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A general theoretical formalism is developed to assess how base-flow modifications
may alter the stability properties of flows studied in a global approach of linear
stability theory. It also comprises a systematic approach to the passive control of
globally unstable flows by the use of small control devices. This formalism is based
on a sensitivity analysis of any global eigenvalue to base-flow modifications. The
base-flow modifications investigated are either arbitrary or specific ones induced by
a steady force. This leads to a definition of the so-called sensitivity to base-flow
modifications and sensitivity to a steady force. These sensitivity analyses are applied
to the unstable global modes responsible for the onset of vortex shedding in the
wake of a cylinder for Reynolds numbers in the range 47 � Re � 80. First, it is
demonstrated how the sensitivity to arbitrary base-flow modifications may be used
to identify regions and properties of the base flow that contribute to the onset of
vortex shedding. Secondly, the sensitivity to a steady force determines the regions of
the flow where a steady force acting on the base flow stabilizes the unstable global
modes. Upon modelling the presence of a control device by a steady force acting on
the base flow, these predictions are then extensively compared with the experimental
results of Strykowski & Sreenivasan (J. Fluid Mech., vol. 218, 1990, p. 71). A physical
interpretation of the suppression of vortex shedding by use of a control cylinder is
proposed in the light of the sensitivity analysis.

1. Introduction
Many studies have been dedicated to understanding the dynamics of a cylinder

flow for various values of the Reynolds number. In particular it is well known that
at a critical Reynolds number Rec ≈ 47 the flow experiences a Hopf bifurcation from
a steady symmetric state towards a time-periodic non-symmetric state (Provansal,
Mathis & Boyer 1987; Sreenivasan, Strykowski & Olinger 1987; Noack & Eckelmann
1994). A global instability has clearly been identified as responsible for the onset
of the vortex shedding process (Jackson 1987; Zebib 1987) but substantial work is
still devoted to understanding the mechanism for selecting its frequency (Pier 2002;
Barkley 2006; Sipp & Lebedev 2007).

Control of vortex shedding has also received much attention and various passive
and active control techniques have been tested on this flow both experimentally
and numerically. Concerning passive control, Strykowski & Sreenivasan (1990) have
experimentally investigated how a small control cylinder suitably placed in the wake
of the main cylinder alters the vortex shedding. For various diameter ratios of the two
cylinders they determined the regions of the flow where the placement of the control
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cylinder leads to a complete suppression of the phenomenon over a specific range of
Reynolds numbers. They also provided experimental evidence linking vortex shedding
to the onset of a global instability, and the effect of an appropriately positioned control
cylinder on damping of this instability. The same optimal positions were found by
Kim & Chang (1995) and Mittal & Raghuvanshi (2001), from direct numerical
simulations based on finite element formulations, and by Morzynski, Afanasiev &
Thiele (1999), who performed a global stability analysis of cylinder flow in the presence
of a small control cylinder. This study in particular confirmed the role of the control
cylinder in damping the global instability responsible for the shedding process. All
these approaches successfully determined the optimal placement of a control cylinder
to suppress the vortex shedding, but required that various locations of the control
cylinder be tested and either experimental measurements, direct numerical simulations
or global stability analyses be carried out in each case. This paper aims to develope
a more systematic approach for the passive control of vortex shedding, relying on a
theoretical analysis to predict where the control cylinder should be placed to damp
the global instability.

The present analysis is closely related to recent studies which focused, in a global
approach of linear stability theory, on the determination of the wavemaker region, i.e.
the region of the flow where physical mechanisms giving rise to a self-sustained flow
oscillation are active. Chomaz (2005) suggested computing not only the leading direct
global mode, which describes the self-sustained flow oscillation, but also the associated
adjoint global mode. By studying the Ginzburg–Landau model equation, he showed
that the wavemaker region can be identified as the overlapping region between the
direct and adjoint global eigenvectors. More recently Giannetti & Luchini (2007)
have identified the wavemaker region in the case of two-dimensional open flows.
Their approach relies on a structural sensitivity analysis of the two-dimensional
linearized Navier–Stokes operator. It consists of assessing the variations of the
eigenvalue induced by generic structural modifications of this operator. They proposed
modelling the feedback mechanisms triggering the global instability by a specific
structural modification of the perturbation operator: a local force proportional to the
perturbation velocity acting as a momentum source in the perturbation equations.
They identified the wavemaker region as the region where such a localized feedback
induces strong variations of the leading eigenvalue, and showed that it is included
in the overlapping region of the leading direct and adjoint global mode velocities.
Finally, they noticed that the wavemaker region is similar to the region where the
placement of a control cylinder suppresses the vortex shedding in the experiments of
Strykowski & Sreenivasan (1990). This suggests that the presence of a small control
cylinder modifies the flow stability because it induces a structural modification of the
equations at the perturbation level. However the presence of a control cylinder also
modifies the base flow on which the perturbations evolve and thus might alter their
dynamics. This effect has not been taken into account by Giannetti & Luchini (2007).

The present paper puts emphasis on the role of the base flow in the
perturbation dynamics, by quantifying how stability properties are altered by base-
flow modifications. A similar approach has been developed in the case of parallel flows
by Bottaro, Corbett & Luchini (2003) in a local temporal framework and by Hwang
& Choi (2006) in a local spatial framework. The so-called sensitivity to base-flow
modifications concept is defined here in a global framework. In particular arbitrary
base-flow modifications are used to identify the regions and properties of the base
flow that contribute strongly to the instability dynamics. A new sensitivity analysis
called sensitivity to a steady force is also developed, in which specific base-flow
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modifications induced by a steady force acting on the base flow are considered.
Following the precursor work of Hill (1992), this leads to a theoretical approach to
the control of vortex shedding by means of a small control cylinder which relies on
the modelling of the control cylinder by a steady local force at the base-flow level
and not at the perturbation level as in Giannetti & Luchini (2007).

The paper is organized as follows. The theoretical framework is presented in § 2.
It includes the description of the linear flow dynamics in a global framework, the
presentation of the sensitivity to arbitrary base-flow modifications based on the deter-
mination of gradients through adjoint methods, and the presentation of the sensitivity
to a steady force. Since these concepts are not restricted to cylinder flow, the analysis
is derived for a general unspecified open flow. We then focus on cylinder flow and
on its passive control via a small cylinder, which is taken as an application of
these techniques. First, the flow around the main cylinder alone is described in § 3,
together with the numerical procedure used throughout the study. The global stability
analysis identifies the leading global mode and the two sensitivity analyses are then
performed on that global mode. Section 4 describes their results in a general sense, i.e.
by considering arbitrary modifications of the base flow and arbitrary steady forces.
Passive control by means of a small cylinder is specifically investigated in § 5, in which
the sensitivity analysis to a steady force is particularized by modelling the presence
of the control cylinder by a local steady force. The effect of all possible positions of
the control cylinder on vortex shedding is theoretically predicted, and the results
are compared to the experimental measurements of Strykowski & Sreenivasan
(1990). Finally, a more physical interpretation of these results is proposed in § 6
by applying the sensitivity analysis to base-flow modifications to the specific base-
flow modifications induced by the presence of the control cylinder.

2. Theoretical framework
This section is devoted to a description of the theoretical framework used in our

study. As some new concepts are introduced here whose application is general and
not restricted to cylinder flow, the flow configuration is deliberately kept unspecified.

We therefore consider the two-dimensional open flow of a viscous fluid in a closed
domain for which we assume that suitable inlet, outlet and lateral boundaries and
solid walls have been defined. The fluid motion is then described by the velocity
and pressure fields (u,p), which are supposed to obey the unsteady incompressible
Navier–Stokes equations:

∂t u + ∇u · u + ∇p − Re−1 ∇2 u = f , ∇ · u = 0, (2.1)

where the action of a body force f has been taken into account. We use a reference
length L of the configuration and the inlet velocity U∞ (assumed uniform) as length
and velocity scales, so that the Reynolds number of the problem is Re = U∞L/ν, with
ν the kinematic viscosity of the fluid. The velocity components in the streamwise x and
cross-stream y directions are denoted u = (u, v)T where T designates the transpose.
The nonlinear terms are written using the tensorial notation, i.e. (∇u)i,j = ∂xj

ui . The
Navier–Stokes equations (2.1) are completed with the following boundary conditions:
u = (1, 0) at the inlet, an outflow boundary condition pn − Re−1(∇u) · n = 0 at
the outlet, symmetric boundary conditions on the lateral boundaries and no-slip
conditions u = 0 on the solid walls.

