions:
(i) ○ is an anti-involution of the Iwahori–Hecke algebraHF .
(ii) On the functions eF⋆C(GE)⋆eF , the maps ○ and ⋆ (of (2.1)) are equal.
(iii) For any κ ∈ Ξ and a, b ∈ Vκ , (mκ

a ,b)⋆ = mκ
b ,a .

We deduce that the linear map

(6.2)

f = ∑
σ∈Ξ

deg(σ)
∑
i=1
∑
τ∈Ξ

deg(τ)
∑
j=1

mσ
vσ
i ,u

σ⋆(mσ
uσ ,vσ

i
⋆ f ⋆mτ

v τ
j ,u

τ)⋆mτ
uτ ,v τ

j

○ÐÐÐÐ→

f ○ ∶= ∑
σ∈Ξ

deg(σ)
∑
i=1
∑
τ∈Ξ

deg(τ)
∑
j=1

mτ
v τ

j ,u
τ⋆(mσ

uσ ,vσ
i
⋆ f ⋆mτ

v τ
j ,u

τ) ○⋆mσ
uσ ,v τ

i

= ∑
σ∈Ξ

deg(σ)
∑
i=1
∑
σ∈Ξ

deg(τ)
∑
j=1

mτ
v τ

j ,u
τ⋆(mτ

uτ ,v τ
j
⋆ f ○⋆mσ

vσ
i ,u

σ )⋆mσ
uσ ,v τ

i

on HE is well deûned.

Proposition 6.2 he linear map ○ (6.2) ofHE is an algebra anti-involution.

We note the following:
(i) If ○ is the ⋆ anti-involution of HF , then the extension ○ to HF is the ⋆ anti-

involution.
(ii) ● satisûes (6.1), so the above computation (with ○ being ●) applies to say ● has an

extension to HE .

Proof For each σ ∈ Ξ, we ûx an orthogonal basis {vσ
i } of Vσ and a vector uσ ∈ VGF

σ .
We assume that the vectors are normalized as in (5.2). Suppose f , g ∈ HE . Expand
them as
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f = ∑
σ ,τ

deg(σ)
∑
i=1

deg(τ)
∑
j=1

mσ
vσ
i ,v

σ
i
⋆ f ⋆mτ

v τ
j ,v

τ
j
,

g = ∑
kappa ,λ

deg(κ)
∑
r=1

deg(λ)
∑
s=1

mκ
vκ
r ,vκ

r
⋆g⋆mλ

v λ
s ,v λ

s
.

By the orthogonality relations

(mσ
vσ
i ,v

σ
i
⋆ f ⋆mτ

v τ
j ,v

τ
j
) ⋆ (mκ

vκ
r ,vκ

r
⋆g⋆mλ

v λ
s ,v λ

s
) =

⎧⎪⎪⎨⎪⎪⎩

0 unless τ = κ and j = r,
∑τ∑

deg(τ)
j=1 mσ

vσ
i ,v

σ
i
⋆ f ⋆mτ

v τ
j ,v

τ
j
⋆g⋆mλ

v λ
s ,v λ

s
when τ = κ and j = r.

By (5.5), this must be mσ
vσ
i ,v

σ
i
⋆ f ⋆g⋆mλ

v λ
s ,v λ

s
. From this, we use mσ

vσ
i ,v

σ
i
= mσ

vσ
i ,u

σ mσ
uσ ,vσ

i
,

mτ
v τ

j ,v
τ
j
= mτ

v τ
j ,u

τmτ
uτ ,v τ

j
, and mλ

v λ
s ,v λ

s
= mλ

v λ
s ,uλmλ

uλ ,v λ
s
to compute

(mσ
vσ
i ,v

σ
i
⋆ f ⋆g⋆mλ

v λ
s ,v λ

s
) ○

= (∑
τ

deg(τ)
∑
j=1

mσ
vσ
i ,v

σ
i
⋆ f ⋆mτ

v τ
j ,v

τ
j
⋆g⋆mλ

v λ
s ,v λ

s
)
○

= (∑
τ

deg(τ)
∑
j=1

mσ
vσ
i ,u

σ ⋆mσ
uσ ,vσ

i
⋆ f ⋆mτ

v τ
j ,v

τ
j
⋆g⋆mλ

v λ
s ,uλ ⋆mλ

uλ ,v λ
s
)
○

= ∑
τ

deg(τ)
∑
j=1

mλ
v λ
s ,uλ ⋆ (mσ

uσ ,vσ
i
⋆ f ⋆mτ

v τ
j ,v

τ
j
⋆g⋆mλ

v λ
s ,uλ)

○ ⋆mσ
uσ ,vσ

i

= ∑
τ

deg(τ)
∑
j=1

mλ
v λ
s ,uλ ⋆ (mσ

uσ ,vσ
i
⋆ f ⋆mτ

v τ
j ,u

τ ⋆mτ
uτ ,v τ

j
⋆g⋆mλ

v λ
s ,uλ)

