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Abstract

Recently, Brietzke, Silva and Sellers [‘Congruences related to an eighth order mock theta function
of Gordon and Mclntosh’, J. Math. Anal. Appl. 479 (2019), 62-89] studied the number vy(n) of
overpartitions of n into odd parts without gaps between the nonoverlined parts, whose generating function
is related to the mock theta function V(g) of order 8. In this paper we first present a short proof of the
3-dissection for the generating function of vo(2n). Then we establish three congruences for vy(n) along
certain progressions which are subsequences of the integers 4n + 3.
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1. Introduction

A partition of a positive integer n is a weakly decreasing sequence of positive integers
whose sum equals n. Let p(n) denote the number of partitions of n. Ramanujan
established the three congruences, for n > 0:

p(bn+4) = 0 (mod 5), (1.1)
p(7n+5) = 0 (mod 7), (1.2)
p(11n+6) =0 (mod 11). (1.3)

Ramanujan also discovered the beautiful identity

S = (-
pGn+dg =5 | ——. (1.4)
; g (1—¢gm°

We refer the reader to [5] for elementary proofs of the three congruences (1.1)—(1.3)
and the identity (1.4). Inspired by Ramanujan’s work on p(n), there are many studies

This work was supported by the National Natural Science Foundation of China (no. 11871246), the
Natural Science Foundation of Fujian Province of China (no. 2019J01328) and the Program for New
Century Excellent Talents in Fujian Province University (no. B17160).

© 2020 Australian Mathematical Publishing Association Inc.

410

https://doi.org/10.1017/5S0004972719001618 Published online by Cambridge University Press @ CrossMark


https://orcid.org/0000-0003-3177-4095
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0004972719001618&domain=pdf
https://doi.org/10.1017/S0004972719001618

[2] Overpartitions 411

of the arithmetic properties of other partition functions whose generating functions are
usually eta-quotients.

As introduced by Corteel and Lovejoy in [12], an overpartition of n is a partition
of n for which the first occurrence of a number may be overlined. Overpartitions
naturally arise in diverse areas of mathematics, including symmetric functions [6],
representation theory [17] and algebraic number theory [8, 19]. Let p(n) denote the
number of overpartitions of n. Since the overlined parts form a partition into distinct
parts and the nonoverlined parts form an ordinary partition, the generating function for
overpartitions is

where

(@) = [ |1 - ag"™.
n=1
Arithmetic properties for p(n) are studied, for example, in [11, 13, 16]. From the
identity
O L+ QU+ (146" o 050 )
d1-g1 =g (1-g" (¢ 4"

due to Lebesgue [18], we see that the number of overpartitions of n without gaps
between the nonoverlined parts equals the number of partitions of n with even parts
distinct. There are many Ramanujan-type congruences satisfied by this restricted
partition function (see, for example, [2]).

Recently, Andrews et al. [1] studied the partition functions p,(n) and p,(n)
associated to the third-order mock theta functions w(gq) and v(g). Later, congruences
for p,(n) and p,(n) were investigated (see [3, 22]). Congruences satisfied by
Ppolan + b) and p,(an + b) are usually derived from their generating functions and
identities between certain mock theta functions.

More recently, Brietzke et al. [7] considered overpartitions related to a mock theta
function of order 8. Let vo(n) be the number of overpartitions of n into odd parts
without gaps between the nonoverlined parts. Setting vo(0) = 1, it is easy to see that

(o)

( q;:9 )n 143442 1)
VO(”)q =1+ 5 - 4 "
; Z (4:9")n

where .
(@ gy =] [ -ag™h.
k=1
Brietzke, Silva and Sellers observed that the generating function of vy(n) is related to
the mock theta function V((q) of order 8:

[e9)

Vo(g) + 1
> vo(mg" = %. (1.5)
n=0
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By using the identity (2.4) between Vj(g) and a mock theta function B(g) of order 2
and an identity between B(g) and B(—gq), Brietzke et al. [7] obtained the generating
functions for vo(2n) and vo(4n + 1) which are eta-quotients. They then established
several Ramanujan-type congruences modulo small powers of 2,3 and 5. Mao [20]
established the generating functions of vo(8xn + 2) and vy(8n + 5) by using the theory
of mock modular forms and Zwegers’s results on Appell-Lerch sums. In this paper,
we will establish the following Ramanujan-type identities.

