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Abstract

Philosophical work on meta-analysis focuses on biomedical research and revolves around the
question: Is meta-analytic evidence the best kind of evidence? By focusing on conservation
science rather than biomedical science, I identify further questions and puzzles for meta-
analysis and show their importance for the epistemology of meta-analysis.

1. Introduction
Say you have an empirical question. Maybe you want to know how effective different
ecological restoration strategies are, or how big the placebo effect is. If there is exist-
ing research on your question, you look to the scientific literature for answers.

For such questions, it can often seem that science has generated both too much
and not enough evidence. Too much, because there are thousands of published studies
on each topic. Not enough, because no study is definitive on its own. No token set of
measurements captures the generality you desire. Worse, some studies disagree with
one another, and experts disagree about which results are most reliable.

In these situations, a method called meta-analysis is supposed to come to the res-
cue. Meta-analysis is a set of statistical techniques for combining and analyzing data
from existing studies. Its purpose is to assess what conclusions some body of evidence
supports, and how strongly it supports those conclusions.

Does meta-analysis succeed in this purpose? The scientific consensus is that meta-
analysis is not merely a technique for combining evidence, but the strongest and best
technique for combining scientific evidence (Borenstein et al. 2021). But philosophers,
predictably, have complicated the matter. In fact, much of the small philosophical lit-
erature onmeta-analysis debates whether meta-analytic evidence really is the evidence
(Stegenga 2011, 2018), while the rest engages with the method’s conceptual foundations
(Fletcher et al. 2019; Vieland and Chang 2019; Wüthrich and Steele 2019).

This literature focuses on meta-analysis in the biomedical sciences, and meta-anal-
ysis in other sciences gets much less attention. This is not surprising: meta-analysis
originated in the biomedical context in the 1970s (Glass 1976), and its application to
other fields is more recent. Yet there are important epistemological issues about
meta-analysis that the narrow focus on biomedical science has made it difficult to
see. In this paper, I consider meta-analysis in a domain that philosophers have
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not addressed—conservation science. I draw three key contrasts between meta-anal-
ysis in the biomedical sciences and in conservation science: the role meta-analyses
play in decision-making, the criteria for selecting which studies to include, and
the degree of acceptance of statistical heterogeneity. Attention to these differences
allows me to (a) identify questions that the epistemology of meta-analysis can and
should explore, and (b) suggest a reframing of the philosophical debate about
meta-analytic evidence.

2. Meta-Analysis: A Primer
While meta-analyses can be statistically complex, the overall logic of the method is
quite accessible. A meta-analysis begins with a question. Here are two examples:

• How big is the placebo effect when patients know they are receiving a placebo
(von Wernsdorff et al. 2021)?

• How much do ecosystems recover after large-scale, human-caused disturbances
(Jones et al. 2018)?

Next, researchers search the published literature for studies relevant to the ques-
tion. If they determine there are enough studies of sufficient quality for a meta-anal-
ysis, they decide which ones to include in the meta-analysis, and the statistical work
begins:

1. Researchers convert the outcome of each study to an effect size, a measurement
suitable for combining with other studies.

2. Researchers combine each effect size in a statistical model that accounts for
differences in sample size across studies. The model outputs:
a. a common effect size (or distribution of effect sizes) known as the meta-ana-

lytic mean, and
b. a measurement of heterogeneity, which is variation in study outcomes due to

something other than chance.

This much is common to meta-analyses in both biomedical science and conserva-
tion science. But let’s explore our two examples in more detail in order to identify
typical methodological differences between meta-analyses in these areas of science.

In the case of the placebo effect study, researchers screened 2,028 citations and
selected 11 studies for the analysis. They used an effect size measure known as
the standardized mean difference (the effect of the intervention relative to the vari-
ability of the study) and combined these effect sizes in a random-effects statistical
model. They found a large overall effect (0.72) but also high heterogeneity (76%).
If they excluded the 4 studies most likely to be biased, the overall effect fell to
0.49, with low heterogeneity (4%).