We assume that the boundary conditions and the value of the Reynolds number
allow the existence of a steady solution (U, P ) of the Navier–Stokes equation. In
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order to account for the stability of this solution, the flow (u,p) is described as
a superposition of (U, P ) taken as the base flow, and of an infinitesimal unsteady
perturbation (u′, p′). Furthermore, in our analysis the body force f is assumed to
be steady and to act only on the base flow, i.e. f (x, y, t) = F(x, y) = (Fx, Fy)

T . The
steady incompressible Navier–Stokes equations governing the base flow are therefore

∇U · U + ∇P − Re−1 ∇2 U = F, ∇ · U = 0, (2.2)

with the same boundary conditions as for the Navier–Stokes equations. The perturba-
tion is sought in the form of normal modes (u′(x, y, t), p′) = (û, p̂)(x, y) exp[σ t], where
σ is a complex eigenvalue associated with the complex fields (û, p̂). The unsteady
Navier–Stokes equations linearized around the base flow (U, P ) may then be written
as

σ û + ∇û · U + ∇U · û = −∇p̂ + Re−1 ∇2 û, ∇ · û = 0, (2.3)

the associated boundary conditions consisting of the Dirichlet condition û = 0 at the
inlet and the same boundary conditions as for the Navier–Stokes equations for the
other boundaries. In this equation, the base flow is seen to influence the perturbations
via the velocity only, namely by a term for downstream transport of the perturbations
(∇û · U) and by a term related to production of perturbations (∇U · û).

Solutions (û, p̂) of the eigenproblem given by (2.3) together with its associated
boundary conditions constitute the set of linear global modes of the stability problem.
Each mode is associated with a complex eigenvalue σ = λ+iω, whose real part λ is the
growth rate of the mode and whose imaginary part ω is its frequency. We hereafter
consider a particular eigenvalue σ . According to equations (2.3), it is a function of
the base-flow velocity, i.e. σ (U). Moreover according to equations (2.2), the velocity
field U is a function of the steady force F, i.e. U(F). As a consequence the eigenvalue
σ is also a function of F, that is σ (U(F)) = σ (F). Thus it appears that variations of
a given eigenvalue δσ may be investigated with respect to small variations of:

(i) the base flow δU if σ is viewed as a function of U;
(ii) the steady force δF if σ is viewed as a function of F.
The former case defines the analysis of sensitivity to base-flow modifications, and

the latter, the analysis of sensitivity to a steady force.

2.1. Sensitivity to base-flow modifications

The sensitivity analysis of a given eigenvalue to arbitrary base-flow modifications is
first considered. Note that this is an extension to the global framework of a concept
that was originally developed by Bottaro et al. (2003) in a local framework. Let us
consider a particular eigenpair (σ ; û, p̂) associated with the base flow (U, P ), i.e.
(σ ; û, p̂) is a solution of the eigenproblem given by (2.3) together with its associated
boundary conditions. We investigate the variations of the complex eigenvalue δσ with
respect to small-amplitude base-flow modifications δU . Here it is worth emphasizing
that these modifications are generic since they are chosen with an arbitrary form, i.e.
we do not require U + δU to be a steady solution of the base-flow equations (2.2).
The variations δσ and δU are then formally linked through

δσ = (∇Uσ, δU). (2.4)

In this relationship, the gradient ∇Uσ defines the so-called sensitivity to base-flow
modifications, which is a complex vector field since δσ is complex and δU is real. This
expression involves the inner product of two complex vector fields uA and uB which is
defined by (uA, uB) =

∫
Ω
(u∗

A · uB) dΩ , ∗ denoting the conjugate of a complex quantity.
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Variations of the growth rate δλ and frequency δω may similarly be expressed as

δλ = (∇Uλ, δU), δω = (∇Uω, δU), (2.5)

thereby defining the growth rate and frequency sensitivities ∇Uλ and ∇Uω. From
(2.4), these real quantities are seen to be linked to ∇Uσ via ∇Uλ= Re{∇Uσ} and
∇Uω = − Im{∇Uσ}.

In order to derive the sensitivity ∇Uσ associated with the base flow U , we use in
this study a Lagrangian-based approach (Gunzburger 1997) that is classically used
in optimal flow control problems (see for instance Airiau et al. 2003). Details of the
computations are given in Appendix A and show that

∇Uσ = −(∇û)H · û+︸ ︷︷ ︸
∇U,T σ

+ ∇û+ · û∗︸ ︷︷ ︸
∇U,P σ

. (2.6)

Here, H designates the transconjugate and (û+, p̂+) is the adjoint global mode
associated with (û, p̂) which satisfies

σ ∗û+ − ∇û+ · U + (∇U)T · û+ = −∇p̂+ + Re−1 ∇2 û+, ∇ · û+ = 0, (2.7)

with û+ = 0 at the inlet and on the solid walls and symmetrical boundary conditions on
the lateral boundaries. The boundary conditions at the outlet are given in Appendix A.
Note that the following condition is used to normalize the adjoint:

(û+, û) = 1. (2.8)

Comparison of the direct (2.3) and adjoint (2.7) eigenproblems shows that the
transport terms appear with opposite signs, i.e. the adjoint perturbations are convected
upstream while the direct ones are convected downstream, and that the production
term appears in (2.7) with a transpose in the base-flow velocity gradient.

The specific form chosen for equation (2.6) allows further physical interpretation of
the sensitivity ∇Uσ since the two terms on its right-hand side stem from two different
physical origins. Bearing in mind the structure of the stability eigenproblem (2.3), it
can indeed be shown (see the details of the derivation in Appendix A.2) that the
first term, denoted ∇U,T σ , originates from the term for transport of perturbations by
the base-flow ∇û · U while the second, denoted ∇U,P σ , originates from the term for
production of perturbations by the base flow ∇U · û. We therefore respectively call
the two sensitivities ∇U,T σ and ∇U,P σ sensitivity to modifications of the transport
and sensitivity to modifications of the production.

From a physical point of view, ∇Uσ allows us to determine the region of the
flow where the eigenvalue σ is most sensitive to modifications of the base flow.
The properties of the base flow in this region are therefore crucial in determining
the global eigenvalue. The analysis of ∇U,T σ and ∇U,P σ further indicates whether
transport or production processes are responsible for this sensitivity.

For a given base flow U , the procedure for computing the sensitivity of an eigenvalue
σ to base-flow modifications may be summarized as follows:

(a) solve the direct generalized eigenvalue problem (2.3) to select the eigenvalue σ

and the global mode (û, p̂),
(b) solve the adjoint stability problem (2.7) to obtain the adjoint global mode

(û+, p̂+),
(c) normalize the adjoint global mode using (2.8),
(d) compute the sensitivity to base-flow modifications ∇Uσ with (2.6).
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2.2. Sensitivity to a steady force

In this subsection the given eigenvalue σ is viewed as a function of the steady force
F instead of a function of the base flow U . To derive the analysis of sensitivity to
a steady force, we consider small variations δF of the body force F, which induce
variations δU of the base flow through equations (2.2), but which do not need to
be explicitly considered in the present analysis. Similarly to the analysis of § 2.1,
variations of a particular eigenvalue δσ due to small variations δF of the body force
are determined by

δσ = (∇Fσ, δF), (2.9)

where ∇Fσ now defines the so-called sensitivity to a modification of the steady force,
which we hereinafter term sensitivity to a steady force for conciseness. As above, ∇Fσ

is a complex vector field, and the growth rate and frequency sensitivities may also be
respectively defined as ∇Fλ=Re{∇Fσ} and ∇Fω = − Im{∇Fσ}.

