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Abstract  This paper is devoted to the study of the low Mach number limit for the isentropic Euler
system with axisymmetric initial data without swirl. In the first part of the paper we analyze the
problem corresponding to the subcritical regularities, that is H* with s > % Taking advantage of the
Strichartz estimates and using the special structure of the vorticity we show that the lifespan T of
the solutions is bounded below by logloglog %, where ¢ denotes the Mach number. Moreover, we prove
that the incompressible parts converge to the solution of the incompressible Euler system when the

parameter ¢ goes to zero. In the second part of the paper we address the same problem but for the
5

Besov critical regularity 327,1. This case turns out to be more subtle because of at least two features.
The first one is related to the Beale-Kato—Majda criterion which is not known to be valid for rough
regularities. The second one concerns the critical aspect of the Strichartz estimate L%Loo for the acoustic
parts (VAildiv Ve, Cg): it scales in the space variables like the space of the initial data.
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1. Introduction

The object of this paper is to study the incompressible limit problem for classical
solutions of the compressible isentropic Euler equations. The fluid is assumed to evolve
in the whole space R3 and possesses a special geometric structure: the vector fields are
invariant under the group of rotations around the vertical axis (0Oz). Recall that the
state of the fluid is described by the velocity field v, and the sound speed c,, through a
penalized quasilinear hyperbolic system,

1
0ve + Ve - Vg +yceVee + —Ve, =0
&
. L. (1.1)
0tCe + Ve - Vg + yeedivve + —divv, =0 :
£

(Ve, C€)|t:0 = (VO,S» CO,a),
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with y a strictly positive number and & a small parameter called the Mach number. We
point out that the derivation of this model can be carried out from the compressible
isentropic equations after rescaling the time and changes of variables; see for instance
[15,20,26]. This model has been widely considered through the last few decades
and special attention is focused on the construction of a family of solutions with a
nondegenerate time existence. Nevertheless, the most relevant task is to study rigorously
the convergence towards the incompressible Euler equations when the Mach number
goes to zero. We recall that the incompressible Euler system is given by

ov+v-Vv+Vp=0
divv=0 (1.2)
V|t:0 =0

The answer to these problems depends on several factors: the domain where the fluid
is assumed to evolve: the full space R¢, the torus T¢, bounded or unbounded domains.
The second factor is the state of the initial data: whether they are well-prepared or
not. In the well-prepared case [20,21], we assume that the initial data are slightly
compressible, which means that divvg ., = O(¢) and Vcg = O(¢) as € — 0. However, in
the ill-prepared case [33], we only assume that the family (vo ¢, co.¢), is bounded in some
Sobolev spaces H* with s > % + 1 and that the incompressible parts of (vo), tend to
some vector field vg. Remark that in the well-prepared case we have a uniform bound
of (d,ve),, and this allows us to pass to the limit by using the Aubin—Lions compactness
lemma. Nevertheless, the ill-prepared case is more subtle because the time derivative
0ve, is of size O(%). To overcome this difficulty, Ukai [33] used the dispersive effects
generated by the acoustic waves in order to prove that the compressible part of the
velocity and the acoustic term vanish when & goes to zero. In [15], we deal with a
more degenerate case: we allow the initial data to be so ill-prepared that corresponding
solutions can tend to a vortex patch or even to a Yudovich solution. Since these solutions
do not belong to the Sobolev space H® for any s > 2, we allow initial data that are not
uniformly bounded in these spaces. We point out that this problem has already been
studied in numerous papers; see for instance [5, 12-14, 20, 21, 23-26, 33].

It is well-known that in space dimension 2 and contrary to the incompressible Euler
system case, equations (1.1) develop singularities in finite time even for smooth initial
data; see [27]. This result remains true for higher dimensions; see [30]. On the other hand
it is known from the work [21] that in the case of the full space R or the torus domain
T, the lifespan T* of the system (1.1) converges to the lifespan of the limit system (1.2).
This result was established for the well-prepared case and with initial data lying in H*,
with s > % + 2. We point out that this approach cannot work for lower regularities
% +2>5> % + 1. This is due to the fact that we use a perturbation argument,
through the estimate of the difference between the solutions in H*~!, and we require
the embedding H*~1 <> W1 to achieve this program. As an immediate application we
get in dimension 2 that lim,_,¢ T} = 4-00. This last result can be improved and the fact
that the solutions of (1.2) have a double-exponential growth in Sobolev space induces
an explicit lower bound for the lifespan T} > Cloglog % It seems that we can get better
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information about the lifespan of the solutions when the initial data have some special
structures. In [4], Alinhac proved that in space dimension 2 and for axisymmetric initial
data the lifespan of the solution is equivalent to % For dimension 3 and for irrotational
velocity, Sideris [30] established that the solutions are almost global in time, that is,
their lifespans are bounded below by er. Finally, we mention the results of [18,29]
dealing with the global existence under suitable conditions on the initial data: the initial
density must be small and has a compact support and the spectrum of Vug must be far
away from the set of the negative real numbers.

In this paper, we try to accomplish the same program in dimension 3 for axisymmetric
initial data. This is motivated by the works of [28,32] where it is proven that
the incompressible Euler system is globally well-posed when the initial data are
axisymmetric and belong to H*,s > % For the definition of the axisymmetry, see
Definition 2. The proof relies on the special structure of the vorticity £2 which leads
to a global bound of [[£2(7)|;~ and then we use the Beale-Kato—Majda criterion [7].

Recently, we established in [1] the global well-posedness for (1.2) with initial data lying
241
in borderline Besov spaces vg € B,f,l ,1 <p<oo. It is important to mention that in

this context the Beale-Kato—Majda criterion is not known to be valid and the geometry
is crucially used in different steps of the proof, and it is combined with a dynamical
interpolation method.

Our main goal here is to study the incompressible limit problem for both subcritical
and critical cases with ill-prepared axisymmetric initial data. Concerning the subcritical
regularities we obtain the following result.

Theorem 1. Let s > g and {(vo,e, €0.e)g-e<1} be a H*-bounded family of axisymmetric
initial data, that is

sup |[(vo,e, CO,s)”[-{s < +00.
0<e<1

Then the system (1.1) has a unique solution (ve, cs) € C([0, Te[; H*), with

1 .
T, > Clogloglog () =T,.
e
The constant C does not depend on €. Moreover, there exists o > 0 such that
I(divve, Veo)llpr g < Coe”  and  [|(ve, ce) D) llgs < Coe™ P!, Vi€ [0, Tel.
Te
Assume in addition that the incompressible parts (Pvge) converge in L% to some vo.

Then the incompressible parts of the solutions tend to the Kato’s solution v of the
system (1.2). More precisely, for every T >0 and Vn < s,

lim [|Pve — v|lfoogn = 0.
e—0 T

Remark 1. To study the lifespan of the solutions we do not use the approach of [21]
based on the stability of the incompressible Euler system. More precisely, it seems that
there is no need to use the limit system: we can only work with (1.1) and use the special
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structure of the vorticity dynamics. On the other hand, because we are working with the
vorticity, and by taking advantage of its special structure, we can improve the regularity
required for the stability: we can work in the framework of Sobolev spaces H® with s > %

We emphasize that in [21] the Sobolev regularity must be larger than %

The proof of Theorem 1 relies on the use of Strichartz estimates for the compressible
parts (Qv,) and the acoustic ones (c.); see Corollary 2. Thus interpolating this result
with the energy estimates (see Proposition 1), we obtain the following result described in
Proposition 2: there exists o > 0 such that

Idiv vell g1 oo + 1V ll 300 < Coe” (1 + 72)eCVe®D v (T) = | (Vve, Veollppee - (1.3)

It is worth pointing out that working with the subcritical regularities is very valuable for
getting the preceding inequality. However, this argument fails in the critical spaces as we
shall see next. The second ingredient of the proof is the use of the special structure of
the vorticity in the axisymmetric case combined with the Beale-Kato—Majda criterion.
In what follows, we will briefly discuss the main feature of the axisymmetric flows; for
the complete computations, see the following sections. By the definition, the velocity
takes the form v(x) =V"(r, 2)e, + v¥(r, 2)e; in the cylindrical basis, and consequently the
vorticity 2 := curl v is given by £ = (8.v" — 8,19)ep := 2%¢y. Therefore, the vorticity
dynamics is described by

r

02 + Ve - V2 + 2odive = £ 02, (1.4)
r
It follows that the quantity % satisfies the transport equation:
2
(Bt +v, -V +divv5)—8 =0.
r

We observe that this is analogous to the vorticity structure for the compressible Euler
equations in space dimension 2. Performing energy estimates we obtain a law of almost
conservation:

When the fluid is incompressible, we obtain exact conservation laws which are sufficient
for leading to the global well-posedness. As regards the proof of the incompressible
limit in the case of ill-prepared initial data, it is done in a straightforward manner

QO,&‘

r

1 .
LA I vl o
,

2.
=0l <| Vpell, ool
r rr

Ly

by using the Strichartz estimates. In the second part of this paper we will focus on
the low Mach number limit for initial data with critical regularities. In our context a

function space X is called critical if it is embedded in a Lipschitz class and both have
5 3

the same scaling; for example we cite the Besov space 325,1 or more generally B;,l ,
with p € [1, co]. These spaces have been until now the largest ones in the Besov space
hierarchy for which we can establish the local well-posedness of the incompressible Euler
equations or more generally for the quasilinear hyperbolic systems of order 1. In [1],
it is proven that the system (1.2) is globally well-posed for axisymmetric initial data
with critical Besov regularity. Therefore it is legitimate to try to accomplish the same
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program for the system (1.1) as in the subcritical case and in particular to quantify
a lower bound for the lifespan of the solutions. Nevertheless, to get uniform bounds
with respect to the parameter ¢ and remove the penalization term we need to work

with critical spaces which are constructed over the Hilbert space L? like BQg’l or other
modified spaces, as we will see next. Although one can prove the local well-posedness
for the system (1.1) with a uniform time existence, the extension of the results of
Theorem 1 to the critical case seems to be much more relevant. We distinguish at least
two principal difficulties. The first one has a connection with Strichartz estimates (1.3):

in the critical framework the quantities ||div vz and ||ve|| 5 have the same scaling

2,1
and the interpolation argument used in the proof of Theorem 1 cannot work without

doing refined improvement. Irédeed, we have no sufficient information about the decay of
the remainder series Zq>N 2291 (Agve, Agce) (@)l 2 and there is no explicit dependence
of this decay with respect to the parameters, N, t and ¢ : it seems that in general the
number N can implicitly depend on the variable time and on the parameter ¢ and this
makes the task very hard. To overcome this difficulty, we start with the important

5
observation that any function f € 322’1 belongs to some heterogeneous Besov spaces

Sy
822”1 , where ¥ : [~1, +00[— R is a nondecreasing function depending on the profile of
f and satisfying limg_, 400 ¥ (g) = +00. These latter spaces are defined by the norm

5
lull 50 =D ¥@239 | Aqul2 -
2 g=2-1

Further details and more discussion of such spaces will be found in the next section.
We point out that the function ¥ measures the decay of the remainder series in the
space of the initial data and we will see that the same decay will occur for the solution
uniformly with respect to . Therefore one can set up the interpolation argument in the
critical framework like for the subcritical case but without any explicit dependence of
the lifespan with respect to the initial data.

Concerning the second difficulty, it is related to the Beale-Kato—Majda criterion
which is not applicable in the context of critical regularities. In this case the estimate
of ||2:(®)|lz~ is not sufficient for propagating the initial regularities and one should
estimate ||£2.(2)]| B, instead. We will see next that many geometric properties of the
axisymmetric flows are used and play a central role in the critical framework. Our result
reads as follows.

Theorem 2. Let {(vo.e, c0.e)g-e<1} b€ a family of azisymmetric initial data such that

5
D229 sup [[(Agvo.e. Agco.)llz < +00. (1.5)
g>—1 O<e<1

5
Then the system (1.1) has a unique solution (ve, cg) € C([0, T¢]; 322’1), with

lim T, = 4o0.
e—0
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Moreover the acoustic parts of the solutions go to zero:

lim [|(div ve, Vo)l 1 o0 = 0.
e—0 Te

Assume in addition that the incompressible parts (Pvoe) converge in L% to some vo.
Then the incompressible parts of the solutions tend to the Kato’s solution v of the
system (1.2). More precisely, for any n < %

£°XP Cot

Y [Pve vz =0 and ||ve, @]l 5 < Coe™ ™, Vi€, Tl
21

We shall make some useful remarks.

Remarks 1. (1) In the preceding theorem we need the assumption (1.5) which is much

stronger than supg_.<1 [1(vo,e, o)l 5 < 4o00. This is crucial for proving a uniform

BZ,I
decay for higher frequencies; see Corollary 1.