○ ⋆mσ
uσ ,vσ

i

= ∑
τ

deg(τ)
∑
j=1

mλ
v λ
s ,uλ ⋆ ((mτ

uτ ,v τ
j
⋆g⋆mλ

v λ
s ,uλ)○

⋆ (mσ
uσ ,vσ

i
⋆ f ⋆mτ

v τ
j ,u

τ)○) ⋆mσ
uσ ,vσ

i

= ∑
τ

deg(τ)
∑
j=1

mλ
v λ
s ,uλ ⋆ ((mτ

uτ ,v τ
j
⋆g⋆mλ

v λ
s ,uλ)○ ⋆mτ

uτ ,uτ

⋆ (mσ
uσ ,vσ

i
⋆ f ⋆mτ

v τ
j ,u

τ)○) ⋆mσ
uσ ,vσ

i

= ∑
τ

deg(τ)
∑
j=1

mλ
v λ
s ,uλ ⋆ ((mτ

uτ ,v τ
j
⋆g⋆mλ

v λ
s ,uλ)○ ⋆mτ

uτ ,v τ
j

⋆mτ
v τ

j ,u
τ ⋆ (mσ

uσ ,vσ
i
⋆ f ⋆mτ

v τ
j ,u

τ)○) ⋆mσ
uσ ,vσ

i

= ∑
τ

deg(τ)
∑
j=1

deg(τ)
∑
r=1

mλ
v λ
s ,uλ ⋆ ((mτ

uτ ,v τ
r
⋆g⋆mλ

v λ
s ,uλ)○ ⋆mτ

uτ ,v τ
r

⋆mτ
v τ

j ,u
τ ⋆ (mσ

uσ ,vσ
i
⋆ f ⋆mτ

v τ
j ,u

τ)○) ⋆mσ
uσ ,vσ

i
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= (∑
κ

deg(κ)
∑
r=1

mλ
v λ
s ,uλ ⋆ (mκ

uκ ,vκ
r
⋆g⋆mλ

v λ
s ,uλ)○ ⋆mκ

uκ ,vκ
r
)

⋆ (∑
τ

deg(τ)
∑
j=1

mτ
v τ

j ,u
τ ⋆ (mσ

uσ ,vσ
i
⋆ f ⋆mτ

v τ
j ,u

τ)○ ⋆mσ
uσ ,vσ

i
)

= (g ⋆mλ
v λ
s ,v λ

s
) ○ ⋆ (mσ

vσ
i ,v

σ
i
⋆ f ) ○ .

he above is true for any mσ
vσ
i ,v

σ
i
and mλ

v λ
s ,v λ

s
. We conclude ○ is an algebra anti-

involution. ∎

Wenote that the ○-involution ofHE interchanges the two subspaces EHF and FHE .
We obviously have

∀ f ∈HE , a ∈ EHF , g ∈HF ∶ ( f ⋆ a ⋆ g)○ = g○ ⋆ a○ ⋆ f ○

and a similar relation when b ∈ FHE instead. We have

∀a ∈ EHF , b ∈ FHE ∶ (a ⋆ b)○ = b○ ⋆ a○ and (b ⋆ a)○ = a○ ⋆ b○ .
We prove that theMorita equivalence ofheorem4.1 preserves the ○ hermitian and

unitary modules. We continue in the context that F is a chamber and a facet E ⊂ F.
We follow the algebraic considerations in [R]. SupposeA is an C⋆-algebra. We use

○ to denote the involution of aA. If a ∈ A, we write a ≥ 0 if there exists x1 , . . . , xn ∈ A
so that a = ∑n

i=1 x○i x i .
In the Morita equivalence of heorem 4.1, we assume that ○ is an anti-involution

of HF that satisûes (6.1), so there is an extension of ○ to HE . We want to be able to
transfer the Hermitian structure of a representation ofHF to a representation ofHE
and vice-versa. To eòect this, EHF must have a HF-valued form ( ⋅ , ⋅ )HF ∶ EHF ×
EHF →HF that is sesquilinear, i.e., so that

∀a, b ∈ EHF ∶ (a, b)HF = ((b, a)HF )○

∀r ∈HE , a, b ∈ EHF ∶ (r ⋆ a, b)HF = (a, r○ ⋆ b)HF .