In the case of the ecological restoration study, researchers screened 972 citations
and selected 400 for the analysis. They used an effect size measure known as a
response ratio (the ratio of the actual effect to the goal effect for each study variable)
to measure the extent of ecosystem recovery and combined these effect sizes in a
general linear mixed model. They found positive but incomplete recovery rates in
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all cases, and that the extent of recovery varied both with disturbance type (e.g. log-
ging vs. oil spills) and ecosystem type (e.g. forest vs. wetland).

These examples highlight four key methodological contrasts: goals of the analysis,
number of studies included in analysis, choice of effect size statistic, and choice of
statistical model.

• Goal: In biomedical science, most meta-analyses aim to quantify the effectiveness
of a particular medical intervention in a particular context, most often a clinical
trial. Some conservation meta-analyses have similar goals, for example, to deter-
mine how effective a specific herbicide is at controlling an invasive species in a
particular place. But more commonly, conservation meta-analyses aim to pro-
vide large-scale overviews of phenomena such as the overall effectiveness of cer-
tain restoration techniques across different environments.

• Number of studies: The difference in goal leads to a difference in the number of
primary studies included in meta-analyses. A biomedical meta-analysis is likely
to include fewer than 25 studies, while a conservation meta-analysis may include
hundreds (Lau et al. 2013). One reason is that a meta-analysis aimed at testing the
effectiveness of an intervention needs to make sure that the studies it includes
are very similar to one another, while diversity among primary studies can be a
virtue when the goal is to understand a phenomenon over a variety of popula-
tions, scales, and gradients.

• Effect size statistic: There are six common effect size statistics in meta-analysis
(Borenstein et al. 2021). The distribution of these statistics differs between bio-
medical and biological meta-analyses. A statistic called the response ratio, which is
the natural log-proportional change in the means of a treatment and control
group (Lajeunesse 2011), is the most common choice in ecology and evolution
meta-analyses, but it is rarely used in other domains (Borenstein et al. 2021;
Nakagawa and Santos 2012).

• Statistical model: There are two basic types of statistical model in meta-analysis. A
fixed-effect model (Hedges and Olkin 1985) assumes that there is one true effect
size, approximated by the meta-analytic mean, and that differences in measured
effect size across studies are due to sampling variance. A random-effects model
assumes that there is a different true effect size for each study, due to underlying
in differences in study population, conditions, design, etc. The results of a ran-
dom-effects meta-analysis are in the form of a distribution of effect sizes. Though
some bio-medical studies do use random-effects models, they are more common
in conservation science, and the rapid acceptance of random-effects models is a
“methodological innovation” credited to biological meta-analysis (Gurevitch
et al. 2018, 179).

Methodological differences do not always indicate interesting underlying episte-
mic differences, but in this case, they do. Conservation meta-analysis has a distinctive
epistemic profile, which we will now explore.
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3. The decision-making context
The first feature of the distinctive epistemic profile of conservation meta-analysis is
its decision-making context. Two differences in decision-making context—differen-
ces in which decisions take meta-analysis as their input, and differences in the stand-
ards governing those decisions—lead to meta-analysis playing a different epistemic
role in conservation than in biomedicine.

First, typical decisions in biomedicine that take meta-analysis as their input are
decisions about whether to approve new medical interventions. Published discussions
of meta-analyses express the goal of these studies in terms of their potential to inform
such decisions: “Meta-analyses are conducted to assess the strength of evidence pres-
ent on a disease and treatment. One aim is to determine whether an effect exists;
another aim is to determine whether the effect is positive or negative : : : ”
(Haidich 2010, 30). Once a medical intervention is approved, clinicians may look to
meta-analysis results when deciding whether to prescribe it in a particular case,
but this is not their primary use. The typical decision that takes biomedical meta-
analysis as its input is, “Should this intervention be approved?” and not, “Should I
use this intervention in my case?” In conservation, no formal approval process for
interventions exists. The decisions which take meta-analysis as their input are much
more likely to be decisions about which of a menu of interventions or management
strategies to use in particular cases (Pullin et al. 2004, 245), that is, “Should I use this
intervention in my case?”