(2) This theorem is a special case of a general result that will be discussed in
Theorem 3. More precisely, We can extend these results for initial data lying in the

heterogeneous Besov spaces B2 1 , with ¥ € Uyo; see Definition 1. When ¥ has a slow
growth at infinity then the lifespan T, of the solutions is bounded below as follows:

T, > Colog logylog '4 (log 8_1) }
This covers the results of Theorem 1: it suffices to choose ¥ (x) = 2(5_%)’6, s > %
We have already mentioned that in the critical case the Beale-Kato-Majda criterion is
inapplicable, and yet the significant quantity that one should estimate is ||$2.(#)| 5o )
This does not seem an easy task due to the nonlinearities in the vorticity equation and
to the lack of the incompressibility of the velocity vector field. It is worth pointing out
that the incompressible case corresponding to the constraint div v, = 0 was studied a few
years ago in [1], where the following linear growth was established:

IVE /711 oo !
12:0llg0 | < CILeOllgo ot (H/O ||va<r>||Loodr).

One of the main technical parts of this paper is extending this result to the compressible
model (1.4). What we are able to prove is the following:

v 0 Cllve ; .
12:0lg0 | < CIROllgo , "M (14 b v 2 )

L}B:l
t
x (1+/ ”VE(T)”LipdT)‘
0

where p € [1, 00[ and | - [|1;p stands for Lipschitz norm. We observe that when we take
divv, := 0 then we get the previous linear estimate. The proof of this result uses, but
with important modifications, the approach developed in [1] for the incompressible case.
This method is based on a suitable splitting of the vorticity and the use of the dynamical
interpolation techniques. The geometry of axisymmetric flows plays a crucial role in the
proof, and we use also some tools of paradifferential calculus and harmonic analysis.
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The rest of the paper is organized as follows. In § 2, we recall some functional spaces
and some of their basic properties. Section3 is devoted to the establishing of some
energy estimates in the heterogeneous Besov spaces B%llll In §4, we prove some useful
Strichartz estimates for the compressible and acoustic parts of the fluid. In §5, we
discuss some basic notions of axisymmetric geometry and we study some important
geometric properties of the vorticity and prove some a priori estimates. In § 6, we prove
Theorem 1. Section 7 is deserved to the proof of Theorem 2 and in particular to the
proof of the logarithmic estimate described previously. Finally, in Appendix we establish
some elementary lemmas.

2. The functional toolbox

In this section we review some of the basic tools of the paradifferential calculus and
recall some elementary properties of Besov and Lorentz spaces. Before going further into
the details we will give some notation that we will use intensively in this work.

Notation:

e Throughout this paper, C stands for some real positive constant which may be
different in each occurrence and Cy a constant which depends on the initial data.

e We shall sometimes alternatively use the notation X <Y for an inequality of type
X < CY where C is a constant independent of X and Y.

e For any pair of operators P and Q acting in the same Banach space X, the
commutator [P, Q] is given by PQ — QP.

2.1. Littlewood—Paley theory

Hereafter, the space dimension is fixed as d = 3, but all of the results of this section
are valid for any dimension if the necessary modifications are made. To define
Littlewood—Paley operators we need to recall the dyadic partition of unity—for a
proof see for instance [10]: there exist two positive radial functions x € D(R3) and
@ € D(R?\ {0}) such that:

() X&) + X500 9(279€) =1 V& € R?,
(il) Yo ez 9(27%) =1if £ #0,
(iii) suppp(27-) Nsuppe(279) = @, if |p — q| > 2,
(iv) ¢ = 1 = suppy Nsuppep(279) = 2.
For every u € §'(R3) we define the dyadic blocks by
A_qu=xDyu; VYgeN, Au=¢@2 Du and Su= Z Aju.
-1<jgg-1

One can easily prove that for every tempered distribution u, the following identity holds
true in the weak sense:

u= Z Agu. (2.1)

q=—1
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In the same way we define the homogeneous operators
Vg €Z, Aqu=¢(2_qD)v and S'quz Z Aju.
j<q-1
We notice that these operators are of convolution type. For example for ¢ € Z, we have

Agu=2%h2%) xu, withheS, hE) =eE).

For the homogeneous decomposition, the identity (2.1) is not true due to the
polynomials but we can write

u=> Au YueSR/PR,
qeZ

where P[R3] is the set of polynomials.
We will make continuous use of Bernstein inequalities (see for example [10]).

Lemma 1. There exists a constant C such that for ke N,qg > —1, 1 <a <b and for
ue LYR3),

1_1
sup 19Squll;p < CE 290G 1S .,
| <k

—kogk | A A kogk || A
X A guls < sup 19 Ayl < C2 [ Al
o=

Let us now introduce Bony’s decomposition [9] which is the basic tool of
paradifferential calculus. In the product uv of two distributions, which is not always
well-defined, we distinguish three parts:

w =T+ Tou+ R(u,v),

where T,v is the paraproduct of v by u and R(u, v) the remainder term. They are defined
as follows:

1
T,v= ZSqflquv, Ru,v) = Z Aququ, Zq = Z Agyi.
q q i=—1

2.2. Usual and heterogeneous Besov spaces

Now we will define the nonhomogeneous and homogeneous Besov spaces by using
Littlewood-Paley operators. Let (p, r) € [1, +00]? and s € R; then the nonhomogeneous
Besov space B), ,. is the set of tempered distributions u such that

lullg, , = (245 ||Aqu||U,>(r < 400,

We remark that the usual Sobolev space H® coincides with B3 5 for s € R and the Holder
space C* coincides with By ., when s is not an integer. The homogeneous Besov space
Bf,’, is defined as the set of u € S'(R?) up to polynomials such that

lullgg, = (2 1 Agul, ) oo

<
e(Z)
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The following embeddings, valid for both homogeneous and nonhomogeneous cases, are
an easy consequence of Bernstein inequalities (see for instance [10]):

)
BPl,rl — Bp2yr2 , PLSp2 and r1 < 9.

Let T > 0 and p > 1; we denote by L’T’B;,’, the space of distributions u such that

i qs
llzgs, = | (27 14gu,5) |

Now we will introduce the heterogeneous Besov spaces which are an extension of the

< +00.

P
LT

classical Besov spaces.

Definition 1. Let ¥ : [—1, +-oo[— R be a given function.
(i) We say that ¥ belongs to the class U if the following conditions are satisfied:
(1) ¥ is a nondecreasing function.
(2) There exists C > 0 such that
U(g+1) o
qeNU(-1) ¥ (@)
(ii) We define the class Uy in terms of the set of functions ¥ € U satisfying
limy— 400 ¥ (x) = +00.
(iii) Let s € R, p, r € [1, 400] and ¥ € U. We define the heterogeneous Besov space B;;ff’
as follows:
ueByY <= lulgy = (V@27 14l , <+

Remark 2. (1) We observe that when we take ¥ (x) = 2** with « € Ry, the space B;’ff
reduces to the classical Besov space Bf,fr‘".

(2) The condition (2) seems to be necessary for the definition of Bf;"f’: it allows us to
obtain a definition which is independent of the choice of the dyadic partition.

The following lemma is important for the proof of Theorem 2. Roughly speaking, we
will prove that any element of a given Besov space is always more regular than the
prescribed regularity.

Lemma 2. Let se R, pe[l,+o0],r€[l, 400l and f € B;,’r. Then there exists a function
¥ belonging to Uss such that f € B;’)g’.

Proof. We observe that the proof reduces to the following statement: assume that
a strictly positive sequence (cq)q>_1 satisfies chq < +00; then there exists a
nondecreasing sequence (a,) -1 satisfying

Ag+1

lim a, = +oo, sup <C (2.2)
q=>+00 qeNU{-1} dq
and such that
Z agcq < +00. (2.3)
q=—1
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-

Let b, = (Zn>q cn)_2; then (by) g>—1 is a nondecreasing sequence going to infinity.
Moreover,

1
3
S byey < < 3 cq) | (2.4)
g=-1 qg=>—1
Indeed, we introduce the piecewise function f : [—1, +o0o[— R defined by
f&x)=¢4, forxelg,g+1[and ge NU{-1}.

Then we get, by obvious computations,

q+1
/ fx)dx
Z bycq = :

-1 > 1 </+Oof(x)dx>2

+1
< Z /‘1 2AC)) ——dx
g=—1"1 (f+°°f(y)dy)

_ /*w f@
S N 3
(fx f (Y)dY>

oo N\ :
<2 ( f(x)dx) =2 ( Z cq> .
1

- q=—

M\»—A

Now we will construct by a recursive procedure a sequence (a,) -1 satisfying (2.2) and
(2.3), and such that

1
S gy < (Z q>
g=—1 g=>—1

Let (aq)@_1 be the sequence defined by the following recursive formula:

1
agi1 = = (ag + min(bg1, 2a,)) (2.5)

a_1=>b_1.

We will show first that a; < b;. This is true for ¢ = —1 and since (bq)@_1 is
nondecreasing, then

1
ag+1 — bq+1 (aq q+1) < i(aq - bq)-
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Thus we find by the principle of recurrence that a; < by, Vg = —1. From this property
and (2.4) we get the convergence of the series } - - _; aqcq and more precisely

1

3
3 ach@(Z cq> |
g=>—1 g=-1
Let us now prove that the sequence (a,) -1 is nondecreasing. Indeed, by easy
computations and from the nondecreasing property of (b,) -1 and the fact that a, < by
we get

1, .
Ag+1 —dq =7 (min(bgi1, 2aq) — ag)
1 .
=3 min(byy1 — ay, ay)
1
> B min(b, — aq, ag) = 0.

Now we will prove that (aq)@_1 converges to 4o0o; otherwise it will converge to
a finite real number ¢ > 0. Using the relation (2.5) combined with the fact that
limy_s o0 by = +00 yields necessarily £ = 3¢, which contradicts the fact that £ €]0, +o0].
On the other hand, we have

dg+1
aq

1< <

This ends the proof of all the properties of the sequence (a,) O

g=-1°

Remark 3. From the proof of Lemma 2 we may easily check that we can replace the
value of b, by any expression (Zn>q cn)” %, with @ < 1. The case =1 is not true, at
least for any convergent geometric series.

As a consequence we get the following result.

Corollary 1. Let s € R,p € [1,00], 7 € [1,00[ and (fe)o<e<1 be a family of smooth
functions satisfying

(Qqs sup ||Aqf8||u,) < 400
0<e<1 or

Then there exists ¥ € Uy, such that

f€ByY, Veelo,1].

Proof. We set ¢, := 29" supg_.<; [|Agf:ll},; then Zq cq < 400 and thus we can use
Lemma, 2. Therefore there exists ¥ € Uy such that

W (@2" sup (| Ay, < +oo.
>—1 0<e<1

This achieves the proof. O
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2.3. Lorentz spaces

Let us now introduce the Lorentz spaces that will be used later and especially to analyze
the critical regularities. There are two ways to define these spaces: by a rearrangement
procedure or by using real interpolation theory. We will briefly give both descriptions.
For any measurable function f we define its nonincreasing rearrangement by

() = inf{s, w(lx F@)] > s)) < t},

where u denotes the usual Lebesgue measure. For (p, g) € [1, +00]?, the Lorentz space
L1 is the set of functions f such that ||f||;5.« < 0o, with

( | wror d’y for 1<
b — ], forl1<g<oo
W llpa == 0, !

supt?f*(t), for g=o0.
>0

The second definition of Lorentz spaces which is equivalent to the first one is given by
real interpolation theory:

(LPO, Lpl)(e‘q) :LP»(I,
where 1 < pg <p < p1 <00, and 6 satisfy }7 = 1;09 + [% and 1 < g < 0o. These spaces
inherit from the Lebesgue spaces LP the stability property of multiplication by a
bounded function:

luvllzp.a < Cllullpoe VIl pa - (2.6)

On the other hand we have the following embeddings:

PP, V1<p<oo1<g<qgd <oo and IPP=IP. (2.7)

3. Energy estimates

This section is devoted to the establishing of some energy estimates for the system
(1.1) in the framework of heterogeneous Besov spaces B;lf This is an extension of the
classical estimates known for the usual Besov spaces B , and whose proof can be found
for example in [15].

Proposition 1. Let (ve, ¢;) be a smooth solution of (1.1) and ¥ € U ; see Definition 1.
Then:

(1) the L?-estimate: there exists C > 0 such that ¥t > 0,

Clldiv vell 1
(e, ce)DlI2 < Cll(vo.e, coe)llp2 e B

(2) Besov estimates: for s > 0,5 >0, r € [1, 4+00], there exists C > 0 such that

CVe(t
|Wer ) Dl < Cl0e: o)l g €
T T
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with
Ve(@) := ||VV8||L}LOO + I Vee ”L,lLOO .
The above estimate holds true for homogeneous Besov spaces Bszr.

Proof. (1) Taking the L? inner product of the first equation of (1.1) with v, and
integrating by parts,

1d 1 ) _ 1 .
57 Ve (D)2 -3 /RS div ve (|vel? +7¢2)dx — g /RS cediv vedx = 0.
Multiplying the second equation of (1.1) by ¢, and integrating by parts,

1d 21 . 1 .

a7 ||c8(t)||%2 +<y — 2> /R3 (dlvvg)cgdx + z /R3 cedivvedx = 0.