Granted the existence of the form ( ⋅ , ⋅ )HF , if (π,Vπ) ∈ C(HF) has a hermitian form
⟨ ⋅ , ⋅ ⟩HF , then theHE-module EHF ⊗HF Vπ is hermitian for the form

⟨ f ⊗ v , g ⊗w⟩HE = ⟨π(( f , g)HF )v ,w⟩HF .

his plugs into themachinery of [R], and it is formal that ⟨ ⋅ , ⋅ ⟩HE is a hermitian form
with the appropriate invariance properties. To go in the other direction, FHE must
have aHE-valued sesquilinear form ( ⋅ , ⋅ )HE ∶ FHE × FHE →HE . For our situation,
the two forms are

∀a, b ∈ EHF ∶ (a, b)HF ∶= a○ ⋆ b
∀c, d ∈ FHE ∶ (c, d)HE ∶= c○ ⋆ d

To show that a unitary module (V ∈C(HF)) is taken to a unitary module
(( EHF ⊗HF V) ∈ C(HE)), it suõces to show (a, a)HF ≥ 0 for any a ∈ EHF . Similarly,
ifW ∈ C(HE) is unitary, then a suõcient condition for ( FHE ⊗HE W) to be unitary
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is that (a, a)HE ≥ 0 for all a ∈ FHE . We write an element in FHE (resp. EHF ) as
a = eE ⋆ A ⋆ eF (resp. a = eF ⋆ A ⋆ eE) with A ∈HE . hen

(a, a)HF = (eE ⋆ A ⋆ eF , eE ⋆ A ⋆ eF)HF

= (eE ⋆ A ⋆ eF)○ ⋆ (eE ⋆ A ⋆ eF) = eF ⋆ A○ ⋆ eE ⋆ A ⋆ eF .
By Proposition 5.3, there exist x1 , . . . , xr ∈ eE ⋆C∞c (GE)⋆ eF so that eE = ∑r

i=1 x i ⋆x⋆i .
Substitution yields

(a, a)HF = eF ⋆ A○ ⋆ (
r

∑
i=1

x i ⋆ x⋆i ) ⋆ A ⋆ eF

=
r

∑
i=1
(x⋆i ⋆ A ⋆ eF)○ ⋆ (x⋆i ⋆ A ⋆ eF).

So (a, a)HF ≥ 0 for all a ∈ EHF . hat (b, b)HE ≥ 0 for any b ∈ FHE is obvious. Hence,
we have the following proposition.

Proposition 6.3 Suppose F is a chamber and E ⊂ F is a facet. Suppose that ○ is an
anti-involution ofHF satisfying (6.1) and ○ is extended to HE . hen the equivalence of
categories in heorem 4.1 preserves hermitian and unitarity modules.

7 Generalizations

7.1 Finite Field Groups

We consider a ûnite ûeld F (with q elements) and a connected reductive group G
deûned over F. Let G be the group of F-rational points, and let P = MU (U the
radical, M a Levi factor) be the F-rational points of a parabolic subgroup deûned
over F.

heorem 7.1 ([HC]) Take G and P = MU as above. Suppose σ and τ are irreducible
cuspidal representations of M. he following are equivalent:
(i) here exists n ∈ NG(M) so that Ad(n)σ = τ.
(ii) Suppose (λ,Vλ) is an irreducible representation of G and (Vλ)U is the

U-covariants (a representation of M). hen (Vλ)U contains σ if and only if it
contains τ.

heorem 7.1 gives an equivalence relation on the set T of irreducible cuspidal rep-
resentations of M. For such a representation τ, let ∆(τ) denote the equivalence class
of τ. Set

XMU ∶= {λ ∈ Ĝ ∣ (Vλ)U contains a cuspidal representation of M}.
hen heorem 7.1 also gives an equivalence relation on XMU as

λ1 , λ2 ∈ Ĝ ∶ λ1 ∼ λ2 if (Vλ1)U and (Vλ2)U share an irreducible
cuspidal representation of M .

heorem 7.1 obviously provides a natural bijection between the equivalence classes
of T and those of XMU .
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We take σ to be an irreducible cuspidal representation ofM. Denote by ∆ its equiv-
alence class ∆ in T and by Ξ the corresponding equivalence class of representations of
G. We deûne idempotent elements eσ , e∆ and eΞ in the group algebra CG as follows:

eσ(g) ∶=
⎧⎪⎪⎨⎪⎪⎩

1
#(MU) deg(τ)Θσ(m) if g = mu ∈ MU ,
0 if g ∉ MU ,

e∆(g) ∶=
⎧⎪⎪⎨⎪⎪⎩

1
#(MU) ∑τ∈∆ deg(τ)Θτ(m) if g = mu ∈ MU ,
0 if g ∉ MU ,

eΞ ∶=
1

#(G)∑λ∈Ξ
deg(λ)Θλ .

he element eΞ is the central idempotent in the group algebra CG, and for any irre-
ducible representation (λ,Vλ) of G,

λ(eΞ) =
⎧⎪⎪⎨⎪⎪⎩

IVλ if λ ∈ Ξ,
0Vλ if λ ∉ Ξ.