The derivation of ∇Fσ again involves a Lagrangian-based approach (detailed in
Appendix A) which yields the following expression:

∇Fσ = U+, (2.10)

where (U+, P +) are the adjoint (complex) variables of the base flow. They satisfy the
adjoint base-flow equations, which consist of a non-homogeneous, non-degenerate,
linear problem:

−∇U+ · U + (∇U)T · U+ − ∇P + − Re−1 ∇2 U+ = ∇Uσ, ∇ · U+ = 0, (2.11)

with U+ = 0 at the inlet and on the solid walls and symmetrical boundary conditions
on the lateral boundaries. The boundary conditions at the outlet are given in
Appendix A. These equations are seen to involve the sensitivity to base-flow
modifications ∇Uσ , determined by equation (2.6). Note that the adjoint base-flow
velocity U+ and thus the sensitivity ∇Fσ are divergence-free fields, unlike ∇Uσ . It
is also worth noting that the adjoint base-flow equations (2.11) are formally close
to the adjoint perturbation equations (2.7). Indeed, we again observe a term related
to the upstream transport of the perturbations by the base flow −∇() · U and an
adjoint production term (∇U)T · (). However a major difference is that equation
(2.11) involves no frequency term σ ∗(), making the linear problem non-degenerate.
Also, the presence of a complex source term equal to ∇Uσ makes it non-homogeneous.

The procedure to compute the sensitivity of an eigenvalue σ to a steady force may
be summarized as follows:

(a) solve the steady Navier–Stokes equations (2.2),
(b) compute the sensitivity to base-flow modifications ∇Uσ with (2.6) as shown in

§ 2.1,
(c) solve the adjoint base-flow equations (2.11) to obtain the adjoint base flow

(U+, P +), that yields the sensitivity ∇Fσ through (2.10).

2.3. Link between the two sensitivity analyses

We now provide a link between the sensitivity analysis to a steady force developed
in § 2.2 and the sensitivity to base-flow modifications presented in § 2.1. We have
already noted in § 2.2 that the source term in the adjoint base-flow equations (2.11)
expresses the sensitivity to base-flow modifications ∇Uσ . It is thus a prerequisite to
the determination of the sensitivity to a steady force. In fact, the role of these adjoint
base-flow equations may be viewed as to particularize the sensitivity analysis from
arbitrary base-flow modifications δU to the specific base-flow modifications induced
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by a steady force δF. For clarity these specific base-flow modifications are hereinafter
denoted δUF .

When a steady force is considered in equations (2.2), the base flow is a function
of this force, i.e. U(F). As a consequence, a small-amplitude modification of the
steady force δF in the flow induces the specific base-flow modification expressed
as δUF = ∇FU · δF, where the linear operator ∇FU solves the following non-
homogeneous non-degenerate linear problem:

∇δUF · U + ∇U · δUF + ∇δP − Re−1 ∇2 δUF = δF, ∇ · δUF = 0, (2.12)

with the same boundary conditions as for the perturbation equations. Variations
of the eigenvalue δσ due to a small-amplitude modification of the steady force δF
have been shown in § 2.2 to be directly related to this force by (2.9). They may
also be determined by applying the analysis of sensitivity to base-flow modifications
not to arbitrary base-flow modifications δU but instead to the specific base-flow
modifications δUF , solutions of (2.12), which are

δσ = (∇Uσ, δUF)

= (∇Uσ, ∇FU · δF). (2.13)

Note that a comparison of (2.9) and (2.13) shows that the linear operator involved
in the adjoint base-flow equations (2.11) corresponds to the inverse of the adjoint
operator of ∇FU . The interest of the analysis of sensitivity to a steady force developed
in § 2.2 compared to the present analysis is that variations δσ due to δF may be
directly determined from knowledge of the sensitivity function ∇Fσ without having
to compute the specific base-flow modifications δUF .

3. Flow configuration and numerical approach
The general formalism developed in the previous section is applied to a specific flow

configuration that is now detailed. We consider a cylinder of diameter D in a uniform
upstream flow of velocity U∞. The flow quantities are governed by the Navier–Stokes
equations (2.1) made non-dimensional with these reference length and velocity scales,
the Reynolds number being then defined as Re = U∞D/ν. The geometry is defined in a
Cartesian coordinate system (x, y), whose origin is located at the centre of the cylinder,
and is shown in figure 1. It is delimited by the cylinder wall Γw and by the external
boundaries, Γi (inlet), Γo (outlet), Γu and Γl (upper and lower boundaries), which

are respectively located at
√

x2 + y2 = 0.5, x = x−∞, x = x+∞, y = y+∞ and y = y−∞.
A no-slip boundary condition u = 0 is applied on Γw and the following boundary
conditions are applied on the external boundaries: Dirichlet boundary conditions
(u, v) = (1, 0) on Γi , outflow boundary conditions p n − Re−1∇u · n = 0 on Γo, and
symmetric boundary conditions (∂yu =0, v = 0) on Γu and Γl .

The numerical approach is based on a finite element method. All the equations
which are solved in the paper are first rewritten in a variational formulation and then
spatially discretized using a mesh composed of triangular elements. The FreeFem++
software (http://www.freefem.org) is used to generate the triangulation with the
Delaunay–Voronoi algorithm. The mesh refinement is controlled by the number
of vertices on the external and internal boundaries. These internal boundaries are
depicted in figure 1 by the dashed and dash-dotted lines and have been introduced
only to control the mesh refinement. In particular, no boundary conditions are applied
on these internal boundaries. The unknown velocity and pressure fields (u, v, p) are
spatially discretized using a basis of Taylor–Hood (P2, P2, P1) elements. All the discrete
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Γi Γo

Γl

Γw

Γu

x–∞

y∞

y2

n2

x2
x∞

y1

x1

n1

ns

x–2 x–1

Figure 1. Mesh structure for the cylinder flow. The cylinder is placed in a rectangular box
(solid line) delimited by the inlet, outlet, upper and lower boundaries. x−∞ = − 110, x∞ =170,
y∞ = 90 and −y∞ stand for their respective locations. The vertex densities on these boundaries
are equal to ns = 2. Two internal rectangular boxes (dashed and dash-dotted lines), denoted by
subscript 1 and 2, are defined to control the refinement of the mesh. Their location is given by
x−1/−2 = − 5/ − 40, x1/2 = 15/100 and y1/2 = 2.5/25. The vertex densities on the boundaries of
these inner boxes are given by n1/2 = 50/25. The vertex density on the cylinder wall is nw =100.
The total number of triangles nt and vertices nv are respectively nt ∼ 375000 and nv ∼ 188 000.

matrices resulting from the projection of the variational formulations onto the basis
of finite elements are constructed with the FreeFem++ software. These matrices are
sparse and their inverses are handled using the UMFPACK library, which consists of
a sparse direct LU solver (see Davis & Duff 1997; Davis 2004).

The nonlinear base-flow equations (2.2) are solved via a Newton–Raphson iterative
method. At each step, a matrix inversion is performed by use of the UMFPACK
library. The spatial discretization of the direct (2.3) and adjoint (2.7) stability problems
results in large-scale generalized eigenvalue problems. They are solved by use of
the ARPACK library (http://www.caam.rice.edu/software/ARPACK) which is based
upon an algorithmic variant of the Arnoldi process called the Implicitly Restarted
Arnoldi Method (see Sorensen 1992). The use of a shift- and-invert strategy enables
eigenvalues to be obtained in the vicinity of a given complex shift. In particular,
the use of a purely imaginary shift enables the eigenvalues of largest real part to
be obtained, which are of interest in hydrodynamical stability problems. Finally the
linear adjoint base-flow equations (2.11) are solved by performing a matrix inversion.

4. Global stability and sensitivity results
We shall now apply the global stability and sensitivity analyses presented in § 2 to

the cylinder flow configuration described in § 3. From now, the cylinder flow referred
to is the unforced cylinder flow which is a solution of the Navier–Stokes equations
(2.1) with f = 0. Similarly, the base flow referred to is the unforced base flow which
is solution of the steady Navier–Stokes equations (2.2) with F = 0.

The cylinder flow is known to become unstable at a critical Reynolds number
Rec ≈ 47. In § 4.1, the stability of the base flow is investigated in the framework
of global stability theory. Results are compared to data available in the literature.
Sensitivity analyses are then performed at the critical Reynolds number Rec for
the leading global mode σ . In § 4.2, results of the sensitivity analysis to base-flow
modifications are described and interpreted to determine where physical mechanisms
giving rise to the global instability are active. In § 4.3, the sensitivity analysis to a
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2
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Figure 2. Cylinder base flow: spatial distribution of the vorticity for the critical Reynolds
number Re =46.8. The dash-dotted line is the dividing streamline delimiting the recirculation
flow. Only a small portion of the computational domain is shown.
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Figure 3. Cylinder flow. (a) Growth rate λ and (b) frequency fs = ω/2π of the leading global
mode as a function of the Reynolds number Re. The critical Reynolds number Rec is shown
by the vertical dashed line.

steady force is performed to predict the placement and optimize the orientation of a
local steady force that aims to stabilize the flow.