TueoreMm 1.1. We have

o)

w 1@ P2 6H6": ¢D)e
Zv0(6n)q =_( 8 (4. AV (6. 604 +1)’
= 2\ (g 9% (g% gMHE (g% g%

(e8]

(¢% g%  aH% (g% ¢

(6n+2)q" =2 , 1.6
;VO " (4 D%(q"%: 4o (0
o 2. .27\3 6. ,6\3

S vo(6n + 4" = NUBTNSURTDS 17

VA (4 :
gy (@ Do(q*; 4o
Remark 1.2. Brietzke et al. [7] proved (1.6) and (1.7), but our proof is simpler.

The main goal of this paper is to prove congruences for vy(n) along certain
progressions which are subsequences of the integers 4n + 3, including an unexpected
congruence modulo 7. It should be noted that the generating function of vy(4n + 3)
cannot be written as an eta-quotient which is related to Appell-Lerch sums.

Tueorem 1.3. Forn >0,

vo(12n +7) = 0 (mod 3),
vo(28n + k) =0 (mod 7), wherek =11,15,23.

Tueorem 1.4. Forn > 0,
vo(40n + 35) = 0 (mod 5).

The rest of the paper is organised as follows. In Section 2 we introduce some
preliminary results. In Section 3 we prove Theorem 1.1, and in Section 4 we prove
Theorems 1.3 and 1.4.

2. Preliminaries

Recall Ramanujan’s theta function ¢(g) defined by

p(q) = i q".

n=—00
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From [5, Equation (1.3.13)],

(4 D%
o(=q) = G 2.1)
TN
o= (@: D5 (q" g% (22)
The following two lemmas are essential to prove Theorem 1.1.
LemMma 2.1 [15, Equations (34.1.24) and (34.1.25)]. We have
(4; Deo(qs 40 (g*s 4%
3p(=¢°) + p(=q)* = 4
(4% ¢9%(@"%: ¢
2. NT (3. 32 (12, 12
30(=) — p(—g)? = 203904 q)5(q 72 Do 23)

(@ D2 (g* g%(q% 4%

Lemma 2.2 [4, page 49]; [16, Theorem 1]. We have

(4%:97)(q"%; ¢")5,

(4% 49)=(q: 4"

iﬁ(n)q” _ (@%498(@% ) +26](46;(16)2<,(619;619)3o . 4q2(q6;q6)§o(q18;6118)30‘

oy (2% 6*)5%(q"%: 4"’ (@& (@ )%
Lemmas 2.3 and 2.4 will be useful to establish the generating functions for

vo(2n + 1) and vo(4n + 3).
Lemma 2.3 [21, Equations (3) and (6)]. Let

@(—q) = p(-¢”) - 2q

4" (=4 ¢

B =
@ (g3 4P

denote the mock theta function of order 2. Then
Vo@) = (=4*14(4%: 4o + 24B(q). 2.4)

To obtain the generating function of vy(4n + 3), we need to rewrite B(g) as an
Appell-Lerch sum. The Appell-Lerch sum m(x, g, z) is given by

[ee]

Z
mx.4:2) == (2 90917 Q)oo(q; @)oo Z

r=—0o0

(_ 1 )rqr(r+1)/2zr

1 — xzq"
LemMma 2.4 [10, Equation (3.3)]. We have

_ 1(q2;q2)§o(q4;q4)20 B G ¢ < g¥th
4 (GRS dDe  2g% D% A T +g™

Finally, to finish the proof of Theorem 1.3, we need the following congruences.

-m(1,4*,¢*)
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LemMma 2.5 [9, Theorems 7.2 and 7.3]. Let

i ; (q q)oo o qrz(n+1)/2
c(n)q’ = — —.
s (%)%~ 1+q

Then
c(B3n+1) =0 (mod 3),
c(In+k)=0(mod7), wherek=2,3,5.