Second, decisions about whether to approve a new medical intervention are gov-
erned by a strict evidence of effectiveness requirement. In the U.S., this is codified in
the Federal Food, Drug and Cosmetic Act of 1962. This requirement, which is neces-
sary but not sufficient for approval, is a standardized version of the ancient
Hippocratic prescription to do no harm. This means that a regulatory body with
the authority to approve the therapeutic use of a new drug will take no action with
respect to the disease the drug is potentially effective against until researchers show
sufficient evidence of effectiveness.

There is no such constraint on conservation decisions about the use of interven-
tions. The lack of constraint means that in practice, few conservation decisions actu-
ally take meta-analyses or other forms of systematic review as inputs (Sutherland and
Wordley 2017). Advocates of evidence-based conservation lament this reality and call
for conservation decision-making to take evidence-based medicine as a model (e.g.
Pullin and Stewart 2006). But they do not mean that conservation should adopt a sim-
ilar evidence of effectiveness standard to the one used in biomedicine. In fact, they
argue that “ : : : conservation cannot adopt evidence frameworks, tools, and guidance
from other fields wholesale, since the needed and available evidence as well as the
standards for evidence quality vary vastly across disciplines” (Salafsky et al. 2019, 2).

It is understood that conservation decision-makers are not in a position to refrain
from implementing interventions or management strategies unless a specific thresh-
old of evidence of effectiveness is met. The necessity of action in the face of uncer-
tainty is a hallmark of conservation decision-making. So, while advocates of evidence-
based conservation call for incorporating meta-analysis into decision-making, they do
not suggest that meta-analysis should establish a particular level of evidence of effec-
tiveness for an intervention before decision-makers consider using it.

Philosophy in Science 983

https://doi.org/10.1017/psa.2022.68 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2022.68


So, meta-analysis plays different epistemic roles in conservation and biomedical
decision making. First, the decisions it informs are different. Second, in biomedicine
the ideal is for a meta-analysis to establish the effectiveness of any intervention
before it is implemented in practice, while in conservation it is understood that deci-
sion-makers must sometimes, perhaps often, implement interventions in the absence
of this level of evidence of effectiveness. Meta-analysis has more of a gatekeeping
function in biomedicine, so key epistemic questions in this domain are whether
meta-analysis studies really are the best kind of evidence for the effectiveness of med-
ical interventions, and whether the evidence from these studies really is sufficient for
determining effectiveness. But in conservation, where the ideal function for meta-
analysis is to inform a myriad of context-specific decisions, the key epistemic ques-
tions are about how to understand the implications meta-analyses have for this vari-
ety of contexts. The next two sections explore these key epistemic questions for
conservation meta-analysis.

4. All the evidence versus the best evidence
A second feature of the distinctive epistemic profile of conservation meta-analysis is
its standard for selecting primary studies to include in an analysis. The standard in
biomedicine is to include only what is considered the best evidence, which is evidence
from randomized control trials (Higgins et al. 2019). This is one reason why biomedi-
cal meta-analyses tend to include fewer primary studies than conservation meta-
analyses. One worry about this standard is that it violates the principle of total evi-
dence (Stegenga 2018), while a response is that a historical analysis of science shows
we may be pragmatically justified in excluding data, because doing so allows the sci-
entific community to reach the right answer to a question more quickly than consid-
ering all of the data would (Holman 2019).