4.1. Cylinder base flow and global modes

The steady base flow computed with the technique described above is depicted in
figure 2 for Re =46.8. The spatial distribution of the vorticity Ω = ∂xV − ∂yU is
antisymmetric with respect to the centreline y = 0. Largest values of the vorticity are
found on the upstream cylinder surface. Downstream, two shear layers displaying
vorticity of opposite sign detach from the cylinder surface, delimiting a symmetric
recirculation bubble (dash-dotted line in all the figures of this paper). The length of
this recirculation region, measured from the rear stagnation point, is L = 3.2 and
compares well with the literature.

The global stability of the base flow is investigated by looking for the leading global
mode (û, p̂), defined as the global mode of largest growth rate. The growth rate λ
and frequency fs = ω/2π of the leading global mode are plotted as a function of the
Reynolds number, respectively in figures 3(a) and 3(b). The growth rate crosses the real
axis at the critical Reynolds number Rec = 46.8 ± 0.05 when the base flow becomes
unstable. This value of the critical Reynolds number is in good agreement with
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Figure 4. Leading global mode at the bifurcation Rec = 46.8. Real part of (a) the streamwise
velocity Re(û) and (b) the cross-stream velocity Re(v̂). The dash-dotted line is the dividing
streamline. Only a small portion of the computational domain is shown.
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Figure 5. Leading adjoint global mode at the bifurcation Rec =46.8. Real part of (a) the
streamwise velocity Re(û+) and (b) the cross-stream velocity Re(v̂+). The dash-dotted line is
the dividing streamline. Only a small portion of the computational domain is shown.

global stability results of Jackson (1987), Barkley (2006) (Rec ∼ 46) and Giannetti &
Luchini (2007) (Rec ∼ 46.7) and with the threshold of 47 observed in experiments (see
Mathis, Provansal & Boyer 1984; Provansal et al. 1987; Williamson 1996). The small
discrepancies between the present and existing results are probably due to different
blockage effects. At this Reynolds number, the frequency given by the global stability
analysis is equal to fs, c = ωc/(2π) ∼ 0.116, which is in good agreement with the results
of Giannetti & Luchini (2007) (fs, c ∼ 0.118). Note that the global stability analysis
of the base flow fails to capture the frequency of the vortex shedding for Reynolds
numbers above Rec (for further details, see Barkley 2006; Sipp & Lebedev 2007).

The leading global mode is depicted in figure 4 by the real part of its velocity field.
The mode is antisymmetric and propagates downstream, since the real and imaginary
parts of the velocity field are nearly in spatial quadrature (not shown here). The
y-averaged energy of the perturbation grows spatially downstream and reaches a
maximal value far downstream from the cylinder, at the station x ≈ 25. The adjoint
of the leading global mode (û+, p̂+) is shown in figure 5, with the same convention as
for the direct mode. The streamwise (figure 5a) and cross-stream (figure 5b) velocities
have the same symmetry as the direct global mode. They exhibit spatial oscillations
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Figure 6. Sensitivity to a local feedback of the bifurcating global mode. The overlapping
region, defined as the product of the direct and adjoint velocity magnitudes ||û|| · ||û+||, is
shown for the critical Reynolds number Rec = 46.8.

but upstream from the cylinder. The maximum value of the adjoint velocity magnitude
is reached close to the cylinder, at the station (x = 0.34, y = 0.59). The downstream
and upstream localization of the direct and adjoint global modes result from the
non-normality of the linearized Navier–Stokes equations arising from the opposite,
i.e. downstream and upstream, transport of the perturbations by the base flow in the
direct and adjoint linear operators (see Chomaz 2005).

Giannetti & Luchini (2007) have introduced the concept of a wavemaker in
the global framework by identifying regions of the flow where generic structural
modifications of the stability problem produce the strongest drift of the leading
eigenvalue. To determine this wavemaker region in the flow, they have studied
variations of the leading eigenvalue due to the existence of a spatially localized
feedback in the momentum equations. The structural modification of the stability
problem consists of introducing into equations (2.3) a force f̂ (x, y) proportional to
the global mode velocity û. If the feedback process is assumed to be localized at the
station (x0, y0), it is then mathematically described by

f̂ = C0δ(x − x0, y − y0)û, (4.1)

where C0 is a matrix operator and δ(x − x0, y − y0) is the Kronecker symbol.
Giannetti & Luchini (2007) have shown that

|δσ (x0, y0)| � ||C0|| · ||û(x0, y0)|| · ||û+(x0, y0)|| (4.2)

if the adjoint global mode is normalized with (2.8). They then argued that the leading
eigenvalue is sensitive to a local feedback only in the overlapping region of the direct
and adjoint global modes. In figure 6 the product of the magnitude of the direct
and adjoint velocities ||û|| · ||û+|| is plotted. This figure recovers precisely the results
of Giannetti & Luchini (2007) and thus validates the present computations. The
approach of the present paper follows their line of thought, but puts more emphasis
on the role of the base flow in the perturbation dynamics.

4.2. Sensitivity to base-flow modifications

We now consider structural modifications of the stability problem arising from base-
flow modifications and compute the sensitivity to base-flow modifications ∇Uσ defined
in equation (2.6) for the critical Reynolds number Rec. The growth rate sensitivity
∇Uλ is plotted in figure 7(a) and the frequency sensitivity ∇Uω in figure 7(b). The
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Figure 7. Sensitivity to base-flow modifications ∇Uσ of the leading eigenvalue σ for the
critical Reynolds number Rec = 46.8. Spatial distribution of (a) the growth rate sensitivity
∇Uλ and (b) the frequency sensitivity ∇Uω. The magnitude of the growth rate and frequency
sensitivities is visualized by colours and their orientation by arrows.

sensitivities ∇Uλ and ∇Uω are two-dimensional real vector fields represented both
by streamlines, giving the local orientation of the sensitivity fields, and by colours
indicating their magnitude. Far from the cylinder the sensitivities decay to zero due
to the spatial separation of the direct and adjoint global modes. Highest magnitudes
are reached inside the recirculation region, close to the rear stagnation point for the
growth rate sensitivity, and further downstream for the frequency sensitivity. Now,
let us consider an arbitrary base-flow modification δU that, anywhere in the flow,
is oriented in the same direction as the growth rate sensitivity (see figure 7a). The
variation of the growth rate is then positive (δλ> 0) which indicates a destabilization
of the flow. According to figure 7(a), an increase of the backflow velocity in the
recirculation bubble, for instance, thus has a destabilizing effect. The effect of such
an increase of the backflow velocity on the frequency variation is then given by
examining the frequency sensitivity. According to figure 7(b) it results in a decrease
of the frequency since δU is oriented in the opposite direction to the frequency
sensitivity.

We note that the sensitivity to base-flow modifications developed in the present
paper (see figure 7) identifies regions of the flow different from the wavemaker region
introduced by Giannetti & Luchini (2007) (see figure 6): the downstream part of
the recirculation bubble for the former, and the upstream part of the recirculation
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Figure 8. Sensitivity to base-flow modifications of the growth rate ∇Uλ for the critical
Reynolds number Rec = 46.8. This sensitivity function is decomposed into (a) a sensitivity
function to modifications of the production ∇U,P λ and (b) a sensitivity function to modifications
of the transport ∇U,T λ . The magnitude of the sensitivity functions is visualized by colours
and their orientation by arrows.

bubble for the latter. The link between the present analysis and the identification of
the wavemaker region remains to be specified.