Thus summing these identities yields

d . -
E(nvamné +ve@®72) = /R ,divve (Ivel? +(1 = 7)c2)dx

S Uiy ve @ 100 (Ve D112 + e @172).

The result follows easily from Gronwall’s lemma.
(2) We will use localize the equations in frequency and use some results on the
commutators. Let ¢ > —1 and set f; := A,f; then

_ 1 _
dVe.q + Ve - Ve g+ Ve Vee g+ gvc.,s,q = —[Ag.ve - VIve — P[Ag. ccIVee =T},

1
01Ce,q + Ve - Vg g + yeedivve 4 + gdiv Ve, (3.1)
= —[Ag.ve - Viee — 7lAg. celdivv, :=T7 .

Define we 4(1) 1= |ce.q(D]? + [ve.4(t)|%; then taking the L? inner product like in the first
part (1), we get

1d 1 . _ .
q we, gD l;1 = 3 /]RS div ve we gdx — y /]R3 Ce (Vcs,q Vg T+ Ce gdiv vg,q)dx
+ /s (T;qu,q + Tf’qc&q)dx
R
1
= f/ div ve we gdx + )7/ Veg - (ce gVe,q)dx
2 Jr3 ’ R3 B
+ / (T1 Veq + T2 ¢, gdx
RS £,q"8 £,q" ¢,
S (N ve @l + 1V ee @l ) e Ol

1
+ T T2 e g D112 -

We have used in the last line the Young inequality |ab| < %(a2 + b?). Tt follows that

d .
N0 e )Ollz S (Idivve@ e + Ve Olle ) 10egs o) Oll 2+ I1TL g T2 -
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Multiplying by 2%°¥ (g) and summing over g we get
d .
dt [ (ve, Cs)(t)”g;qr’ < (”le Ve(D)llz + ”Vce(t)”Loo) [l (ve, Cs)(t)”BYZ‘Jr’

+ (e @I T2 ) -

Now according to Lemma 6 in Appendix we have: for s > 0, r € [1, co] and ¥ € U,
(27 (@) I[Ag v - Viull2) pr SNVVIgo0 IIMIIBsQ,f + I Vull oo IIVIIB.;{ :

This yields

d
e coOllggr S (IVVe @l + Ve Dlle) 106 )0 gy

It suffices to use Gronwall’s inequality to get the desired estimate. O

4. Strichartz estimates

The main goal of this section is to establish some Strichartz estimates for the
compressible and acoustic parts which are governed by coupled nonlinear wave
equations. As was shown in the pioneering work of Ukai [33], the use of the dispersion
is crucial for getting rid of the well-preparedness assumption when studying the
convergence towards the incompressible Euler system. More precisely, it was shown
that on averaging over time, the compressible and acoustic parts vanish when the Mach
number goes to zero. In our case we will take advantage of the Strichartz estimates,
firstly to deal with the ill-prepared case and secondly to improve the lifespan by a
judicious combination with the special structure of the vorticity for the axisymmetric
flows. The results concerning Strichartz estimates that we will use here are well-known
in the literature and are discussed only briefly. Nevertheless, we will give more details
about their applications for the isentropic Euler system.
We will start with rewriting the system (1.1) with the aid of the free wave propagator

1

ve + —Vee =fe := —ve - Vve — ¢ Vee
e

1 (4.1)

0ce + —divve = g¢ 1= —ve - Vg — cedivivg.
e

Let Q be the operator Qv := VA~ 1ldivv which is nothing but the compressible part of
the velocity v. Set |D| := +/—A; then by simple computations we show that the quantity

I.:=0Qv, —iV|D| e,
satisfies the wave equation
[ . _
&I + ~IDITc = Of. —iV DI g.. (4.2)
Analogously, the quantity

ve := DI M divve +ice
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satisfies the wave equation
i 1 :
diYe + _IDlye =IDI™" div/fe +ige. (4.3)

We will use the following Strichartz estimates which can be found for instance in [6, 17].

Lemma 3. Let ¢ be a complex solution of the wave equation
i
0 + E|D|(p =F.
Then for every s € R, r > 2 there exists C such that for every T > 0 we have

1
191, -3 +p < Ce7 (Ol +1F s ,)-

T 00

As a consequence we get the following Strichartz estimates for both compressible and

acoustic parts.

1

~ =

5
Corollary 2. Let r > 2 and vo, coe € B Then the solutions of the system (1.1)
satisfy for all T >0 and 0 <& < 1,
1
1Qvellr o +llcellr o < Coe™ (L +T)e"* D

with Co a constant depending on r and the norm ||(vo.e, €o.¢) || 51 and
B241 "

T
Ve(T) = /0 UVve@llgee + 1V ee @)l 00 ).
Proof. Applying Lemma 3 to the equation (4.2) with r > 2 and s = % -
1 . —
I Fellprpo < Cer <||Fs(0)||,31 +11Qf: — iV DI g ,31)-
Foet 322,1 ' L%B22,1 '

Since the operators Q and V |D|~! are homogeneous of order 0 then they are continuous
on the homogeneous Besov spaces and thus we get

<=

10 gl s ;)
LT

I(vo,e, co)ll 3 3_
( BZ,7 B2,

”FSHUTB&J < Ce

g0l )
= £ £ L’}‘Bg'lr

1

1
< Cé! (n(vo,e, w00l

3
2
2,

We point out that we have used above the embedding B, < B’%’l, for s > 0. To
estimate the terms f; and g, we will use the following law product that can be easily
proven by using Bony’s decomposition: for s > 0,

£ 38, S Wllzoe Nglpgss + gl Iy -
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Therefore we find

| (fe, gl 3-1 S Cl[(ve, ce)llpoo |(ve, ce)ll 3-1-

B3, By,
5_1

Combining this estimate with the Sobolev embedding B3 ; © < L* (true for r > 1), we

get
I(Fer ge)ll 31 <Clle,ce)l®s 1 -
B3 27T

¥
2,1 BZ,I

Applying Proposition 1 yields

CVe(T)

|(ve, ce)ll %_l <C ||(V0,89 CO,S)” %_l e
LPB3, " By, "

Thus we obtain for r > 2,

1
1Tl , < Ce7 (I, 0l g g + 100, c0 02y, D)
o By, B3,
1
< Coe7 (14 T)eCVeD,
Since the real part of I, is the compressible part of v,, then
p e p p &5
1
1Quellp; o | < Coe™ (L4 T)e" ™.
In the same way we prove a similar result for y;:
1
Ivellzpgo | < Coer (1+T)eVsD,
This gives the desired estimate for ||c, ”L;BO g O
5

Proposition 2. Let (voe,coe) be an H*-bounded family with s > 3 and v, ce €
C([0, Te); H®) be the mazimal solution of the system (1.1). Then for every r > 2,
0<T<T, and ¢ €]0, 1], we have

25—5
Idiv vellago | +1IVeellpzpo | < Coe ™9 (14 T2,
Proof. Applying Lemma 4 with ¢ = Qv, and using the identity div Qv, = div v,, we get

1— 25=5_ -5 s2s
Idivvell g0 | < CT 7= [|Quell % Qe l fo e

25—5 2

1— 25 25—3 25-3
< CT ™ m2s=3) ||QV8||LrTBgo1 ”Vg”L%on .

We have used in the last inequality the embedding Bgo,l < L*°. Now, combining this
estimate with Proposition 1 and Corollary 2,

25—5 25—=51_1
Idivvell a0 | < Cos™=3 (14 T)! 28170 (V)
25—5
< Coe™@=3 (1 + T%)eCVe,

Similarly we obtain an analogous estimate for the acoustic part || Vcg|| L1BO - O

https://doi.org/10.1017/51474748012000746 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748012000746

The low Mach number limit for the isentropic Euler system with axisymmetric initial data 351

5. Axisymmetric flows

In this section we intend to establish some preliminary results concerning the
axisymmetric geometry for the compressible flows. First, we prove the persistence in
time of this geometry when it is initially prescribed and second we analyze the structure
and the dynamics of the vorticity. We end this section with some useful a priori
estimates.

5.1. Persistence of the geometry

The study of axisymmetric flows was initiated by Ladyzhenskaya [22] and Ukhovskii
and Yudovich [32] for both incompressible Euler and Navier—Stokes equations. This
study has been recently extended to other models of incompressible fluid dynamics
like stratified Euler and Navier—Stokes systems [1,19]. First of all we will show the
compatibility of this geometry with the model (1.1) but we need, before this, to give a
precise definition of axisymmetric vector fields.

Definition 2. e We say that a vector field v : R? — R3 is axisymmetric if it satisfies
R_aV(Rex)} =v(x), Vo €[0,2r], VxeR3,

where R, denotes the rotation of axis (Oz) and with angle 6. An axisymmetric
vector field v is called without swirl if its angular component vanishes, which is
equivalent to the fact that v takes the form

1
v(x) =V'(r, e, +V(r,2)e;, x=(x1,X2,2), r= (x% + x%) 2,

where (e,, ep, ez) is the cylindrical basis of R3 and the components v and v¢ do not
depend on the angular variable.

e A scalar function f : R3 — R is called axisymmetric if the vector field x > f(x)e, is
axisymmetric, which means that

F(Rex) =f(x), VxeR3 Vael0,27].
This is equivalent to saying that f depends only on r and z.

Now we will prove the persistence of this geometry for the system (1.1).

Proposition 3. Let (voe,coe) be a smooth azisymmetric initial data without swirl.
Then the associated mazximal solution of (1.1) remains axisymmetric.

Proof. For the sake of the simplicity we will remove the subscript ¢ from our notation.
We set

Va(t, x) = R_o{v(t, Rex)} and cq(t, x) = c(t, Rex).
Our goal is to show that (v, cq) solves the system (1.1). First of all, we claim that

Ve - Vve) (6, x) = R_o{(v - VV)(1, Rax)}. (5.1)
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Indeed, obvious computations yield

3

V- V) (0,2) = > (Rea{v(t, Rax)})' 9{R—a v(t, Ra)}
1

1

(R_alv(t, Ran)})' R—adi{v(t, Rax)}

|
-M“

Il
—

1

3
Rea Y  (Rea{v(t. Rex)})" 0i{v(t, Rax))
=1
= R_gw.

From the formula
3 (v(t, Ra)Y = (R_o (VW) (1, Re1)})’

and using the fact that the rotations preserve the Euclidean scalar product we obtain

3 i ; i
w = (R—afv(t, Ra®)})" (R—a{(VV)(Rax)})
i=1
= - VV)(1, Rax).

Therefore we get
(Vo - Vo) (1, x) = Ro{(v- VV)(1, Rax)}.
Now if f is a scalar function then
R-a{(VH(Rax)} = V{f(Rax)}. (5.2)

Using this identity and (5.1) we prove that (vy, cy) satisfies the first equation of (1.1). It
remains to prove that this couple of functions satisfies also the second equation of (1.1).
We write, according to the identity (5.2) and from the fact that R, is an isometry,

3

(va - Veg) (1, x) = ZRfa{V(t, Rax)} - R—a{Vcl(t, Rax)
i=1
= {v- Vc}(t, Rax).

It remains to check that
div vy (¢, x) = {div v}(t, ReX).

Indeed, set R_4 := (aij)lgijg?); then since R}, = R_q, we find

3
divve(t.x) = Y difayp (1, Rax)}
i,j=1
3

= > agap{d/}(t, Rex)
i,k,j=1
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3
=Y 8{kV}(t, Raex)
kj=1

= {div v}(t, Rex).
Finally, we deduce that (vy,cy) satisfies the same equations as (v,c) and by the
uniqueness of the solutions we get vy, = v, ¢y = ¢ for every « € [0, 2], and thus the
solution is axisymmetric. To achieve the proof it remains to show that the angular
component 1/ of the velocity v is zero. By direct computations using the axisymmetry of
the solution (v, ¢) we get

vr
N R e =}
r
It follows from the maximum principle and Gronwall’s inequality that

v /rll,1
IV ()l e < IVl e T HE

Therefore if vg =0, then v/ () = 0 everywhere and the solution is defined. O

Remark 4. From the above computations we get the following assertions:

¢ is a scalar axisymmetric function, then its gradient V¢ is an axisymmetric vector
1) If ci 1 i tric functi then it dient Vc i i tri t
field.

(2) If v is an axisymmetric vector field, then its divergence divv is an axisymmetric
scalar function.

5.2. Dynamics of the vorticity

We will start with recalling some algebraic properties of the axisymmetric vector fields
and in particular we will discuss the special structure of the vorticity of the system (1.1).
First, we make some general statements: let w = w'(r, 2)e, + wo(r, 2)ep + wi(r, 2)e; and
v=V"(r, 2)e, + V*(r, 2)e; be two smooth vector fields; then

. W9 ) . Vv
w-V=w9o,+ —0dg +w'd, divi=0V + — + . (5.3)
r r

Easy computations show that the vorticity £2 := curl v of the vector field v takes the
form,
2 =03,y — 9v%)ey.