Conservation meta-analyses have more relaxed standards for including primary
studies. Randomized control trials, which randomly assign experimental units (e.g.
human participants or agricultural plots) to control and treatment groups, are not
only rare in conservation science, they are often impossible (Pynegar et al. 2021).
A study of an actual effort to restore an abandoned strip mine site, for example, can-
not be a randomized control trial, because there is only one experimental unit. Even
studies with multiple experimental units may not have sufficient sample sizes for a
randomized control trial, or random assignment may not be feasible. So conservation
meta-analyses are pushed to include primary studies that use at least some methods
other than randomized control trials.

But which methods? One could limit the list of appropriate experimental methods
to studies that at least use control and treatment groups, and measure both groups
before and after an intervention (known as before-after-control-impact), but drop the
randomness requirement. Or, one could allow both simple control-impact and simple
before-after designs, but exclude studies that merely monitor. Unfortunately, what
are considered the most reliable study designs (e.g. before-after-control-impact)
are also the rarest, while simple monitoring studies are the most common
(Christie et al. 2020).

In light of these facts, conservation meta-analyses often include studies with all of
the above designs. For example, the meta-analysis of the recovery of damaged
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ecosystems from Section 2 included 400 primary studies and over 5000 variables. But
only 49 of these variables used control-impact-before-after designs.

The worry about this approach is that including studies of worse design compro-
mises the reliability of meta-analytic results. Those compelled by this worry argue
that conservation meta-analysis should be more like biomedical meta-analysis: it
should use stringent criteria for including primary studies, even if this means
meta-analysis becomes impossible for many questions because not enough primary
studies meet the criteria (Whittaker 2010). But the much more common view in con-
servation is that rather than using stringent selection criteria to reject most potential
studies outright, the better approach is to empirically test for differences in study
design that actually make a difference to the outcome of the meta-analysis:

That is, to gather all the studies relevant to the conceptual topic under study,
and then empirically test whether these differences (i.e., any factor presumably
affecting quality) actually influence research outcomes. For example, contrast-
ing the findings from groups of studies with and without these problems, or
through sensitivity analyses where collections of studies are excluded from
the overall synthesis to evaluate their weight on the pooled conclusions.
(Lajeunesse 2010)

I will not take a position on how stringent selection criteria should be. Instead, the
takeaway is that the widespread practice of including many studies with differing
designs raises distinctive epistemic issues, which are not present in biomedical
meta-analysis. How good is sensitivity analysis at identifying studies and study
designs which, due to their poor quality, influence meta-analytic results? How well
does the inclusive approach to primary study selection serve the goal of identifying
broad patterns and reaching coarse generalizations? For what kinds of research ques-
tions and under what circumstances is it preferable to include more, rather than
fewer, data in a meta-analysis?

5. Heterogeneity
Deeply connected to the question of selection criteria for primary studies in meta-
analysis is the issue of heterogeneity. Study design is only one dimension of the selec-
tion criteria question. Another dimension has to do with how similar primary studies
should be in other ways, e.g. in terms of their focal population, spatial scale, environ-
mental setting, etc. All of these are sources of variation that can influence the out-
come of a study, so including studies that vary along these dimensions in a meta-
analysis of the effectiveness of, say, different ecological restoration techniques, intro-
duces the possibility that meta-analytic results will reflect variation in the primary
studies rather than the actual effectiveness of the restoration techniques in question.
For this reason, heterogeneity is the enemy in biomedical meta-analysis. As the
Cochrane Handbook states, “Meta-analysis should only be considered when a group
of studies is sufficiently homogeneous in terms of participants, interventions and out-
comes” (Higgins et al. 2019, 9.5.1).

But whereas in biomedicine there is a wealth of published studies that are arguably
homogenous, or homogenous enough, this is rarely the case in conservation science.
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The universe of targets for an intervention in conservation includes many different
species, biomes, temporal and spatial scales, and approaches to implementing the
same intervention, to name just a few common sources of heterogeneity. Thus, there
is great potential for differences in effect size statistic from primary study to primary
study to be partly or largely due to heterogeneity. What to do?