The global behaviour of a flow is generally viewed as the result of a competition
between mechanisms of production and mechanisms of transport of perturbations
by the base flow (see Huerre & Monkewitz 1990). In the local stability theory,
this competition has been formalized via the concept of convective and absolute
instabilities. Locally, if the production of a perturbation dominates its transport by
the base flow, the flow is said locally absolutely unstable. The existence of a global
instability is then conditioned to the presence of an absolutely unstable region with
a finite spatial extent (see Chomaz, Huerre & Redekopp 1988). It turns out that
this distinction between production and transport of perturbations appears naturally
in the present sensitivity analysis. Indeed, as seen in equation (2.6), the sensitivity
to base-flow modifications ∇Uσ is composed of a term measuring the sensitivity
to modifications of the transport ∇U,T σ and a term measuring the sensitivity to
modifications of the production ∇U,P σ . Figure 8 shows this decomposition for the
leading eigenvalue σ . The sensitivity to modifications of production ∇U,P σ (resp.
transport ∇U,T σ ) is depicted in figure 8(a) (resp. figure 8b). The spatial distribution
of their respective magnitudes is similar, but highest values are observed for the
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sensitivity to modifications of production. This indicates that the sensitivity of the
eigenvalue is predominantly linked to modifications of the production mechanisms.
Of particular interest is to compare the relative orientation of the sensitivity fields
in the two figures. In the recirculation region, both sensitivity fields have the same
orientation, whereas in the outer region, they are opposite to each other. For instance,
let us consider an increase of the base-flow velocity in the outer region. It corresponds
to a base-flow modification δU oriented downstream. Such a base-flow modification
is then oriented in the same direction as the sensitivity to production (see figure 8a),
and therefore contributes to a destabilization via the production mechanism (δλ> 0).
Now, according to figure 8(b), the same δU is oriented in the opposite direction
to the sensitivity to transport and therefore contributes to a stabilization via the
transport mechanism (δλ< 0). As a consequence, in the outer region where the relative
orientation of the sensitivity functions is opposite, the mechanisms of production and
transport are opposing. And inversely, in the recirculation region where the sensitivity
functions have same orientation, the mechanisms of production and transport
cooperate.

The sensitivity analysis to base-flow modifications is appropriate to theoretically
determine regions and properties of the base flow that play a role in the onset
of vortex shedding behind the cylinder. To know where and how the base flow
should be modified to stabilize the leading global mode is a first step in controlling
the flow. However, arbitrary base-flow modifications are not physically relevant and
this analysis does not answer the question of how to produce ‘physical’ base-flow
modifications that would stabilize the flow.

4.3. Sensitivity to a steady force

We are now interested in the stabilization of cylinder flow by use of a steady force
that is assumed to only modify the base flow. To that end, the sensitivity analysis
to a steady force, presented in § 2.2, is applied to the leading eigenvalue σ . Note
that, since the cylinder base flow is solution of the steady Navier–Stokes equations
with F = 0, the steady force is denoted δF in agreement with the general formalism
developed in § 2. We recall that, thanks to the sensitivity analysis to a steady force,
base-flow modifications induced by δF do not need to be explicitly computed in order
to determine the eigenvalue variations δσ .

Figure 9 shows the sensitivity to a steady force ∇Fσ of the leading eigenvalue
σ computed for the critical Reynolds number Rec. The spatial distributions of
the growth rate ∇Fλ and frequency ∇Fω sensitivities are respectively depicted in
figures 9(a) and 9(b). Three regions in the vicinity of the cylinder and extending a
few diameters downstream may be identified: the separation region that, from now
on, refers to the region in the close vicinity of the separation point on the cylinder,
the recirculation region, delimited by the dividing streamline, and the outer region
corresponding to the region half a diameter in size surrounding the recirculation
region. Two strong local maxima of the growth rate sensitivity to a steady force (see
figure 9a) may be distinguished. The first is located in the separation region and the
second in the recirculation region, close to the centreline. A weaker local maxima
is located in the outer region. Let us consider a steady force of unit magnitude
applied locally in the flow. A local force oriented in the opposite direction to the
arrows plotted in figure 9(a) induces a negative variation of the growth rate (δλ< 0)
which is proportional to the local magnitude of the sensitivity function. Therefore,
in the separation and recirculation regions, a local force is stabilizing when oriented
downstream. The opposite is true in the outer region. Since, as shown in figure 7(b),
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Figure 9. Sensitivity to a steady force ∇Fσ of the leading eigenvalue σ for the critical
Reynolds number Rec = 46.8. Spatial distribution of (a) the growth rate sensitivity ∇Fλ and
(b) the frequency sensitivity ∇Fω. The magnitude of the growth rate and frequency sensitivities
is visualized by colours and their orientation by arrows.

the frequency sensitivity function is oriented downstream everywhere in the flow, a
stabilizing local force is associated with an increase of the frequency in both the
separation and recirculation regions, and with a decrease of the frequency in the
outer region. Note that if a local force had been used here to interpret the sensitivity
maps seen in figure 9, the present approach would also enable prediction of whether
a non-local force has a stabilizing or destabilizing effect.

5. Sensitivity analysis and passive control of cylinder flow
Strykowski & Sreenivasan (1990) have experimentally investigated how a small

control cylinder appropriately placed in the wake of the main cylinder could alter
or even suppress vortex shedding. Supposing that the appearance of the vortex
shedding was linked to a global instability they proposed an experimental estimation
of its temporal growth rate through local measurements of the velocity fluctuations,
denoted ar . They showed that suppression of the vortex shedding was correlated with
negative temporal growth rates. For a control cylinder whose diameter d is ten times
smaller than the main cylinder, i.e. d = 0.1, they determined the locus of all points in
the (x, y)-plane corresponding to zero temporal growth rate measurements (ar = 0).
Figure 10, obtained from their experimental results, depicts, for various values of the
Reynolds number, the regions of finite spatial extent within which the placement of
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Figure 10. Results of passive control by Strykowski & Sreenivasan (1990). A control cylinder
10 times smaller than the main cylinder is placed at various locations of the flow. For each
location of the control cylinder and for various Reynolds numbers, the growth rate ar of the
perturbations is measured. Contours where the growth rate is nil (ar = 0) are represented for
each Reynolds number.

the control cylinder suppresses the vortex shedding. For a Reynolds number close
to the critical Reynolds number (Re = 48), the vortex shedding is suppressed if the
control cylinder is placed either in the outer region or inside the recirculation region.
When the Reynolds number is increased, the stabilizing region inside the recirculation
region vanishes and the spatial extent of the stabilizing region inside the outer region
is reduced. Note that the vortex shedding is never suppressed if the control cylinder
is located in the separation region.

In this section, we attempt to retrieve these results using the sensitivity analysis
to a steady force. We propose to model the presence of the small control cylinder
by a point source of momentum f in the Navier–Stokes equations (2.1), applied
at the location of the control cylinder centre (x0, y0). First, note that, whatever the
position of the control cylinder, its wake is steady due to the low Reynolds number
based on the control cylinder diameter and the local velocity of the base flow. The
force exerted by the flow on the control cylinder is therefore steady and may be
characterized in direction and intensity using a low-Reynolds-number model. By the
action and reaction principle, the control cylinder exerts a force of the same strength
but of opposite direction on the flow. The presence of this force in the momentum
equations governing the base flow simulates the presence of the control cylinder. If
the diameter of the control cylinder is sufficiently small, such a force may be localized
at the station (x0, y0) where the control cylinder is placed. The effect of a control
cylinder on the flow stability can now be investigated using the sensitivity analysis to
a steady force.

5.1. Sensitivity for a Reynolds number close to the bifurcation: |Re − Rec| � 0.1

The control of the unsteady wake is first investigated at the critical Reynolds number
Rec = 46.8 ± 0.05. The introduction of the control cylinder at (x0, y0) into the flow is
modelled by a steady force localized at the same station. This force is applied to the
unforced base flow, solution of equations (2.2) with F = 0, and is therefore denoted
δF according to the general formalism developed in § 2.2. For simplicity, this steady
force is first considered to be proportional to the square of the steady velocity, i.e.

δF(x, y) = −α ||U || U δ(x − x0, y − y0), (5.1)
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Figure 11. Variations of (a) the growth rate δλ/α = − ∇Fλ(x0, y0) · U(x0, y0) and (b) the
frequency δω/α = − ∇Fω(x0, y0) · U(x0, y0) as a function of the location of the steady force
modelled by equation (5.1). Results are given for the critical Reynolds number Re = 46.8.

where α is a positive coefficient which is assumed small in this section, 0 <α 	 1.
Effects of nonlinearities, i.e. values of α of unit order, are explored in Appendix B.