Now let us study, under this special geometry, the dynamics of the vorticity of the
system (1.1). Denote by 2, = (3,v. — 3,v3)ep := 27¢y the vorticity of ve. Then applying
the curl operator to the velocity equation yields

0;82¢ + curl(ve - Vve) = 0.
By straightforward computations we get the identity
curl(ve - Vvg) = v, - V2, — 2, - Vv, + £2.divv,.
Therefore we get

32 +ve - V2, + 2divve = 2, - Vv,
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Now, since £2, = .Qf ep and by (5.3), it follows that the stretching term takes the form

Q.- Vve = 20 Lo, :
e - Ve = erVeer+veez)

V

m N

6
=] ey

~ |

.
A%
€
= €0,
"

Consequently the vorticity equation becomes

r

32 + v - V2, + 2pdiv, = €2, (5.4)
r

Thus the quantity % is governed by the following equation:

&
r

. 2
(07 + ve ~V+d1vv5)< ) =0. (5.5)

We observe that this equation is analogous to the vorticity equation in dimension 2. In
the case of incompressible axisymmetric flows the quantity % is just transported by the
flow and this gives new conservation laws that lead to the global existence of smooth
solutions. However in our case we cannot get global estimates due to the presence of
divve, yet we have already seen that this quantity is damped by higher oscillations and
thus we can expect that the time lifespan can grow when the Mach number becomes

small. This will be clearly discussed in later sections.

5.3. Geometric properties

When we deal with the critical regularities, it seems that the use of just equation (5.5)
is not sufficient for our study and so we need more refined properties of the vorticity. We
start with the following results.

Proposition 4. Let v= (v!,v2,v3) be a smooth azisymmetric vector field without swirl.

Then the following assertions hold true.

2 w3) satisfies w(x) x eg(x) = (0,0, 0). In particular,

we have for every (x1, x2,2) € R3,

(1) The vector o=V x v= (0,

? =0, xjw'(x,x2,2) +x00’(x1,x2,2) =0 and
' (x1,0,2) = ©%(0, x2,2) = 0.

(2) For every g > —1, Aqu is axzisymmetric without swirl and
(Aguh)(0, x2,2) = (Agu?)(x1, 0, 2) = 0.

(3) Let §2 be a divergence-free vector field such that §2(x) x eg(x) =0. Then for ¢ > —1
we have

A 82(x) X eg(x) =0.
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Proof. The results (1) and (2) are proved in for example [1]. It remains to prove the last
assertion. First, it is easy to check that (Aq.Q)3 = Aq(Q?’) and thus the last component
of A,$2 is zero, and consequently our claim reduces to the following identity:

14,021 4 x04,02% =0.
Using the Fourier transform this is equivalent to
01 (p2UENRL(E)) + B2 (2 1EN22(E)) = 0.
Straightforward computations and the fact that 23 = 0 yield
01 (p2 NENR1E)) + D2 (02 UENR2(E)) = 279 |8] L o' @ IED (121 (E) + £222(5))
Fo@IED (9121() + 0222(8))
= —i279 5|71 ¢/ 279 ])div 2(E)
—ip(271ENF (x1 21 +x2827) (8)
=0.

The last identity is an easy consequence from the hypotheses div§£2 = 0 and
2 X ep = 0. O

The next result deals with some properties of the flow 1 associated with a
time-dependent axisymmetric vector field (¢, x) — v(¢, x). It is defined as follows through
the integral equation:

t
¥ (t, x) =x+/ v(z, ¥ (t,x))dr.
0

It is well-known from the theory of differential equation that if I is an interval and
v € L'(I, Lip) then the flow is well-defined on the full interval I. Denote by G the group of
rotations with axis (Oz), that is

G:={Rs,0€[0,2n]}.

Now we will prove the following result.

Proposition 5. Let (¢, x) — v(t, x) be a time-dependent smooth azxisymmetric vector field
without swirl and (t, x) — Y (t, x) its flow. Then the following results hold true.

(1) For all Rg € G we have
Ry (W (1, x)) = ¥ (1, Rgx), VxeR3
(2) For every x € R3,t> 0 we have
Y (t, x) - eg(x) =0.

(3) For every t, the vector field x — v(t, V¥ (t, x)) is azisymmetric without swirl.
(4) For all g € N we have

Sq(v(®) o Y (1)) (x) - ep(x) =0, VxeRZ.
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Proof. (1) We set yg(t, x) := Ro v (¢, x). Thus differentiating with respect to ¢ we get
dpe (1, x) = R (v(t, ¥ (1, x))).
Since v is axisymmetric then
Ro (v(t, X)) =v(t, ReX), VX eR?
and consequently
Io (1, %) = v(1, Ro (¥ (1, x))) = v(t, Yo (1,%)),  Yu(0,x) = Rox.

It is easy to see that (¢, x) — ¥ (¢, Rgx) satisfies the same differential equation as ¥ and
thus by uniqueness we get the desired identity.

(2) This result, which means that the trajectory of a given particle x remains in the
vertical plane, was proved in a proposition in [2].

(3) Let Ry € G. Since v is axisymmetric, then using (1) of Proposition 5 yields

Ro (v(t, ¥ (1, %)) = v(t, R (¥ (1, x)))
=v(, ¥ (1, Rox)).

It remains to show that the angular component of the vector field x — v(t, ¥ (z, x)) is
zero. Since the angular component of v is zero, then

v(t,X) ep(X) =0, VXeR3

and by (2) of Proposition 5 we have eyp(¥(t,x)) = Leg(x). It follows that the
angular component of the vector field x + v(¢, ¥ (¢, x)) vanishes and consequently it is
axisymmetric without swirl.

(4) Combining the preceding result with part (2) of Proposition 4 we obtain that the
vector field x = S, (v(t) o w(t)))(x) is also axisymmetric without swirl and consequently
its angular component is zero. O

The end of this section is devoted to the study of some geometric properties of a
compressible transport equation which models the vorticity equation:
2+ W - V)2 + R2divv= 82 - Vy,
(€)1,
Q‘l=0 = QO.
We will assume that v is axisymmetric and the unknown function 2 = (221, 22, 23) is

a vector field. The following result describes the persistence of some initial geometric
conditions of the solution £2.

Proposition 6. Let T > 0 and v be an azisymmetric vector field without swirl and
belonging to the space L1([0, T], Lip(R®)). Denote by §2 the unique solution of (CT)
corresponding to smooth initial data $29. Then we have the following properties:

(1) If div 20 =0, then div82(1) =0,V t € [0, T].
(2) If 20 x eg =0, then we have

Vie[0,T],  £2(t) x ey =0.
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Consequently, .Ql(t, x1,0,2) = 92(t, 0,x2,2) =0, and

r

W2+ -2+ 2dive= 0.
r

Proof. (1) We apply the divergence operator to the equation in (V):
9,div 2 + div (u - V2 + £ divu) = div (2 - Va).

Straightforward computations yield

3
div(u- V) =u-Vdiv + Y ol 32"
ij=1
div (2 divu) =div2divu + £2 - Vdivu
3
div (2 - Vi) =2 - Vdivu+ Y ol ;2"
ij=1

Thus, the quantity div £2 satisfies the equation
0rdiv 2 +u - Vdiv 2 + div 2 divu = 0.
Using the maximum principle and Gronwall inequality we get
ldiv a|
e

1
LiLe

Idiv £2(D)l o0 < [1div £20][ 00

Therefore if div £2g = 0 then for every time, §2(r) remains incompressible.

(2) We denote by (27, 29, £2%) the coordinates of £ in the cylindrical basis. It is
obvious that £2” = 2 - e,. Recall that in cylindrical coordinates the operator u - V has the
form

1
u-V=ud+-udy+ u*d, = u' 9, + u*o,.
r

We have used in the last equality the fact that for axisymmetric flows the angular
component is zero. Hence we get

w-V8R2)-e,=u"0,82 - e, + 19,82 - e,
= W' +u‘d)(82 - e)
=u-V8,

where we use d,¢, = 9,¢, = 0. Now it remains to compute (§2 - Vu) - e,. By straightforward
computations we get

(.Q~Vu)~er:.(2r8,u~er+%9989u~er+9383u~e,
= Q3" + 2393u".
Thus the component §£2” obeys the equation
3R +u-VR +divu" = Q" 0u" + 2303u'.
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From the maximum principle we deduce
t
122" (")l o~ </ (127 @Iz + 12% (@) 1z ) VU)o d.
0

On the other hand the component 23 satisfies the equation
323 +u- V23 +divu 23 = 2303u3 + 279,85
This leads to
3 ! 3
127D~ < /0 (127 (@) Nl ze + 127 (D) | p00) V() I 100 .

Combining these estimates and using Gronwall’s inequality we obtain for every t € Ry,
23(t) = 27(t) = 0, which is the desired result.
Under these assumptions the stretching term becomes

_1 0 r
Q2 -Vu=-2% e
r
1 1
=-u2p=-u. 0O
r r

5.4. Some a priori estimates

Our goal in this section is to establish some a priori estimates that will be used later for
both cases of critical regularities and cases of subcritical regularities. Our result reads as
follows.

Proposition 7. Let (ve, ¢;) be a smooth azisymmetric solution of the system (1.1). Then
the following estimates hold true.

(1) Denote by §2; the vorticity of ve ; then for t 20 and p € [1, co] we have

0 .
[, <2, e
r 7 r
and for 1 <p <00, q€[1, +o0],
2 20 (1=1) Idivvel 1
—(t < CHJ P UL LOC.
5ol <c|=5],.. ,

r
£

(2) Fort>0, we have

’ v
,
(3) For t =0, we have

e”dlv Ve HLIILOO ]
13.1

00
S Wvellzz + Ndiv vellg |+ || ==
L 00,1 r

Clve

. Idivvell 1,00
C{Hdlvvs 1,0 -+t HSZS/rH 3,1 € LiL }
L; B L
e t To0,1 .

Il 1
12: D) ll oo <1220 e 1

Proof. (1) To prove this result we will use the characteristic method. Let v, denote the
flow associated with the velocity v, and defined by the integral equation

t
Ipé‘ (t’ .X) =x+ / Ve (t, ws(f, x))df.
0
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Set f, (¢, x) = %(l, ¥ (t, x)); then it is easy to see from equation (5.5) that
aife (2, %) + (divve) (1, ¥ (1, x))fe (7, x) = 0.
Thus we get easily
felt, ) = (0, 1) &= im0, (5.6)
For p = +o00 we get
27

r

(liV v, 1
H 8”[{ lOC'
L>®

Now for p € [1, +o0o[ we will use the identity

Q.
=0 . <|
r L>®

det Ve (1, x) = efg(div ve) (T, ¥ (T,%))dT

and thus we get by (5.6)
|%0] =wmoovte
= /R3 Ife (2, x)|P det Ve (2, x)dx
_ / 1 (0. )P 0P Jo(@iv ) (€. (2.0 g
R3

0,P .
< H 20 oD idivrel e

r iy

The estimates in Lorentz spaces are a direct consequence of the real interpolation
argument.

(2) The estimate of the quantity ||%|| 11700 Will require the use of some special
properties of axisymmetric flows. First, we split the velocity into compressible and
incompressible parts:

ve =Py + vA~ldiv Ve.

We point out that in this decomposition both vector fields are also axisymmetric.
Indeed, from Remark 4, the scalar function div v is an axisymmetric scalar function and
A~ldiv v, too. Again from Remark 4, the vector field VA~!div v, is axisymmetric. Now
obvious computations yield

Vi = (Pve) +(VA L divy,) - e,

= (Pve)" 40,47 div ve. (5.7)
Therefore we deduce
.
0
Ye (Pve) rAfldivvs-
r r r

To estimate the second term of the preceding identity we make use of the algebraic
identity described in Lemma 7 and deal with the action of the operator a—r’A*lu over
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axisymmetric functions:

2

o <2 IRydivvell
ij=1

o,

r

A div v,

2
<D IRydivveligo
ij=1 >
< Cl|divvel|zo

< Clvell2 + ’|divv8HB9.01 )

We have used the embedding 3801 < L% combined with the continuity of Riesz
transforms on the homogeneous Besov spaces. Furthermore, in the last line we use
Bernstein inequalities in order to bound low frequencies:

- 5
D AV vell oo < Cllvellzz Y 237 < Clvellye -
JEL- jer._

Now let us come back to (5.7) and look at the incompressible term. Since Pv, is
axisymmetric and satisfies furthermore div Pv, = 0 and curl Pv, = §2,, then we can use
the following inequality proven by Shirota and Yanagisawa [28]:

r 2
‘(Pw) (x)’gc/R 1= (y)ldy

r s lx—y2

Now since # belongs to the Lorentz space L3°°, then the usual convolution laws yield

[P < | %0

L3,1 :

According to the first part of Proposition 7 we have

|0

Combining these estimates we get

(3) Applying the maximum principle to the vorticity equation (5.4) and using
Gronwall’s inequality we get

eHdiV vell
131

1
L

QO
|2
r

131

»
Ve

div vel|, 1
Ve e“ sllLt =
r L

09
S Wvellzz + divvellgg | + || ==
00 00,1 r

(5.8)

L3:1

,
. v,
iV el 1 oo + 11 U100

12:0) |z < [12:0) 1 € (5.9)

Plugging the estimate (5.8) into (5.9) gives

IIdiv vell, 1
: L L>®
c CIdivvell, 1,0 +2 129/r,3.1 ¢ 1
HVF,”L’lLQe { € LfBoo,l e/ L3,

12: (O g0 <1220 € 0
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6. Subcritical regularities

The main goal of this section is to prove Theorem 1; however we shall limit our analysis
to the estimate of the lifespan of the solutions and to the rigorous justification of the low
Mach number limit. For example we will not deal with the construction of a maximal
solution, which is classical and was done for instance in [20].