he idempotent eσ is clearly the product (in any order) of the two idempotents

ea(g) ∶=
⎧⎪⎪⎨⎪⎪⎩

1
#(M) deg(σ)Θσ(m) if g = m ∈ M,
0 if g ∉ M ,

eU(g) ∶=
⎧⎪⎪⎨⎪⎪⎩

1
#(U) ∑τ∈∆ 1 if g ∈ U ,
0 if g ∉ U ,

and similarly for e∆ . For any irreducible representation (λ,Vλ) of G, we have

λ(e∆) = λ(ea) ○ λ(eU),

where λ(eU) projects to the U-invariants of Vλ (which we can identify with the
U-covariants), and then the action of λ(ea) on the U-invariants is projection to the
isotypical component arising from σ . Obviously, for any λ ∈ Ĝ, we have λ(eΞ ⋆ eσ) =
λ(eσ) = λ(eσ ⋆ eΞ). his means that the operator Fourier transforms of the three
functions eΞ ⋆ eσ , eσ , and eσ ⋆ eΞ are equal. his means that

(7.1) eΞ ⋆ eσ = eσ = eσ ⋆ eΞ .

In a completely analogous way,

(7.2) eΞ ⋆ e∆ = e∆ = e∆ ⋆ eΞ .

Deûne

Hσ ∶= eσ ⋆C(G)⋆ eσ , H∆ ∶= e∆ ⋆C(G)⋆e∆ , HΞ ∶= eΞ ⋆CG⋆eΞ ,

and

ΞHσ ∶= eΞ⋆CG ⋆ eσ , σHΞ ∶= eσ ⋆CG⋆ eΞ
ΞH∆ ∶= eΞ⋆CG ⋆ e∆ , ∆HΞ ∶= e∆⋆CG⋆eΞ .
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he relations in (7.1) and (7.2) mean thatHσ andH∆ are subalgebras ofHΞ . he proof
of Proposition 3.4 can be easily modiûed and combined with the referenced results
on Morita equivalence to show the following proposition.

Proposition 7.2 he idealsCG⋆eσ⋆CG andCG⋆e∆⋆CG ofCG satisfy the following:
(i) Each equals HΞ ; i.e., the idempotents eσ and e∆ are full idempotents ofHΞ .
(ii) (a) HΞ = ΞHσ ⋆ σHΞ andHσ = σHΞ ⋆ ΞHσ .

(b) HΞ = ΞH∆ ⋆ ∆HΞ andH∆ = ∆HΞ ⋆ ΞH∆ .
(iii) he algebras Hσ andH∆ are Morita equivalent to HΞ .

7.2 Local Field Groups

Wenowconsider k a non-archimedean local ûeldwith notation as in the introduction.
Suppose F is a facet of the building B(G), and F is a facet with a subfacet E, and
GF and GE are the corresponding parahoric subgroups (so G+E ⊂ G+F ⊂ GF ⊂ GE).
hen G = GE/G+E is the F-rational points of a reductive group deûned over F and
P = GkF /G+E is a parabolic subgroup. Let MU be a Levi decomposition of P and let
σ be an irreducible cuspidal representation of M. Deûne ∆ = ∆(σ) and Ξ as in the
previous section. he in�ation of the idempotent eσ ofG to GE obviously has support
in GF . For convenience of notation we continue to use the notation eσ to denote the
in�ation. Denote by eF and eE , respectively, the in�ations of e∆ and eΞ to GE . he
support of eF is in GF .
Deûne

Hσ ∶= eσ ⋆ C∞c (G)⋆ eσ , HF ∶= eF ⋆ C∞c (G)⋆eF , HE ∶= eE ⋆ C∞c ⋆eE ,
and

EHσ ∶= eE⋆C∞c (G)⋆eσ , σHE ∶= eσ ⋆C∞c (G)⋆eE
EH∆ ∶= eE⋆C∞c (G) ⋆ e∆ , ∆HΞ ∶= e∆⋆C∞c (G)⋆eE .

In an entirely analogous fashion to heorem 4.1, we have the following theorem.

heorem 7.3 he idempotents eσ and eF are full idempotents of the algebraHE , and
so the algebras Hσ andHF are Morita equivalent to HE .

he ⋆-anti-involution f ⋆(g) = f (g−1) on C∞c (G) restricts to a ⋆-anti-involution
on the algebras Hσ , HF , and HE . In analogy with Proposition 6.3, we have the fol-
lowing proposition.

Proposition 7.4 Suppose ○ is an anti-involution ofHF that satisûes (6.1): ∀ f ∈ eF ⋆
C∞c (GE) ⋆ eF ∶ f ○ = f ⋆. hen there is an extension of ○ to an anti-involution of HE
such that Morita equivalence ofHF andHF preserves hermitian and unitary modules.
he same holds if we replaceHF byHσ .
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