Using the force modelled in equation (5.1), variations of the growth rate and
frequency may be derived from equations (2.5). We obtain

δλ(x0, y0) = −α || U(x0, y0)|| ∇Fλ(x0, y0) · U(x0, y0), (5.2)

δω(x0, y0) = −α || U(x0, y0)|| ∇Fω(x0, y0) · U(x0, y0). (5.3)

These variations are proportional to the amplitude parameter α and depend on
the scalar product of the sensitivities to a steady force with the base-flow velocity.
Since the base flow is marginally stable (λ≈ 0), δλ< 0 (resp. δλ> 0) corresponds to
a stabilization (resp. destabilization). Figure 11 is a mapping of the variations of
the leading eigenvalue induced by such a force divided by the amplitude parameter,
i.e. δλ(x0, y0)/α and δω(x0, y0)/α. To each spatial position (x0, y0) of the force is
associated the resulting variations of the growth rate (figure 11a) and frequency
(figure 11b). Figure 11(a) shows that forcing the base flow in the separation region
has a destabilizing effect (δλ> 0) whereas forcing the base flow in the recirculation
region or in the outer region has a stabilizing effect (δλ< 0). Figure 11(b) shows
that the force tends to decrease the frequency (δω < 0) for almost every position of
the control cylinder, the strongest effect being obtained in the separation region. A
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weak increase of the frequency is observed (δω > 0) only if the force is located in the
recirculation region.

These results are in qualitative agreement with the experimental results of
Strykowski & Sreenivasan (1990) obtained for a Reynolds number close to the
bifurcation. Comparing figure 11(a) with figure 10 shows that stabilizing and
destabilizing regions are well reproduced for these Reynolds numbers. It is found
that the outer and recirculation regions are stabilizing, in agreement with the results
given by the experimental study at Re = 46.2. Also, the separation region is found
to be destabilizing, which explains why Strykowski & Sreenivasan (1990) have not
observed the suppression of the vortex shedding with a control cylinder placed in this
region. In fact, the present analysis suggests that this result is not due to a lack of
sensitivity (see figure 9a) but rather to the relative orientation of the force and the
sensitivity function, which are both oriented upstream, so that δλ> 0. A stabilizing
effect (δλ< 0) would have been obtained if the force was oriented downstream, but
introducing a control cylinder into the flow at this location cannot produce such a
force, since a cylinder only produces drag.

5.2. Sensitivity for higher values of the Reynolds number: Re >Rec

In an attempt to quantitatively reproduce the experimental results for higher values
of the Reynolds number Re > Rec, the question of the amplitude of the force has
to be addressed carefully. Since the growth rate λ(Re) of the leading global mode
of the unforced base flow increases with the Reynolds number, as seen in figure 3,
the sign of the growth rate variation δλ(Re) induced by a force is not enough to
determine whether the flow is stabilized or not. In fact, the amplitude of the growth
rate variation should at least be equal to |δλ| > λ(Re) to conclude that the force
stabilizes the flow. Since, in the sensitivity analysis, |δλ| is directly proportional to
the amplitude of the force, the latter should accurately be modelled to achieve valid
predictions. To this end, the force exerted on the base flow by the control cylinder
of diameter d , placed at the location (x0, y0), is now modelled as the opposite of the
drag force exerted on a cylinder of same diameter embedded in an upstream uniform
flow of velocity U(x0, y0). It is given by

δF(x, y) = − 1
2
dCD(Red)||U(x0, y0)||U(x0, y0)δ(x − x0, y − y0), (5.4)

where the drag coefficient CD(Red) is a function of the local Reynolds number
Red = ||U(x0, y0)||dRe. Note that the above expression is dimensionally correct since
the Dirac function is inversely proportional to a surface. Now we need to accurately
determine the drag coefficient of a cylinder flow when the local Reynolds number
is in the range 1 � Red � 10, which are characteristic values of the local Reynolds
numbers in the experiment of Strykowski & Sreenivasan (1990) for d = 0.1. To this
end the drag coefficient is expressed by the analytical law

CD(Red) =
1

Red(a + b ln(Red))
(5.5)

where a = 0.0987 and b = − 0.0627. These values have been determined by
interpolation on values of the drag coefficient obtained through base-flow calculations
of cylinder flows in the range of local Reynolds number mentioned above. Given
expression (5.5) for the drag coefficient and the dependence of Red on the base-flow
velocity, the drag force (5.4) is not proportional to the square of the base-flow velocity,
as expected for this range of Reynolds number.
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Figure 12. Contours where the linear estimation of the growth rate is nil, i.e.
λ(Re) + δλ(Re) = 0, when the local force expressed by (5.4) is used to model the presence
of the cylinder. Values of the Reynolds number are indicated in the figure. Parameter setting:
d = 0.1

The amplitude of the modelled force given by (5.4) and (5.5) is no longer
infinitesimal as in the previous subsection. The induced base-flow modifications
may thus become large enough to invalidate the assumption of linearity underlying
the sensitivity analysis. In this case, the base-flow modifications which are taken into
account by this analysis are only a linear approximation of the base-flow modifications
induced by the force (see equation (2.12)). The growth rate variation determined by
means of this analysis is therefore a linear estimation of the true nonlinear growth
rate variation. The latter is computed in Appendix B where the question of how the
nonlinearities alter the results of the sensitivity analysis is addressed. Fortunately, it
turns out that the effect of the nonlinearities does not invalidate the present linear
approach.

Regions of the flow where the force modelled by equation (5.4) suppresses the
instability are determined as follows. The unforced base flow U(Re) and the growth
rate λ(Re) of the leading global mode are successively computed for various Reynolds
numbers. The growth rate sensitivity analysis to a steady force is then carried out
as described in § 2.2 for each value of the Reynolds number Re: we determine the
sensitivity of the growth rate ∇Fλ and the associated variation of the growth rate
δλ(Re) = (∇Fλ, δF) with δF given by (5.4). The growth rate variation δλ(Re) term is
then added to the unforced growth rate λ(Re) to finally obtain a linear estimation
of the controlled growth rate λ(Re) + δλ(Re). Figure 12 reports for several Reynolds
numbers the loci of all points in the (x, y)-plane corresponding to λ(Re)+ δλ(Re) = 0.
It should be compared with the experimental results of Strykowski & Sreenivasan
(1990) given in figure 10. The patterns in these two figures are very similar, indicating
that the sensitivity analysis predicts well the regions of the flow where the placement of
a control cylinder suppresses the instability. All the features described at the beginning
of this section are retrieved. For Re = 48, the existence of the two stabilizing regions,
observed in figure 10, is reproduced well. When the Reynolds number is increased,
the spatial extent of the stabilizing region in the outer region is seen to be reduced,
in accordance with the experimental observations. Also the stabilizing region in the
recirculation region vanishes and the spatial extent of the stabilizing outer region
tends to shrink towards a region close to the cylinder. However, we note some
differences with the experimental results. First, the curves obtained for Reynolds
numbers Re =48 and 50, exhibit concavities quite different, in the outer region, from
the experimental curves, leading to predictions of a larger stabilizing region. Secondly,
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for Reynolds numbers, Re =55 and 60, the stabilizing region is smaller than in the
experiment, and for larger Reynolds numbers it vanishes. As shown in Appendix B,
the linear estimation of the growth rate variation underestimates the true nonlinear
growth rate variation, which may explain why the predicted stabilizing regions are
smaller for large Reynolds numbers. But this argument cannot explain why the
predicted stabilizing regions are larger for Reynolds numbers close to Rec. In fact,
introducing a control cylinder in the flow modifies not only the base-flow equations
but also the perturbation equations, since the velocity of the perturbations vanishes
on the wall of the control cylinder. We believe that this effect, which has not been
assessed by the present analysis, might explain why the extent of the stabilizing region
is overestimated.