6.1. The lower bound of T,

We will show how the combination of Strichartz estimates with the special structure of
axisymmetric flows allows us to improve the estimate of the time lifespan T, in the case
of ill-prepared initial data. We shall prove the following result.

Proposition 8. Let s > % and assume that

sup || (vo,e, CO,s)”Hs < +4-00.

e<1

Then the system (1.1) admits a unique solution (ve, ce) € C([0, Tel; H®) such that
T, > Cploglog log(s_l).
Moreover, there exists o > 0 such that for every T € [0, Te],
|div VSHL%BgQ1 + ”VCS”L%_B&J < Cog?
and
12:(D) e < CoeT Vvl 120 < Coe™PIOT),
exp{CoT}

1ves ce)(Dllpgs < Coe™ "

Proof. According to Proposition 7 we have

Idiv vell; 1,00
Cllv C{ndivv 10 +t11829/rl,3.1 e Lir }
126 () lle < 120000 € IH12 by T

To bound ||QS/r||L3_1, we use the fact that [22(0, 0, z) =0 (see Proposition 4), combined
with the Taylor formula:

1
92(}61,362,1):/ (X13x19£(tX1,IX2,Z)+XQ3XQQS(TX1,Tx2,Z))dT~
0

Applying (2.6) with a homogeneity argument yields
1
12077130 5 [ 1VRYE vl o

1
_2
5||V9§||L3_1/ 17 3dr
0

0
SVl
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According to the embedding H*~2 < L3, for s > % one has

0 0
1925 /rll s S IV N gs—2
0
fS “Qg ”HS—I
S ”VO,s”Hs .

From Proposition 1 we get

Co(l+nexp{ldivvel, 1,0 }
[|182: (D) |1~ < Coe 181’

Using Lemma 5 and Proposition 1 we get
Ve @llzee S Ve @llz2 + lIdivve@)llgo | +Co [[82: @)l 00 (1+Ve@).

We recall that
t
Ve = /0 1(Vve, Vee) (D)l dt.

Integrating over time and using Propositions 1 and 2, we obtain

T
||Vvs||L%Loo ,S ”VS”L%LQ + ||div VS”L%BgO.l '|'CO‘/0 1826 (D) || oo (1 + Vs(t))dt

v vell 1 o0

T
< Cole + Coae (T)eV+ D 1 ¢ / 126 ()l (1 + Ve (1)) dt,
0

with
25—5 2
o (T) ;== Cper@=3 (1 +T7).

Using again Proposition 2 we obtain
. T
div vell; 1,00
Ve(T) < Coere (e D 4 o™ 1 4 ¢ / 1260l (1 + Ve @)
0
Thus Gronwall’s lemma combined with (6.1) and Proposition 2 yield

T d & o0
Vo (T) < Co €0 Jo 12:@llos dr (aa(T)ecvg(T) AL P )

Co(14T) exp{”div vell 150 }
e T 00,1

<e

(e Ve e

C0(1+T)exp{|\div vell, 1,0 }
Ly Boc‘1

<eé (0{5 (T) Ve 1)

Lo+ exp {ag (1)eCVe (D) }
<e .

We choose T, such that

1 e (14T
log( ) > Cee O
ag(Te)
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Then we claim that for every t € [0, T,],

1
CV.(H) < log(a T )). (6.4)

Indeed, we set I, := {t e [0, T:]; CV (1) < log(ﬁ)}. First this set is nonempty since
0 € It,. By the continuity of # + V,(#), the set I, is closed and thus to prove that Ir,
coincides with [0, T,] it suffices to show that I7, is an open set. Let ¢ € I, ; then using
(6.2) and (6.4) we get

eCo (1+1) cxp{ag (I)(’CVS ) }

CVe(t) < Ce

Co(1+1) exp{ ae (1)

e ag(Te)

This proves that fr is in the interior of I7, and thus Ir, is an open set of [0, T¢].
Consequently we conclude that I, = [0, T;]. Now we choose precisely T such that

Coe(l1 4+ T;) =loglog log(efg), with 6 > 0,
and then the assumption (6.3) is satisfied whenever
8%(1 + T52) <.

This last condition is satisfied for small values of ¢ when C6 < % Now inserting

(6.4) into (6.2) we get for T € [0, T¢],

Ve(T) < e (6.5)
Plugging this into the estimate of Proposition 2 we obtain for T € [0, T¢],
ex; e 25—5
Idivvellag  +1Veelpp < CoeC MO grass
LTBoo 1 LTBoo 1
< Ce r(22;s_—53) —Co
25 —5
< Ce?%, witho=——— — (0. (6.6)
r(2s — 3)

From Corollary 2 and by choosing 6 sufficiently small we obtain for every r €]2, +o0[,

1
1QVe ll s oo + llce oo < Cos (14 T)eYe®

!

0e?, o >0.

NN

Coe%_ce log log log(¢ %)
C o
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We point out that the use of the Holder inequality and the slow growth of T, allows us
to get the following: for every r € [1, 400,

1Qvell gz + ez e < Coe®, 07 > 0. (6.7)
Inserting (6.6) into (6.1) leads to
192:(T) [l < Coe®°T.

To estimate the solutions of (1.1) in Sobolev norms we use Proposition 1 combined with
the Lipschitz bound (6.5)

exp{CoT}

e, ce) (Dl < Coe’ O

6.2. The incompressible limit

Our task now is to prove the second part of Theorem 1. More precisely we will establish
the following result.

Proposition 9. Let (voe,co,e) be an H*-bounded family of axisymmetric initial data
with s > %, that is

sup ”(Vo,é‘v CO,S)”HS < 400.
0<e<1

Assume that there exists vg € H® such that

lim |Pvo,e —vo llz2 = 0.
e—0

Then the family (Pve), tends to the solution v of the incompressible Euler system (1.2)
associated with the initial data vo : for every T > 0,

li - oor2 = 0.

sgr(l) [Pve —v ”LT 12

However, the compressible and acoustic parts tend to zero: for every r € [1, +oo[, T > 0,
1. 5 rjoo — O
82% 1(Qve, ce) ”LTL

Proof. The last assertion concerning the compressible and acoustic parts of the fluid
is a direct consequence of (6.7). Now we intend to show that for every time T > 0 the
family (Pve), is a Cauchy sequence in L%OL2 for small values of ¢ and this will allow
us to prove strong convergence, when ¢ tends to zero, of the incompressible parts to
a vector-valued function v which is a solution of the incompressible Euler equations.
For this purpose, let ¢ > ¢ > 0 and set {; oo = ve — vy and we o = Pv, — Pvy. Applying
Leray’s projector P to the first equation of (1.1) yields

0 Pve + P(ve - Vv,) = 0.
It follows that

81W6,e’ +P(ve - vfa,e’) + P({e,s’ - Vye) =0.
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Taking the L2 inner product of this equation with we o and using the fact that Leray’s
projector is an involutive self-adjoint operator we get

1d
ey ”Ws,s’(t)HIQJQ = _/ (ve - v§s,s’)7)wa,s’d-x - / (é‘s,s’ : vve’)Pws,s’dx
2dt R3 R3

= - /3("5 . V(Ws,a’ + Qgs,s’)) Ws,a’dx - /3((W8,£/ + QC«S,S/) . VVG/)WE,S/d'x
R R
1

= f/ |w8,6/|2 div vedx — / We g7 - Vv )W grdx
2 Jgr3 R3

- /]1%3 (Vs : VQgg,g’ + Qgs,s’ : Vvs/)wg,g/dx

< (Idiv ve @)oo + IV D)l eo ) Iwe e (D172
+ (”Vs(l‘)”L2 ||VQ§8,£/(t)”Loo + ||QC£,6/(t)||Loo ”Vve/(t)”LQ) ”Ws,s/(t)”LQ .

Integrating over time and using Gronwall’s lemma, we obtain

ldiv vel| + Vvl
IWe.er 2 < (WD Il 5 +Feer(B))e e et

with
Fo (1) = vellgpor2 IV Q&eerll 11 oo + 11908k 60l 1100 IV Verllor2 -
Splitting Q& . into low and high frequencies we get
IVQZeellpipee S ||diVCa,s’||L[13go’1 + 198, 10 -
Therefore combining Propositions 1 and 8 with (7.47) we get for some 1 > 0,

sup Fe (1) < Cpel.
t€[0,T:]
According to Proposition 8 we obtain

exp{Cpt} (

0
We,er D12 < Coe® lwg e ll 2 +e").

Thus we deduce that (Pvg), is a Cauchy sequence in the Banach space L%OL2 and

therefore it converges strongly to some v which belongs to L{S (Ry; H*). This last claim

is a consequence of the uniform bound in H®. It remains now to prove that v is a solution
for the incompressible Euler system with initial data W0 = limg_,0 Pvo,e.. The passage
to the limit in the linear part (d,v;), is easy to carry out by using the convergence in
the weak sense. For the nonlinear term we split the velocity into its compressible and
incompressible parts:

Ve - Vvg = Pvg - VPve + Py - VQv,e + Qg - V.
By virtue of Propositions 1 and 8 and (6.7) we get
Pve - VQVSHL%L? S Ivellpger2 ||VQVs||L%Loo
< Co (11 Qve lpize + ||diVVe||L;Bgo 1)
< Coe™. ’
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For the last term we combine (6.7) with Proposition 8:
1Qve - Vg ”L}LQ < ||Va||L‘;°H1 ”QVSHL%LOO
< Cos'.
It follows that

lim [lve - Vve — Py - VPvll 1,2 =0.
e—0 T

The strong convergence of Pv, to v in L%"L2 allows us to claim that
lim |Pve @ Pve —v® V1,1 =0.
e—0 T

Consequently, the family P (v, -Vv,) converges strongly in some Banach space to P(v-Vv)
and thus we deduce that v satisfies the incompressible Euler system. O

7. Critical regularities

In this serction we will study the system (1.1) with initial data lying in the critical Besov
spaces B2%,1~ There are some additional difficulties compared to the subcritical case that
we can summarize in two points. The first one concerns the Beale-Kato—Majda criterion
which is inapplicable and the second one is related to the extension of the interpolation
argument used in Proposition 2 to the critical regularity. We will start with a strong
version of5 Theorem 2 in which we require the initial data to be in a more regular space
of type Bgy’llp. We are able to prove the desired result for any slow growth of ¥. Roughly
speaking, to get the incompressible limit and quantify the lower bound of the lifespan,
the function ¥ must only increase to infinity. The study of the case ¥ =1 which is the
subject of Theorem 2 will be deduced from Corollary 1 and Theorem 3.

2w
Theorem 3. Let ¥ € U and {(voe, C0.e)g-ec1} be a BQQ"l -bounded family of
axisymmetric initial data, that is

sup ||(vo,e, co,e)ll 5., < +o0.
0<e<1 B§1

5

Then the system (1.1) has a unique solution (ve, ce) € C([0, Te[; Bi’llp), with
T, > Cologloglog ®(e) :=T,, if0<e<<1,

where

@ (x) g x €]0, 1]

 (log())

and r is a free parameter belonging to 12, +oo[. Moreover we have for small values of ¢,
. 1
[l (div v, VCS)”L% 100 S Co@3(¢). (7.1)

Assume in addition that the incompressible parts (Pvo.) converge in L2 to some
vo. Then the incompressible parts of the solutions tend to the Kato solution of the
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system (1.2):
Pve > v in LfgC(RJr; L?).
Before giving the proof we will state some remarks.

Remarks 2. (1) When ¥ has at most an exponential growth at infinity, that is
¥(x) < ¢“* then according to Theorem 3 we get that

1
log¥ (log<l>) ‘
£2r

We observe that in the case where ¥ has exactly an exponential growth ¥ (x) = 2** then

the Besov space BSQJI/ reduces to the Besov space BA2+1“ . With this choice the regularity of

T. > Cologlog

the initial data in Theorem 3 becomes subcritical and what we obtain is in agreement
with Theorem 1; we get in particular the same result for the lower bound of the lifespan.