3. Proof of Theorem 1.1
From (1.5) and Lemma 2.3,

N 11 11 (55
w2mg" = = + =(-¢: (@ g0 = 5 + s —2
; 2 2 2 2(q: i(at g%
Invoking (2.1) and (2.3),
- 1 1 (q6;516)20 1 3.2 2
vo(2n)q" = = + — - “Be(=q")" = ¢(=q)°)
nZ:(; A (A R I U i N C))
L1 (@%e0% ( 32N )
By Lemma 2.2,
S 11 (g% » (L@, 3
vo(bn)q" = = + ——(390(—61) : - ¢(—q )),
,ZZ:(; 2 4@ 95k e (4 D%(q% °)s
< 1 (¢:q)
vo(6n +2)g" = — ———1 22 20
Zﬁ 4(¢: D%(q" H)eo
2 (NP | @ De(q% g
X |6¢(=q)” - = +2—— 3.3 )
(45 Do (47 47)(93 ¢")eo
S 1 @R (@ " 4%
S vo6n +4)g" = 5 —L 20 (g 00
oy 4(4: 9" ¢ (4 Do
and
S 11 (gD (@) ) 302 2
vo(bn)q" = = + : “Be(=q")" = p(=q)"),
; 2 4@ 95t dYe (@ DHG% 4o
N 1 ()l (0% 4Peo(q%: 4% 30 >
vo(6n + 2)q" = — : “Be(=q7)" + e(=9)°),
nz::‘, G DN e (@ D2(GP5 6w
N N e R
> vo(on + dyg =320 2T 0
= (4 D (q*: 4o

Applying Lemma 2.1, completes the proof.
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4. Proofs of Theorems 1.3 and 1.4
We first establish the generating function of vy(4n + 3).

Tueorem 4.1. We have

S+ 9 = LD LS @.1)
g U P%ghghs 24
Proor. From (1.5) and Lemma 2.3,
D wo@n+ g" = B(g).
n=0

By [14, Equation (5.2)],
B(g) = -¢"'m(1,¢", ¢).

Applying Lemma 2.4,
sl 1 2; 216 4; 4\3 4; 4 o & 2n(n+1)
Zvo(2n+1)q"“=—(q qzm(z Z)m B (ngs)z q _
pary 4 (P65 ¥ 205565 1+ g

Invoking the identity

1 (g5 (q* g% )%
4 7 2. .2\140,.8 84+4q 2. ,2)10 (4.2)
(@D (@740 (G5 ¢%) (9% 9%)eo

from [7, Lemma 2.2], we see that
iv‘)(“” PSS §CT) Ut P Ut i S Ui/ N it
& 4 (@Y (@pRhghh  2ghghh E 1+
and the desired result follows. O
TraeOREM 4.2. We have

s 2. 2\8

S vo(sn + 37 =20 (4.3)

pary (4 Do

Proor. Substituting (4.2) into (4.1) and extracting those terms from both sides of (4.1)
that involve only the powers ¢*"*!, we obtain

o0 1 () 4. )16
Z vo(8n +3)g”""! = 4 (q4. 6]4)? ' q(qz. qz);’
o @5 9% (@397
which is equivalent to the desired result. O
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Proor oF THeorEM 1.3. From Theorem 4.1 and Lemma 2.5, to prove the desired
results, it suffices to prove the congruences

d(3n+2) =0 (mod 3),
d(in+k)=0(@mod7), fork=23,4,6,

where
2. 2)17

= (979 )0
dn)g" = ————.
; (4 %(q* g%
It is easy to see that
(7 3 (4% 4%
din)q" = . (mod 3)
;{ (@055 dY% (@664 4%
and, from (2.2),
. (q6 q6)4 e 2
Z d(mq ~ G PRGg) Z q" (mod3).
Since n* = 0, 1 (mod 3), we immediately deduce that d(3n + 2) = 0 (mod 3).
Since .
(@5 0)%
T (@ Deld

(-4 P

it follows that
(ql4. ql4)2
(q7; q7)m(q28; ng)oo

Applying Euler’s pentagonal number theorem [5, Equation (1.3.18)],
(7P = Z (—1)"qn(3n+l)/2’

n=—0oo

and since n(3n+ 1)/2=0,1,2,5 (mod 7), we deduce that
dMn+3)=d(In+4)=d(Tn + 6) =0 (mod 7).
This completes the proof. O

>ldng" = (~¢:-g) - (mod 7).
n=0

Proor oF THEOREM 1.4. From (4.3),

)

) ( 10; 10)Oo
Z vo(8n +3)q" = 2(q;: )% (q%: 47, - %
24 (@)%

By Jacobi’s identity [5, page 14],
(q q) (q q )3 Z( l)m(2m+ l)qm(m+l)/2 Z( 1)"(2n+ l)qn(errl)

(mod 5).

Since m(m + 1)/2 can only be congruent to 0,1 or 3 modulo 5, it follows at once
that m(m + 1)/2 + n(n + 1) =4 (mod 5) only if m(m + 1)/2 =3 (mod 5), which
implies that m = 2 (mod 5) and 2m + 1 = 0 (mod 5). Thus, the coefficients of ¢>"**
in (q; 9)2,(¢*; ¢*)2, are all divisible by 5 and vo(40n + 35) = 0 (mod 5). This completes
the proof. O
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