6. Physical interpretation of the stabilization for a Reynolds number close
to the bifurcation: Re = Rec

Strykowski & Sreenivasan (1990) have argued that the control cylinder has a
stabilizing effect because it weakens the shear layer behind it by spreading out the
velocity gradient over a larger distance. As a consequence the optimal placement of
the control cylinder to suppress the vortex shedding should be close to the locus of
maximum vorticity of the flow without control, because the reduction of the velocity
shear would then be maximum. This physical interpretation is now discussed in some
detail in the light of the sensitivity analysis presented in this paper. This approach
has enabled us to predict the optimal placement of a small control device using
the sensitivity to a steady force. Base-flow modifications induced by the force were
not explicitly computed. To give a physical interpretation of the stabilizing effect of
the control cylinder, it is proposed to compute these specific base-flow modifications
and to analyse their effect on the stability problem using the sensitivity to base-flow
modifications, as described in § 2.3.

6.1. Analysis of the base-flow modifications induced by the local steady force

We choose to analyse the case presented in § 5.1 where a drag force given by (5.1)
and applied at the station (x0, y0) = (1.2, 1) has a stabilizing effect on the flow. We
recall that Re = 46.8 and that the position of the force corresponds to the station
where the largest stabilization of the flow is obtained (see figure 11a). The specific
base-flow modifications δUF induced by the force δF are given by δUF = ∇FU · δF
and may be determined by solving the base-flow equations linearized around the
unforced base flow (2.12). Note that the local force δF given in equation (5.1) is
numerically approximated by a Gaussian function centred at (x0, y0). Also, to simplify
the notation, we set α = 1, keeping in mind that the force δF is of small amplitude.
The computed base-flow modifications are depicted in figure 13. The two-dimensional
spatial distribution of the streamwise velocity δUF is plotted in figure 13(a). The
largest magnitudes of this velocity occur in the vicinity of the station where the force
is applied. However, we observe that velocity modifications remain significant far
from this application point, thus confirming that a local force has a non-local effect
on the base flow. The force induces a strong decrease of the velocity downstream
from its application point, and a slight increase of the velocity in the rear part
of the recirculation region. These base-flow modifications are more clearly seen in
figures 13(b) and 13(c) that respectively depict velocity and vorticity profiles on the
cross-streamline x = 2. In these figures, the solid and dashed lines respectively refer to
the base flow and to its modifications. We observe that the velocity decreases in the
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Figure 13. Specific base-flow modifications induced by a force modelled by equation (5.1)
with α = 1 and located at the station (x0 = 1.2, y0 = 1.0). The Reynolds number is close to the
bifurcation: Re = 46.8. (a) Spatial distribution of the streamwise velocity δUF . (b) Velocity and
(c) vorticity profiles along the cross-streamline x = 2. The base flow is depicted by the solid
lines and its modifications by the dashed lines.

high-speed part of the upper shear layer and increases in the low-speed part, as shown
by the arrows in figure 13(b). This tends to reduce the magnitude of the velocity shear
in the upper shear layer, the largest reduction occurring where the shear magnitude
is maximal in the base flow (see arrows in figure 13c).

As outlined in § 2.3, the growth rate variation induced by such a force may now be
assessed by applying either the sensitivity analysis to a steady force (see equation (2.9))
or the sensitivity to base-flow modifications (see equation (2.13)). The former case is
denoted δλF , the latter δλU . Results are reported in table 1 and show that the relative
difference between these growth rate variations is less than 1%. The equivalence of
the two sensitivity analyses is thus validated.

6.2. Analysis of the stabilization mechanism in terms of base-flow modifications

In this section, we analyse the contribution to the global growth rate variation δλ of
the specific base-flow modifications δUF induced by the local force δF. Recalling that
δλ is obtained by integration over the space ∇Uλ(x, y) · δUF(x, y) (see equation (2.5)),
we analyse the integrand to identify the regions in space which are responsible for
the stabilization of the global mode. Figure 14(a) depicts the spatial distribution of
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δλF δλU δλU,T δλU,P δλU,T ot

−0.01227 −0.01233 0.00873 −0.021061 −0.01234

Table 1. Evaluation of the leading growth rate variation δλ induced by a force modelled by
equation (5.1) with α = 1 and located at the station (x0 = 1.2, y0 = 1.0). The Reynolds number
is close to the bifurcation: Re = 46.8. δλF and δλU have been obtained respectively with the
sensitivity to a steady force and the sensitivity to base-flow modifications. δλU,T and δλU,P are
evaluations of the contribution arising respectively from modifications of the transport and
production, and δλU,T ot = δλU,T + δλU,P is the sum of these two contributions.
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Figure 14. Spatial distribution of the local contributions yielding the global growth rate
variation δλ. (a) Representation of the integrand ∇Uλ(x, y) · δUF(x, y). δλ is equal to the
integration over space of this quantity. This integrand may then be decomposed into a
part related to (b) transport, i.e. ∇U,T λ(x, y) · δUF(x, y) and a part related to (c) production
of perturbations, i.e. ∇U,P λ(x, y) · δUF(x, y). The force is modelled by equation (5.1) with
α = 1 and is located at the station (x0 = 1.2, y0 = 1.0). The Reynolds number is close to the
bifurcation: Re =46.8.

this integrand, i.e. ∇Uλ · δUF . At a local station (x, y), a positive (resp. negative) value
of this quantity means that the local base-flow modifications δUF(x, y) contribute to
the destabilization (resp. stabilization) of the global mode. In the close vicinity of
the application point of the force, where the strongest modifications of the base flow
are observed (see figure 13), the contribution to the global growth rate variation is
weak. This proves that the stabilization of the flow induced by the force is not due
to base-flow modifications in the close vicinity of its application point, but rather
to modifications of the base flow occurring further on. Several regions contributing
either to a stabilization or to a destabilization are visible in figure 14(a). This figure
indicates the complex effect of the force on the variation of the growth rate and also
suggests that the stabilizing effect of the force may not be captured by performing
only a local stability analysis. In fact, three large regions may be distinguished
in figure 14(a): the region extending downstream of the application point of the
force that weakly contributes to the destabilization of the global mode, the region
below this application point which strongly contributes to its destabilization and the
large blue region extending to the rear of the recirculation bubble which strongly
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contributes to its stabilization. It turns out that the dominating contribution is the
stabilizing contribution, thus identifying the rear of the symmetrical recirculation
bubble as responsible for the stabilizing effect of this force. In fact, the weak base-
flow modifications that occur in this region (see figure 13a) strongly contribute to
stabilizing the global mode, because the magnitude of the sensitivity to base-flow
modifications is large in this region (see figure 7a). It is striking to note that the
region downstream of the application point of the force, where largest base-flow
modifications occur, contributes to a destabilization. This statement is opposite to the
physical interpretation proposed by Strykowski & Sreenivasan (1990).

6.3. Analysis of the stabilization mechanism in terms of modifications of the transport
and production mechanisms

To further explore the mechanisms that stabilize the flow, the global growth rate
variation is decomposed as δλU = δλU,T + δλU,P , where each term is computed by
using the decomposition of the sensitivity presented in equation (2.6). δλU,T measures
the variation due to modifications of the transport and δλU,P measures the variation
due to modification of the production. Results, reported in table 1, show that δλU,P < 0
and δλU,T > 0. The overall effect of modification of the production is thus stabilizing,
whereas the overall effect of modification of the transport is destabilizing. In other
words, the introduction of a control cylinder severely weakens the production of
perturbations (δλU,P < 0) while the mean downstream convection of perturbations by
the base flow slows down slightly (δλU,T > 0). It may be claimed that modification of
the production mechanisms is responsible for the stabilizing effect of the force.

The projection of the base-flow modifications onto the growth rate sensitivity to
transport, i.e. ∇U,T λ(x, y) · δUF(x, y), is plotted in figure 14(b). Figure 14(c) shows the
growth rate sensitivity to production, i.e. ∇U,Pλ(x, y) · δUF(x, y). These quantities are
respectively called the contributions to the growth rate variation due to the local
modifications of transport and production. The similarity of the patterns seen in
figures 14(a) and 14(c) is striking and indicates, again, that the local contribution is,
almost everywhere, dominated by the local production effect.

Let us first focus on the rear part of the recirculation region, where it is recalled
that both the backflow velocities and the velocity shear are reduced. In this region, by
comparing figures 14(b) and 14(c), it is clear that both modifications of the transport
and modifications of the production have a stabilizing effect. In fact, the reduction
of the production of perturbations by the base flow, due to the decrease of the
velocity shear, is mainly responsible for the stabilizing effect. And the increase of the
downstream transport contributes only little to the stabilization.