(2) When ¥ has the polynomial growth ¥ (x) = (x + 2)%, @ > 0, then it is clear that
¥ € Uy and moreover

1
T, > Cploglogloglog —.
&€

For the proof of Theorem 3 we shall examine only the estimate of the lower bound of
T and the estimate (7.1). The proof of the incompressible limit can be performed in a
similar way to the proof of Theorem 1. We point out that the analysis in the critical case
is rather difficult compared to that for the subcritical case and we distinguish two main
difficulties that one has to face.

The first one is related to the criticality of the Strichartz estimate for
5

[(divve, Vo) || Ll This quantity has the same scale as the critical Besov space 325,17

Sy
and to circumvent this problem we move to a space B3| that is slightly smoother but

that is very close to Bil.

The second difficulty that one has to deal with has a close relation with the
Beale-Kato-Majda criterion, which is not known to work for critical regularities. In
other words, the bound of [|£2¢(#)||;~ is not sufficient for propagating initial regularities
and thus one should estimate a stronger norm |2, ()| B, instead. This is the hard
part of the proof and the geometric structure of the vorticity will play a significant role,
especially the results discussed before in Propositions 5 and 6.

7.1. Proof of Theorem 2

The proof of Theorem 2 follows from Theorem 3 combined with Corollary 1. Indeed,
from the assumption that

5
> 229 sup [[(Agvo.e. Ageo.e)llp2 < +00
q 0<e<1

and using Corollary 1, we conclude the existence of ¥ € Uy such that the family

3w
(V0,65 €0,6)0<e<1 18 uniformly bounded in B22”1 . Now we can just use Theorem 3.
Now we intend to give the proof of Theorem 3, which will be done in several steps.
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7.2. The logarithmic estimate

Now let us examine a little further some interesting properties of the compressible
transport model given by

02+ w-V)YQ+Q2divu=£ -V
(T) r ( ) vu u
;=0 = £20.

This is the model governing the vorticity dynamics for the system (1.1) and it is
worthwhile to study the linear growth of the norm Bgo’l which is crucial for the analysis
of the critical case, as has already been pointed out. Our main result reads as follows.

Theorem 4. Let p € [1, +oo[, u be an azxisymmetric smooth vector field without swirl
and §2 be a smooth vector-valued solution of the equation (CT). We assume that 2o
satisfies

div2o=0 and $£2¢ x ey =0.

Then

ClIVul
e

LI | divul® 5 )
L}B!fl

llu" /7l 1,00
||-Q(l‘)||Bg01 <C||,QO||BgO‘1e Wil (1+

t
x (1+ /0 ()l d7)-

with the notation ||ullp == ullpe + [ Vullgee and C depends only on p.

Proof. First of all, we point out that for the incompressible case, that is divu = 0, this
result was proved in [1] by using a tricky splitting of £2 combined with some geometric
aspects of axisymmetric flows. We shall use here the same approach as was used by [1];
however the lack of incompressibility brings about more technical difficulties that we are
unable to circumvent without using some refined geometric properties of axisymmetric
vector fields. The results previously examined in Propositions 4 and 5 are crucial at
different steps of the proof.

Before going further into detail, we will first discuss the main idea of the proof. We
localize the initial data in frequency and consider the solution of the same problem
(CT). Then by linearity we can rebuild the solution of the initial problem by a
superposition argument. The main information that we shall establish in order to get
the logarithmic estimate is a frequency decay property. To be more precise, let g > —1
and denote by Qq the unique global vector-valued solution of the problem

! (7.2)

32y + (u- V)2, + 2,divu= 2, Vu
£2411=0 = A4820.

Since div A4820 = Aydiv 20 = 0, then it follows from Proposition 6 that div S}q (t,x) =0.
Using the linearity of the problem and the uniqueness of the solutions we get the
following decomposition:

Q.x) =Y 24 x). (7.3)

q=—1
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We wish now to prove a frequency decay for S~Zq (t). More precisely we will establish the
following estimate: let ¢ be the flow associated with u and F be the function defined by

t
F(t, x) =/ diva) (z, ¥ (v) o ¥z, x))dr.
0
Then for p € [1, 6[ and for every j, g > —1 we have

~ _ Ly .
14" 2g@)ll e < €272V Ag 00 XD C(IVill g oo+ Idivul | g )} (74)

i B, 1

In the language of Besov spaces, this estimate is equivalent to

1" 29I 13 <CHA20ll oy exp{C(IVullzpoe +ldival s )} (7.5)

Booo Bk ' LBl

We remark that in the statement of Theorem 4 we require p to belong to [1, +o0o[ which
is not the case in the above claim (7.5). To do so, we should work with a regularity of
size n €]0, 1[ instead of % and the condition on p will be — + 2 > 0. Before going further
into detail we shall recall some classical properties for the flow . It is defined by the
integral equation

1
Ut x) =x+ / v(zT, Y (z, x)dt, xe R, 1> 0.
0
The following estimates for the flow and its inverse ¥ ! are well-known:

VY= @D oo < o IV OIe 17 (3 (1) 0 Y1) || 0 < el NV @lie el (7.6)

The propagation of the negative regularity is much easier than that of the positive
one, which needs more elaborate analysis. We apply first the Proposition 10, yielding

t
~CHO 1 0 . ey . +/ e~V ||Q; divu||B_% dt

t
- / eV 12, - Vu()| 1 dr. (7.7)
0 Boo'no
with the following notation:
Vp(t) = ||uI|L,1Lip+||divullLlBg o PElLOL NullLip := llullzee + Vel oo -
t Op,1

The first integral term of the right-hand side can be estimated as follows: for p € [1, 6],

t t
/ O 20 divu| _y dr < c/ e divul 5 12,1 _y dr.
0 Booo 0 B, oo
We have used in the preceding estimate the following law product: for s <0, p € [1, 400
such that s + % > 0, we have

Vel < CIAN 5 Nl .- (7.8)

p,1
The proof of this estimate can be achieved for example through the use of Bony’s
decomposition. Let us now come back to (7.7) and examine the last integral term. Using
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Bony’s decomposition, we get

IIQq~Vu||B,% <|Tg, - VMIIB,% +1Tvu - qulB,%

00,00 00,00 00,00

+ IR(£24 - V, u)||37%

00,00

S IVull 199 3 +IR(2g- Vo)l 4
B B

Since div fzq(t) =0, then the remainder term can be treated as follows:
IR (2, -V, u) ”B;ﬁw = ||div R (2,®, u) ”B;ﬁw
k ~ ~
Ssup22 > 14182l | Ajull o
Jj=k=3

e
SN2y Nl

00,00

<12 .
Sl q”B% ”“”Llp

00,00

where we have used the embedding Lip — Bclxmo. Combining these estimates yields

2
00

IIQq-VMIIB L S1240 1 Nullip -

00 00,00

Now by inserting this estimate into (7.7) we obtain

e N2y _1 S 114g%20ll _y
B B

00,00 00,00

t
; V(D) 1 H
+/0(Ilu(f)llLip+|ldlvullB% et II-Qq(T)IIB,% d

p.1 00,00
Hence we obtain by Gronwall’s inequality
5 CV, (1)
IIqu(t)IIB;O%oo <C IIAq;-QOIIB;O%Oo e .
Now we claim that for any p € [1, 6] we have

102,01 3 <ClA0] _y .

00,00 00,00

Indeed, by (7.8) we get for p € [1, 6],
F() & 5 F =
lle (z)gq(z)nﬁ < ||9q(t)||3;% + (O — 1)Qq(t)HB;o%m

00,00 ,00

SO0 _y +[1e" =1]| 5 [120]] _y -
00,00 p.1 00,00

We shall use the following estimate:
eFO —1|| 5 S |F@) 2 CIFOI
P Bl’
p.1 p,1
SlFo]

p.1
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which can be deduced for instance from the following result: there exists C > 0 such that
3

forueB;’landnerehave

-1 -1
"l 3 < C" lullgso llull 3 -

B 1 Bp.l

To estimate F(¢f) we will use the following composition law (see for instance [31]): for
s€]0,1[,p,re[l,00],f € B;’r and ¢ a diffeomorphism, we then have

If o Wllsy, < Clfllgy, (L+ 1V lI5)-

Applying this result combined with (7.6) we get for p €]3, oo,
t 3
IF®I = </ Idivuo)| s (L+ V(¥ (z, v, )N) I f)dT
By J0 By
! 1
< / Idivu(r)|| 5 el IVuOldsgr
0 BY

Combining this estimate with (7.13) yields

CIVul 00

t
e —1] 5 <ce /0 ldiv o)l 5 dr. (7.14)

p,1 B]LI
Putting together this estimate, (7.12) and (7.10) , we obtain

~ ~ C||V .
12,01 3 S 1200 _y (147 aivay 5 )
Boo?oo Boo,zoc Ltprp.l

cIv )
<Al 1 VO (14 VM divay s
~ 1 B.2 1pP

00,00 LI Bp,l

<ClA20l 1 0,
B 2

This completes the proof of (7.5) in the case of the negative regularity. It remains

to show the estimate for Béo,oo, which is the hard part of the proof. But before
giving precise discussions of the difficulties, we shall rewrite in a suitable way the
stretching term of equation (7.2). For this purpose we use Proposition 4(3), leading to
(A4820) xep = 0. Now according to Proposition 6(2), this geometric property is conserved
through time, that is fzq(t) x eg = 0, and furthermore equation (7.2) becomes

~ ~ ~ . ur -
aiszq +u-V)2y+ 2,divu = 79" (7.15)
Qq|[:0 = AqQO
Applying the maximum principle and using Gronwall’s inequality we obtain
5 I(div w,u /)l 1,00
124000 < 14g2001 0 e, (7.16)
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From the geometric constraint f.?q(t) X eg = 0 we see that the solution fzq has two
components in the Cartesian basis, fzq = (f)l, qu2, 0), and the mathematical analysis
will be the same for both components. Thus we will just focus on the treatment of the
first component qul.

r 1 2 . o .
From the identity % = “ = “" which is an easy consequence of u’ = 0, it is clear that
r X1 X2

the function qu satisfies the equation

. o 2!
02y + (u-V)2y + 2 divu=u—2L,
X2
51 1
‘Qq\t=0 = A(IQO

Now we shall discuss the main difficulties encountered when we wish to propagate
positive regularities and explain how to circumvent these difficulties. In the work
of [1], the velocity is divergence-free and thus the persistence of the regularity
B, 5+ 0 < s <1, is guaranteed by the special structure of the stretching term V—:S}q
where the axisymmetry of the velocity plays a central role. In our case the velocity is
not incompressible and the new term Qq div u does not in general belong to Besov spaces
B o0
allowed to be in L* or in any Banach space with the same scaling. Our idea is to filter
the compressible part leading to a new function governed by an equation where all the
terms have positive regularity. But we need to be careful with the filtration procedure;
its commutation with the transport part leads to a bad term and that is why we have to
extract the compressible part after using the Lagrangian coordinates. For simplicity, we
will use the following notation: we denote by ¢ (x1 (1), x2(1), x3 (t)) = (¢, x) the path of

the individual particle located initially at the position x. Now, we introduce some new

s > 0, because in the context of critical regularities the quantity divu is only

functions:

Uq(t, -x) = eG(I’X)Qq(Is w(tv x))v

and
t
G(t,x) = / (divu)(z, ¥ (z,x))dr, U(t, x) =u(t, ¥(t,x)).
0

As before, we shall restrict attention to the treatment of the first component of S~2q; the
second one can be treated in a similar way. It is not hard to see that the function n;
satisfies the equation

ng (1, %)

o 1400, %) = A, 24 (). (7.17)

gt x) = U(t. %)

ng (t.%)
. . . . . . . XQ(I) .
Indeed, differentiating this function with respect to ¢, then using the equation for the

is conserved.