Methodologically, there are many statistical resources for identifying and quanti-
fying heterogeneity. So it’s not so much a concern, at least not an in-principle one,
that heterogeneity will go undetected. To be sure, there are quite a few poor-quality
conservation meta-analyses, but given that the resources to overcome this problem
exist, it’s not particularly interesting to focus on.

A more interesting set of problems has to do with translating the results of het-
erogeneous studies to conservation science’s decision-making context. In an impor-
tant sense, heterogeneity is a virtue in conservation meta-analysis:

: : :when the goal is to reach broad generalizations, the population of studies
may be large and heterogeneous and, although estimating the main effect of
a particular phenomenon or experimental treatment may be important, identi-
fying sources of heterogeneity in outcomes is often central to understanding the
overall phenomenon. Meta-analyses undertaken with the aim of reaching broad
generalizations deliberately incorporate results from heterogeneous pop-
ulations : : : (Gurevitch et al. 2018, 177)

Yet, when we think about a group of land managers tasked with restoring a stream,
or a state ecologist deciding whether a controlled burn is a good measure for control-
ling an invasive plant, broad generalizations seem less useful: “ : : :while meta-analy-
sis can characterize broad patterns, by definition, it operates at a coarse resolution. By
contrast, restoration is highly context-dependent and practitioners make informed
decisions based on project-specific factors” (Larkin et al. 2019, 3).

More concretely, a meta-analysis with high heterogeneity must use a random-
effects model. The confidence interval for the results of a random-effects meta-anal-
ysis is wider than that for a fixed-effect meta-analysis. The meta-analytic mean a ran-
dom-effects model reports is best understood as the “center of a dispersed range” of
effect sizes (Imrey 2020, 2). The standard deviation around this mean can be quite
high. In an example focused on a global meta-analysis of burnout prevalence in medi-
cal professionals, Imrey (2020) shows that given the burnout prevalent estimate of
32% and the standard deviation of 15%, “ : : : true target burnout prevalences for
one-third of studies would be outside the range of 17% to 47% and, for 10%, outside
the range of 7% to 57%. Thus, the 32% average provides only very modest guidance on
what to expect for any given situation because the studies are so heterogeneous”
(2). The force of this point remains even after applying statistical tools such as sub-
group analysis and meta-regression for understanding the sources of heterogeneity.

Heterogeneity thus raises fascinating questions about meta-analysis and conserva-
tion decision-making, as do novel attempts to address these questions within the
framework of meta-analysis. Consider Shackelford et al.’s (2021) development of
dynamic meta-analysis. Their aim is to make global data about conservation questions
relevant to specific contexts. Recognizing that we are unlikely to ever have homoge-
nous meta-analyses for specific types conservation decisions, and definitely not on
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the timescale required to response to global environmental crisis, Shackelford
hypothesize that a web application which assembles a variety of studies relevant
to a particular research question or intervention, and which also lets practitioners
filter and weight studies according to their particular context, can help to address
this challenge. They created a proof-of-concept tool at www.metadataset.com where
users can perform this kind of analysis on sets of studies on two topics: invasive spe-
cies and cover crops.

6. The value of meta-analytic evidence
What has our exploration of the distinctive epistemic profile of conservation meta-
analysis revealed? A desideratum for conservation meta-analyses is that they can
inform decisions where some action must be taken, and the priority is on understand-
ing how the available evidence comes to bear on specific contexts, rather than on
determining whether the evidence meets a threshold for action. The meta-analyses
that can possibly inform conservation decisions have a range of goals—sometimes to
test the effectiveness of particular intervention in a particular place, but often not—
and are typically heterogeneous and inclusive of all or much of the available evidence.
These facts suggest that the body of evidence conservation meta-analysis provides is
qualitatively different than the body of evidence biomedical meta-analysis provides,
and that the best practices for drawing conclusions from the evidence and incorpo-
rating the evidence into decision-making are also different.