Accordingly, we deduce from this equation that the quantity ¢+
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flow, we find

) (n; , x)) _ X203m (1,2 — ng (1, X)x5 (1)
x2(t) x5 (1)
U2 (t, x)ng (1, x) — g (1, ) (1, Y (1, x))
x3(1)

It follows that
g (1Y) AW
x2(1) x2

(7.18)

1

Now, we are going to estimate 77511 in the Besov space B3 o and thus we prove the
remaining case of (7.5) concerning the positive regularity. Applying Taylor’s formula to
equation (7.17) and using (7.18) we obtain

¢ 1
9, Mg(T)
ol < i ;of/o PO
< 144925 ¥ +/ U(x )"q() dr. (7.19)
2. o 020 |52,

To estimate the integrand in the right-hand side in the preceding estimate, we shall
make use of the paradifferential calculus through Bony’s decomposition. So, we get by

definition and from the triangular inequality,
1
|7 565,
B 2 oo x2(1)

H 2l g

x2(1)
The estimation of the first paraproduct and that of the remainder term are easy
compared to that of the second paraproduct, for which we will use some sophisticated
analysis. Now for the first paraproduct we write by definition and by the continuity of
the Fourier cut-offs,

1
T 1 U?
q

xo(1)

1 +
B, 0o

Boo - ’ x2(f)

BOOOO

T U?
q
xo (1)

k
= sup 22 > A1 (ng /x2(0) AU oo
>— -
z jeN

=

B2 «

g

k
= sup 22 > [|Ak(Sj-1(n} /x2a() AU
k>=1 i k<4

< sup 2% 1402 o 151 (1 /2 @)1

jeN
S| —L
x9(1) L

. (7.20)

2

: J
Ssup 2 [|A;U? | oo sup 272
jeN jeN

1

S IVU| e (t)
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where we have used the Bernstein inequality in the last line. Now, using the identity
(7.18) we get

1 1
g = H A¢820 )
x2(0) llp2, X2 2,

1
S 22948201 00 & IIAqS?oIIB

1
2.

The proof of the last inequality can be achieved as follows: applying Proposition 4(3), we
get the identity A,,.Q& (x1, 0, x3) = 0. This yields, in view of Taylor’s expansion,

1
AqQé (x1, x2,x3) = x2 / (O, Aqﬂé)(ﬁq, TXx2, X3)dT
0

and hence we obtain, by Lemma 8 and the Bernstein inequality,

1
- </ 1328,280 ¢ty de
X2 0 2

Il
Booloo

Boo'oo
1 1
< Clloea 28l 1 / 1 2dt
Boo%e JO

<Clag2gl 3 - (7.21)
B

00,00

Therefore we get, by (7.20),

Now according to the Leibniz formula and (7.6) we find

VUMDl oo < VU@l oo IV (D] 100

2
TWC}U

x9(1)

S IVUIle 14482011 1
B? Boo,oo
00,00

V o0
< IVu@) g e i (7.22)
Hence it follows that
2 IVull, 1,00
‘ T nd U 1 <C ||V“||L}Loo e bk 1 A4820] 1
x20 L}B2 o Boo.co
ClIVull, 1,00
< cet "M A 20 L (7.23)
Boo,oo

To estimate the remainder term we use its definition combined with (7.21):

1 1
(e 25) 5(z)
x2(1) x2

k
L Ssup Y 22 14U
3020_00 k=-1

jzk=3 L
1
<N U|| p1 9
SIUlsy B0 B,%m
S Ul 1448201 1 (7.24)
’ BOQ.OO
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1

Straightforward computations combined with the embedding Lip(R3) < By o imply

that
WU g, . S IUG I +IVU@) |
S @)l + VU@l V¥ Ol
IVull,;1;00
S @)oo + [Vu(@ g e T HE

S Ny e,
Plugging this estimate into (7.24) yields
1
Ui Cc .
Hn(u?, ‘1) <M A, (7.25)
x2(+) LIBZ & B0

Now let us examine the second paraproduct which is more subtle and requires some
special properties of the axisymmetric vector field u. First we write by definition

1 nl
ijl U2Aj< q )
x2(1)
ng

n
TU2 -
At first sight the term —%:. appears to involve the derivative more than we require, and

J
1 S sup 2 2
Bio JEN

X2 1o
x2(1)
the best configuration is obtained by transferring this derivative into the velocity U2. To

do this we will use the commutation between the frequency cut-off operator A; and the
singular multiplication by x% According to the identity (7.18) we write

1 1
g, x) AR
Sj_1U2(x)Aj(jC2(t)) = Sj_1U2(x)Aj( ZICQ 0)

Si—1U% (%) 1
— JTAj(Aqug) + 82102 (x) 45, (A,920)

=1L, x) + 1Li(2, x).
The estimate of the first term can be obtained as follows:

S:i_1U2(t, %)
I:(¢ -~ < |2 Z= A
ITON e S -

1484825 110 -
LOO
Using Proposition 5(4) we get Sj_1 U?(x1,0,x3) = 0, and thus by Taylor’s formula and
(7.22) we obtain

Si_1U%(1, %)
‘ e 2 SIS U e
X2 L
SIVU? |
clv o
< IVl oo € Vb2 (7.26)

Since A;jAg wp =0 for |j — g| > 2, we then deduce

J ClVull,; 1,00
sup 2 [1;(0) |« < CIVu@ e 4™ 148200 (7.27)
J

1
2
00,
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For the commutator term II; we write by definition

Si_1U%(t, x)

4 . A 0L
2% / B (x — ) (g — y) 20500 4
X2 R3 y2

Hj(t, Xx) =
. 2 . 1
_ 2_jSJ—1U (x) 231}1(2]) . (ALIQO ) (x)
X2 y2

with A(x) = x2h(x). Now we claim that for every f € 8’ we have

2V ) wf = > 2Yh@) * At

l—kI<1

Indeed, we have h(¢) = i3§22(§) = i0g,¢(£). It follows that suppiz C supp ¢. So we get
23(2.) * Ayf =0, for |j — k| > 2. This leads, in view of the Young inequality, (7.26)
and (7.21), to

/ Si—1U? Aq82}
sup 2% L1l 00 S Sup‘ =L 273 Ak(“)
jeN jeN X2 = i Sa<t X2 Lo
A 024
SIVUIe | =2
B
IVull,; 1,00
SIVu@ e e 1408200 (7.28)
Putting together (7.27) and (7.28) yields
na ClIVull, 1 o0 1
Ty2 vy i < Ce T | Ay 82 ”B% (7.29)
LB, o 60,00
Finally, combining (7.23), (7.25) and (7.29) we get
1
n C .
U2 . < Ce ||M||L}L1p ||Aq.Q&|| )
X2 N2t 82 o B2,
Inserting this estimate into (7.19) we obtain
Ind@l 5 <ce” " a0l (7.30)
T B R '

Next, we shall show how to derive the estimate (7.5) from the preceding one. First, we

observe that
02t %) = g, ¥ (1, %))
This will be combined with the following classical composition law:
IFov™|
B

1
<CIfl L+ vy t2)

2l
o=

,00 ,00
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leading according to (7.6) and (7.30) to

lIng (e, =&, N
B

ClIVul
SClingll y e 7H

B, 00

Cllull 1y
<CIA250 3 e HER.
B

00,00

1
2
00,00

This achieves the proof of (7.5). According to (7.4), its local version reads as follows:

~ _ 1l
114;" D 2,000 < C272079 A, 200 €7D, (7.31)

On the other hand, coming back to the equation (7.17), taking the L*-estimate and
using Gronwall’s inequality, we get

1" D2, o0 = Ing (D)l
< 1144820110 efé (U2 (1) /x2(T) | oo dr.
Now, since ¥ is a homeomorphism and u?/x2 = u/r, then
(U2 () /x2(Dll oo = 11" /1) (T) | oo
and thus we obtain
~ 10,1 00

1€ 24 (D oo < 11848201 o0 € 7 HET. (7.32)

Set ¢(t,x) = "™ Q(t,x); then by the linearity of the problem (7.2) we get the

decomposition
ttx) =Y 02, x).
g=—1

Let N € N be an integer that will be fixed later; then using (7.31) and (7.32) we find
lEOllg , < Y 145(F0240) 1

J.q=—1
< )0 1820 e+ D 145(F V2, D)1l
li—qI<N li—ql>N

lu" /7l _1
<SNIQolgo "M 1o 20 SO
00,1 00,1

Now we choose N = V), (#); then

I /7l 1 oo . '
le@lgy, , <Cliolgn e (14 dival 5 + / (@ lipdr). (7.33)
00,1 00,1 Ltpr]tl 0

Our next object is to obtain an estimate for ||£2(#)||z0 ) from ¢. For this purpose we

develop computations similar to (7.12) and (7.13). We start with the obvious identity
Q.0 =0+ (" =D ),
Using the law product for p € [1, oo[

<
luvilgo | < Cllullp | IIVIIB% )
p.1
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we obtain

1210, , S W@l (1416770 = 1) 5 ).
00, 00, BI’

p.1

We get, similarly to (7.14), for p €]3, +oc[,

e F® — 1)

Combining these estimates with (7.33) we find

Civul,0 15
120s, S le@llg, (14770 / Idivu(o)] 5 dr)
00, 00, 0 B]fl

4 00 clv 00 |1 1
< Cl2ollgy , " (14 divag )
00,1 L}B:l
1
< (1 [ gy ar).
0
This achieves the proof of Theorem 4. O

7.3. The lower bound of T,

The object of this section is to give the proof of Theorem 3, but for the sake of
conciseness we will restrict attention to the lower bound of T,. At the same time we will
derive the Strichartz estimates involved, which form the cornerstone for the proof of the
low Mach number limit, and to avoid redundancy we will omit the proof of this latter
point which can be achieved analogously to the one for the subcritical case.

Proof. Using Lemma 5 we get
Ive@liLip S Ve @llz2 +Idivve@llgo | +1$2:Dllgo -
Integrating over time, using Propositions 1 and 2 we find

”VS”L%Lip f, ”VS”L%L? + ||div V.s”L%B(O)Q1 + 182, ”L%)_rggq1

divvell, 140
theol ”Qé‘”L%,Bgo L

<G4Ty
Let

Ve(T) == Vell 1prip + Vel
then using again Proposition 2 we obtain

ll(div ve,Vee) HLtl B0

Ve(T) < Co(1 + T)e ol 4 192 M1 po - (7.34)

Now, according to Theorem 4 we have

r t
12:0llg0_ | < Coe /Mt (1 + eV D idivve]” )(1 +/0 1ve (DllLip dr). (7.35)

L}Bp’f 1

https://doi.org/10.1017/51474748012000746 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748012000746

The low Mach number limit for the isentropic Euler system with axisymmetric initial data 379

By virtue of Propositions 7 and 1, we get

, ) Idiv ve li1s0.
”Vg/r”LtILoc <C ”V‘E‘”L%LQ + ||div v"?”L%Bgo 1 +CoTe -1

Clldiv vell 1 40

<Co(1+Te 181, (7.36)

In the inequality (7.35) we need to estimate ||divvg]| R For this purpose we will
t Pp,1
interpolate this norm between the energy estimate and the dispersive one. More
precisely, for p €]2, 4o00[ we get by interpolation
1—2
[divvell s Clldlvvsllp Idivvell g0 -
B? B2 00,1
p1 2,1

Integrating over time and combining the Holder inequality with Proposition 1 we find

2 2 _2
div vel| L3 SCI? Idivvell” 5 lldivvell, 4 go
LB, LB3, ot

2

< COTI’ Ve || div v£|| (7.37)

LlBO
Putting together (7.35)—(7.37) and taking p = 4 yields

Cldiv vell 150
12:0llgg,, < Coexp{Co(1 +T)e Aen (14 eV D div el g | ) (14 Ve(T))
CeCVeM | div v,

<Co exp{co(l +T)e I3, o }(1 +Ve(T)).

Combining this estimate with (7.34) and applying Gronwall’s inequality we obtain

ceCVeD | (div ve,Vee)ll 1 50
eXP{CO(1+T) e et }
oe

Ve(T) < C (7.38)

Let N € N* be an integer that will be fixed later. Using the dyadic decomposition
combined with the Bernstein inequality and property (1) in Definition 1 we get

Idivvellgo | = lldiv Quellgo |

= 1144div Qvell 0 + D 1 Agdiv Qve |l o0
q<N q>N

S 2 AgQvell e + W(N) 32390 (g) | 44 Qvell 2
g<N q=N

1
M 1Qvell e +—— ||v .
1Qvelz +s el 3
Integrating over time yields
”diVVS”L}BgQ < 2 ||QV8||L1L00 +'1/(N) ” 8”

2,1
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Using Proposition 1, Corollary 2 and the Holder inequalities we get for r > 2,
1

; 2—L. cvo(T) [ oN L
Idivvell g0 | < Col+T777)e ( )<2 er +lI/(N))

1
< Co(1 + T2)eCVeD (2’%1 + )

Similarly we get
2\ CVe(T) [ oN L 1
IVeelypo < Co(l + T ><2 er + W)
Thus

. l 1
||(le Ve, VCE)”L%BQOVI < Co(l + T2)eCVg(T) <2N8 r 4 W) .

We take N such that
which leads for small € to

3

1
) =x 4+ —— " xel0.1.

(s )

We observe that since ¥ € Uy and it satisfies the property (ii) of Definition 1, then

lim & () = 0.
e—0

I(divve, Ve)ll g0 < Co(l+ T2V D | ez 4
LTBoo 1

—_

To simplify the notation we introduce the function

Thus we can rewrite the preceding estimate in the form
I (divve, Vee)l g | < Col+T2e D).
This gives
CVeD | div v, Veollpgo | < Co(l+ T2)eVs D @ (¢).
Plugging this estimate into (7.38) yields

£Co+T) exp{Co(1+T2)d (e) CVe (1))

CVe(T) <e
We choose T, such that
PO cb_%(a).
Then we claim that for small ¢ and for every ¢ € [0, T¢],

VD < DI (e).
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Indeed, we set
1= {110, T3¢0 <73 (o) ).

First this set is nonempty since 0 € I7,. By the continuity of ¢+ V. (), the set Ir, is
closed, and thus to prove that I, coincides with [0, T] it suffices to show that Iz, is an
open set. Let ¢ € I, ; then using (7.41) we get for small ¢,

1
exp{Cq (147) exp{Co(1+T2)d 2 (¢)}}
eCV£ (1) < ee )

(7.44)
From (7.42) we get for small values of ¢,

T: ~ cloglog log o2 (&) (7.45)
for some constant ¢ and thus

lim (1 + T2)® 2 (¢) = lim &2 (¢)log? log log(® 2 (¢)) = 0.
e—0 e—0

1
Therefore for small ¢ and for every t € [0,T,] we have eCol+2)P2 (@) _ 2, and
consequently from (7.44) and (7.42) we find

exp{2Co(1+7)}
eCVg(t) < ¢
1
< ®72(e).

This proves that ¢ is in the interior of Ir, and thus Ir, is an open set of [0, T¢].
Consequently we conclude that I, = [0, T].
Now inserting (7.43) into (7.41) we get for T € [0, T¢],

Ve (T) < Coe™P CoT (7.46)
Plugging (7.43) into the estimate (7.40) we obtain for T € [0, T,] and for small ¢,
Idiv vell g | +1Veellap | < Co(l+THD2 ()
< Cod 3 (e).

From Corollary 2 and the above estimates we obtain for every r €]2, 4o0[ and for small
values of ¢,

1
1QVellzs o + llcellz oo < Coe™ (14 T)e Vs

We point out that the use of the Holder inequality and the slow growth of T allow us to
get the following: for every r € [1, +o0l,

1Qvell gz + ez e < Coe®, 0’ > 0. (7.47)
Inserting (7.47) into (6.1) leads to

126(T) || oo < CpeT.
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To estimate the solutions of (1.1) in Sobolev norms we use Proposition 1 combined with
the Lipschitz bound (7.46)

Ives XDl 3.4 < Coe
32.1

eexp[CoT)

]
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D. Li for fruitful discussions about the critical case.

Appendix.

This last section is devoted to the proof of some lemmata used in the preceding sections.

Lemma 4. Let s > % and ¢ € L*°([0, T, H*(R?)) ; then we have

1--2=5 53 523
Vol | < CT B ol 2k ol 27

Proof. To prove this inequality we will use a frequency interpolation argument. We split
the function ¢ into its dyadic blocks: ¢ = 242—1 Ay, and we take an integer N that will
be fixed later. Then by the Bernstein inequality we obtain

N
IVellg = > 1440l + Y 14499l
g=-1 q>N

5
< C2V |l +C > 227 | Agpll2
q>N

_ _5
<C2V (@l +C27NC72) gl ys .

Now we choose N such that

N(S—%) ~ loll s
lplizee”
and this gives
255

s—5
s—3

2
Vol < ClollZ™ el

Now to get the desired estimate, it suffices to use the Holder inequality in the time
variable. 0

The next lemma deals with a logarithmic estimate in the compressible context.

Lemma 5. The following assertions hold true:

(1) The subcritical case: let v be a vector field belonging to H*(R3) with s > % and denote
by 2 =V A v its vorticity; then we have

IVVlizee S MIVIIz2 + lIdivvligo  + 1182100 logle + V]l o).
(2) The critical case: let v be a vector field belonging to Bio,l NL? ; then

\Y% < i 2 .
IVl S Vil + 1divvllge | + 1821150 |

https://doi.org/10.1017/51474748012000746 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748012000746

The low Mach number limit for the isentropic Euler system with axisymmetric initial data 383

Proof. We split v into compressible and incompressible parts: v = Qv + Pv. Then
curlv = curl Pv.

Thus the incompressible part Pv has the same vorticity as the total velocity and thus we
can use the Brezis—Gallouét logarithmic estimate

VPV S IIPVIi2 + 18211 log(e + PVl )
S liz2 + 11821100 log(e + (V] re)-

It remains to estimate the Lipschitz norm of the compressible part Qv. Using the
Bernstein inequality for low frequency,

IVQVl e = V2 A~ div v o0
<A VEAT div ) + 3 14,VE AT div v o
geN

SIvlizz + ) I14gdiv v
geN

S Ivligz + Idivvligo
This concludes the proof of the logarithmic estimate. O
We will establish the following.

Lemma 6. Let s >0 and ¥ €U ; see Definition 1. Then we have the following
commutator estimate:

> 2P @A v Viulizz SNVV Iz lull gy +1 Vil vl gy -
g>-1 ’ ’
Proof. By using Bony’s decomposition, we can split the commutator into three parts:
[Ag,v-Viu=[Ay Ty Viu+[A,, Ty. - vVlu+[Ag, R(v, V)]u
=1, + 11, + I11,,.
We start with the estimate of the first term I. Then by definition,
[Ag, Ty - Viull2 < Y 1Ay, Sim1v- V1djul 2 .
U—ql<4
We can now use the following commutator inequality (for a proof see for example [10]):
I[Aq. albll,, < €279 | Val~ llallyy
which yields, in view of the Bernstein inequality,

MAG Ty Viul2 <C Y 27 VSi 1wl |V Aju |2

li—ql<4
SCIVYIIe Y 27 Al
li—ql<4
SUVvlie Y lAullp2 .
li—ql<4
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Multiplying this last inequality by 29°¥(g), summing over ¢, and using the property (2)
in Definition 1, we get

W)
S 20w (@ Tl S IV Y 2 (2w Aulle2)
>—1 j— Y0

9z li—ql<4

< V o0 S .
SVl el
Similarly, the second term Il is estimated as follows:
> 250 (@) Wgllye S IVl vl -
g>-1 '

What is left is to estimate the remainder term. From the definition and since the Fourier
transform of [A4, A;jv]V is supported in a ball of radius 29, we then obtain

[Ag. RO ullp2 < > [Ag. AVIVAu |2 .
izq—4

To estimate the term inside the sum we do not need to use the structure of the
commutator. Applying the Holder and Bernstein inequalities yields

A ROV ullz S D 1AWl IV Aju 100
j2q—4

SIVule Y 14wl .
jzq—4

Multiplying this last inequality by 2%°W¥(g), summing over ¢, and using the Fubini
identity and the property (1) of Definition 1, we get

> 25U (@A ROVl SVl > > 25W(g) || Ajull 2

q=2-1 q=—1j>q—4
SVl Y 1Al Y 29W(g)
j=-1 q<j+4

S IVullpe ull gy -
This concludes the proof of Lemma 6. 0

The following proposition describes the propagation of Besov regularity for the
transport equation.

Proposition 10. Let u be a smooth vector field, not necessarily of zero divergence. Let f
be a smooth solution of the transport equation

Of +u-Vf=g, fi=0=fo,

such that fo € B;,r(R?’) and g € L%OC(RJ,_; Bj, ). Then the following assertions hold true:
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(1) Let p,re[1,00] and s €]0, 1[ ; then

t
@)y, < Ce® (|vo||B;_, + /0 e ig@)llgy, dr)»

where V(1) = fé IVu(t)|l;« dt and C is a constant depending on s.
(2) Let s €1-1,0], r €1, +00] and p € [2, +00] with s+ 2 > 0 ; then

t
@y, < CeO (Ifollg, + /0 e () llgy, dr),

with Vp(®) = | Vull 2o + Idivall s

t 2p,00

Proof. (1) This estimate is classical; see for example [10] for the Holderian case—and a
similar proof works also for Besov spaces.

(2) The proof for a general case can be found in for example [11] and for the
convenience of the reader we will give here the complete proof for our special case.
We start by localizing the equation in frequency, leading to

WA f + (- VVAGf = Agg + (u-V)Agf — Ag(u- Vf)
= A8 —[Ag,u-VIf.

Taking the P norm, the zero divergence of the flow then gives

t 1
1A f Dl < 1Agfollyy +/O I Aqggllyy dT +/0 [[Ag u-VIf||,, dr. (A1)
From Bony’s decomposition, the commutator may be decomposed as follows:
[Ag,u-VIf=1[Ag, Ty - V1f +1[Ag Tv. - ulf +[Ag, R(u, V)1f.

For the paraproducts we do not need the structure for the velocity, so using the same
proof as for Lemma 6 we find for s < 1,

A, Tu - VIf + [Ag, Tv. - ulfll p < ClIVullpee Ifllgy, cq2™,

with (cg), = 1. As regards the remainder term, we write

[Ag, R(u, V)If = Z[A,,, A1 Af

J

=8 Y [Ag. A1Af — D [Ag, AjdivulAyf
j=2q—4 j>q—4

= I, +11,.

Like in the proof of Lemma 6, we get for s > —1,
gl < CUIVullee Ifllg, €27%,  (cq)pr=1.

For the second term, since the Fourier transform of [Ay, Ajdiv u]A}f is supported
in a disc of size 29, then using Bernstein and Holder inequalities we obtain
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for p > 2,
~ 3 ) ~
I[Ag, AjdivulAfll,, < C2r|[A,, Ajdiv u]AijL%
3 ] ~
< 207 || Adivull, 1A, -

Therefore

) 3 ~ .
29 |11yl < €207 > Al | Ardivul,,

jzq—4
. —N+3) rais 1 &
<Cldivvl g > 2@ DCT) (9| Afll ).
Broe j2g-4

Now since s + % > 0, we can then use the Young inequality to deduce that

qs ;
(2 WMl ), < Cldivl 5 1Fl,

D,00

Combining these estimates yields for — min(1, %) <s<0,

(2 1Ag u- Vil ) < Cldivvll 5 1l -
or B;{),oo p.r
Plugging this estimate into (A 1) we get

t t
VOl S UOlsy, + [ VOl e + [ o)y,

with
Vp(@) == IVul g + lIdivul s
Bl
To get the desired estimate it suffices to use Gronwall’s lemma. (]

The last point that we will discuss concerns the action of the operator (d,/r)A~!
on axisymmetric functions. We will show that its restriction to this class of functions
behaves like Riesz transforms. This study was done before in [19], and for the
convenience of the reader we will give the complete proof here.

Lemma 7. We have for every axisymmetric smooth scalar function u,

2 2
_ X X X1X
(0:/1) A7 () = S R11u() + JRapu() = 2= 52 Ragu(x), (A2)

with Ryj = 947 L

Proof. We set f = A~lu; then we can show from the Biot-Savart law that f is also
axisymmetric. Hence we get by using polar coordinates that

011f + 022 f = (0,/1)f + 0 f- (A 3)
where

X X
9, = L9y + 2o,
r r
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By using this expression of d,, we obtain

2
X X 2x1x
arr=<181+282) =9, (r)81+ar( )82+ 1311+ 822+ L 2812.

x3 2x
1X2
= %311 + 2822 + —5—012

since
Xi .
8,() =0, Vie{l,?2}.
r

This yields by using (A 3) that

0 2 x% 2x1x2
=1 Jonf+ (1= 3 Jonf - —5=0if
2 2
2x1x2
= 311f +3 “Lonaf — d12f.
To get (A 2), it suffices to replacef by ALy, a

The following result describes the anisotropic dilatation in Besov spaces.

Lemma 8. Let s €]—1, +00[\{0}, f : R3 — R be a function belonging to B, > and

define fi.(x1, x2,x3) = f(Ax1, x2,x3). Then, there exists an absolute constant C > 0 such
that for all X €]0, 1],

Willgs, . < CO+2) [fllgs, .-
Proof. Letting ¢ > —1, we define f; ,, = (A, f), . From the definition we have

Willps, . = 1A 1fillzoe +s5up 2 [ Aifill oo -
' jeN
For j, g € N, the Fourier transform of A;f, ; is supported in the set
{1611 +18"1 ~ 2 and 27 Vg1] + 18 ~ 27},

where & = (&, &3). A direct consideration shows that this set is empty if 2¢ <2 or
2= < A. Thus we get for an integer ny,

Willps, . SHA-1fillpe+ D 2 14ifyall

g—n1+logarsj
J<q+ny

Slhaifillpe+ Y 207925 f ) o

q—n1+logor<j
Jsq+ny
ni

SlAfille + sy, Y 2°

—n1+logyi
S 1At fillp + I llgs,

Let us now turn to the estimate for the low frequency ||A_1fill; . We observe that
the Fourier transform of A_j f; 5 vanishes when g > ng where ng is an absolute integer.
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Consequently we get

no
A1 fillpso = Y 1A 1Syl o

g=—1
no
<C D 148l
q=—1
<Clfls, .
This completes the proof of the lemma. O
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