The issue of how exactly these best practices differ raises a series of novel ques-
tions for the epistemology of meta-analysis, which I have already highlighted. A fur-
ther question, which I have not yet mentioned, is whether differences in methodology
and practice in conservation meta-analyses ought to inform biomedical meta-analy-
ses, or vice versa. I now turn to ways in which the distinctive profile of conservation
meta-analysis is relevant to the philosophical debate about the quality of meta-ana-
lytic evidence.

This debate asks whether meta-analysis provides better evidence than other meth-
ods of amalgamating evidence do. The critical position, represented by Stegenga
(2011, 2018), is that meta-analysis suffers from ineliminable arbitrariness: researchers
must make a variety of choices in the course of conducting a study, and these choices
can be made in different ways, which can and do lead to conflicting results. These
include choices about which primary studies to include and how to statistically ana-
lyze them. In response to Stegenga, Holman (2019) argues that over time it is possible
to adjudicate between the different choices which lead to conflicting results, and thus
to resolve these conflicts. Attention to conservation meta-analysis suggests two take-
aways for this debate.

First, some of the arguments in this debate rely on assumptions that are specific to
biomedicine. One of Stegenga’s (2018) concerns about meta-analysis is that, due to
heterogeneity both among studies and between study and clinical populations,
extrapolation from the research to the clinical context is not straightforward, yet bio-
medical experts use a simplistic heuristic of assuming that extrapolation is legitimate,
unless there is a clear reason to think otherwise. This may be the case in biomedicine,
but in conservation science, the reality of heterogeneity is very much appreciated,
and simple extrapolation is not the norm.
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Conservation meta-analysis also differs from biomedical meta-analysis with
respect to the influence of industry. What philosophers call “industrial selection”
(Holman and Bruner 2017) is a serious problem in biomedical research. Briefly, the
pharmaceutical industry can bias drug trials toward finding evidence of effectiveness,
suppress “inconvenient” research, and otherwise skew the data that go into
meta-analyses in ways that systematically bias the analyses. In conservation, though
industry may influence some aspects of research (e.g. agriculture), there are fewer
resources dedicated to producing particular research results. This is not to say that
other kinds of bias, such as publication bias, are not still concerning, but the landscape
surrounding issues of bias in conservation is quite different, and conclusions about
the reliability of meta-analysis that depend on accusations of industrial selection
are not necessarily applicable across the board.

Second, the primary critique of meta-analysis in biomedicine is that the many
choices researchers make in study design and implementation produce conflicting
results, and that these choices cannot be rationally constrained in a way that solves
the problem. This feature, known as malleability (Stegenga 2011), is a more serious
problem in conservation than in biomedicine. Different standards for choosing
research questions, managing primary study selection, and handling heterogeneity
mean that researchers in conservation meta-analysis have more choice points, thus
more opportunities for conflicting results. Not only is this a greater problem in con-
servation science, researchers also have a greater sense of awareness of and humility
about this problem. Conflicting results are expected, and even seen as an opportunity
for identifying knowledge gaps, revealing knew information, and developing better
studies in the future.

These facts support Holman’s (2019) and Jukola’s (2015) call to view meta-analysis
through a social epistemic lens. Meta-analysis generates puzzles and questions just as
much as it answers them. It is part of an ongoing process of managing underdetermi-
nation, not a final response to it. Further, the good of meta-analysis is not that it
produces a once-and-for-all answer to a research question. It is better understood
as a way of crystallizing the state of the evidence—in all its messiness—at a moment
in time. This crystallization has a variety of values, not just one. This means that phi-
losophers should not just ask whether meta-analytic evidence is the best evidence. We
should also investigate the various epistemic benefits (and shortcomings) of meta-
analysis, in order to develop a more complete picture of the contributions this
method of evidence amalgamation can and does make across the sciences.

Acknowledgements. Thanks to Samuel Fletcher, Gil Hersch, Billy Monks, Wendy Parker, and Jacob
Stegenga for their comments on this manuscript.
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