We now examine the region downstream of the application point of the force. It is
recalled that strong base-flow modifications occur in this region characterized by
a decrease of both the streamwise velocity and the velocity shear. Examining
figures 14(b) and 14(c) shows that modification of the transport and modification
of the production have opposite effects, destabilizing for the former and stabilizing
for the latter. The destabilizing effect is attributed to the reduction of the downstream
transport of perturbations by the base flow, whereas the stabilizing effect is due to the
reduction of the production mechanisms induced by the decrease of the velocity shear.

Finally, as proposed by Strykowski & Sreenivasan (1990), the control cylinder
located at the optimal station (x0, y0) = (1.2, 1) induces a stabilization of the flow
mainly because of the reduction of the shear strength that diminishes the production
mechanisms. But it is the reduction of the shear in the rear part of the recirculation
region and not in the region downstream of the application point of the force which
is responsible for the stabilization of the flow. In other words, the stabilization is due
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to the weak increase of the velocity in the low-speed part of the shear layer, and not
to the strong decrease of the velocity in the high-speed part of the shear layer.

7. Conclusion
In the present paper we have developed sensitivity analyses that aim to predict

variations of the eigenvalue of global modes. When these variations result from
arbitrary base-flow modifications, the sensitivity analysis is called sensitivity to base-
flow modifications. When these variations result from specific base-flow modifications
induced by a steady force, the sensitivity analysis is called sensitivity to a steady
force. Both sensitivity analyses are based on the evaluation of gradients through
adjoint methods. The sensitivity to base-flow modifications is given by introducing an
adjoint stability problem and the sensitivity function is then given as the sum of two
terms that depend on the direct and adjoint global modes. These two terms represent
the sensitivity of the eigenvalue to modifications of the transport and production
of perturbation mechanisms due to the base-flow modifications. The sensitivity to
a steady force is given by introducing, in addition to the sensitivity to base-flow
modifications, an adjoint base-flow problem which is forced by a source term equal
to the sensitivity to base-flow modifications. These adjoint base-flow equations enable
us to focus on base-flow modifications arising from a steady force. The sensitivity
function is then simply the adjoint base-flow velocity.

The sensitivity analyses have then been applied to cylinder flow. For a Reynolds
number close to the critical Reynolds number, the sensitivity to base-flow modi-
fications has been used to identify the region where local base-flow modifications
produce the largest eigenvalue variations. In these regions, the respective contributions
of transport and production of perturbations by the base flow have been analysed,
thus identifying how they contribute to the onset of global instability.

The sensitivity analysis to a steady force has enabled us to determine where and
in which directions a steady force should be applied to induce the largest negative
growth rate variations. A local steady force may be created locally in the flow by
the introduction of a small control cylinder which exerts a force on the base flow
which is opposite to its drag. A model of a local steady force is then provided to
model the presence of such a control cylinder. By means of the sensitivity to a steady
force, positions of the control cylinder that stabilize the flow have been predicted
and compared to the experimental results of Strykowski & Sreenivasan (1990). The
accuracy of the prediction validates the choice of modelling the presence of a control
cylinder by a steady local force and shows that this control device suppresses the
vortex shedding by inducing base-flow modifications that stabilize the leading global
mode and do not destabilize the stable global modes (see Appendix C).

Finally, physical interpretation of the stabilizing effect of the force has been
proposed, based on the determination of regions where base-flow modifications
contribute to stabilizing the global mode. In particular it has been shown that,
placed at its optimal position, the control cylinder stabilizes the flow by damping
the production of perturbations in the rear of the symmetrical recirculation region.
Such an approach consisting of passive control of a global instability may easily be
applied to other flow configurations, for instance cavities or recirculation flows that
are known to develop such global instabilities. Moreover, as the present formalism
is close to the optimal control formalism, further studies might address the question
of the optimization of the control cylinder diameter to suppress the vortex shedding
and reduce the drag of the main cylinder.
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Appendix A. Derivation of sensitivity functions
In this Appendix, we successively derive the sensitivity to a steady force and the

sensitivity to base-flow modifications.

A.1. Determination of the sensitivity to a steady force

A.1.1. State variables and state equations

The state variables are the base-flow variable, now denoted by the vector
Q(x, y) = (U, P )T = (U, V, P )T , and the perturbation variable, denoted by the vector
q̃(x, y, t) = (ũ, p̃)T . The state of the base flow is governed by the steady Navier–Stokes
equations (2.2) and is forced by the control variable QF = (F, 0)T . These equations
are written in a symbolic form

BF( Q) = QF . (A 1)

The boundary conditions for the base flow are

U = (1, 0) at the inlet, (A 2)

U = 0 on the solid walls, (A 3)

(∂yU, V ) = (0, 0) on the horizontal lateral boundaries, (A 4)

P n − Re−1∇U · n = 0 at the outlet. (A 5)

The perturbation variable is decomposed in the form of a normal mode

q̃(x, y, t) = exp(σ t)q̂(x, y), (A 6)

where {σ, q̂} is a global mode that satisfies the generalized eigenvalue problem (2.3).
It is written in a symbolic form

P({σ, q̂}, Q) = 0 (A 7)

in which the dependence of the perturbation problem on the base flow Q explicitly
appears. For convenience, in the derivation of the adjoint equations, the formal
notation P({σ, q̂}, Q) is developed in a matrix form as

P({σ, q̂}, Q) = σB · q̂ + A0 · q̂ + A1 · ∂x q̂ + A2 · ∂y q̂ − Re−1B · (∂x2 q̂ + ∂y2 q̂), (A 8)

where the derivation vectors are defined by ∂x q̂ = (∂x û, ∂xp̂)T , ∂y q̂ = (∂y û, ∂yp̂)T ,
∂x2 q̂ = (∂x2 û, ∂x2 p̂)T , ∂y2 q̂ = (∂y2 û, ∂y2 p̂)T , and the matrices B, A0, A1 and A2 by

B =

⎛
⎜⎝

1 0 0

0 1 0

0 0 0

⎞
⎟⎠ , A0 =

⎛
⎜⎝

∂xU ∂yU 0

∂xV ∂yV 0

0 0 0

⎞
⎟⎠ ,

A1 =

⎛
⎜⎝

U 0 1

0 U 0

1 0 0

⎞
⎟⎠ , A2 =

⎛
⎜⎝

V 0 0

0 V 1

0 1 0

⎞
⎟⎠ .
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Note that the matrices A0, A1 and A2 depend on the base-flow variable Q and for
that reason are real matrices. The boundary conditions for the global mode are

û = 0 at the inlet and on the solid walls, (A 9)

(∂yû, v̂) = (0, 0) on the horizontal lateral boundaries, (A 10)

p̂ n − Re−1 (∇û) · n = 0 at the outlet. (A 11)

A.1.2. Derivation of the gradient

Variations of an eigenvalue σ with respect to the variation of the steady force F
are investigated by looking for the sensitivity function ∇Fσ , defined as the gradient
of the eigenvalue with respect to this forcing. In this Appendix it is rewritten as
the gradient of the eigenvalue with respect to the control variable QF and denoted
∇QF

σ = (∇Fσ, 0)T The method used in this paper to determine this gradient is based
on the introduction of Lagrange multipliers Q+ = (U+, P +)T and q̂+ = (û+, p̂+)T to
enforce, respectively, the constraint (A 1) between the base-flow variable and the
control variable, and the constraint (A 7) between the perturbation and base-flow
variable. Considering the inner product introduced in § 2.1, a Lagrangian functional
is defined as

L( Q, σ, q̂, QF , Q+, q̂+) = σ −
(
q̂+, P({σ, q̂}, Q)

)
−

(
Q+, BF( Q) − QF

)
. (A 12)

The complex Lagrange multipliers Q+ and q̂+ are referred to as the complex
adjoint variables, respectively the adjoint base flow and the adjoint perturbation.
Note that the state variable ( Q, σ, q̂), the control variable QF and the adjoint
variable ( Q+, q̂+) in the Lagrangian functional are now independent of each other.
To determine the sensitivity function, the gradients of the Lagrangian with respect to
these three variables are determined. The gradient with respect to the variable a is
defined as

∂L

∂a
δa = lim

s→0

L(a + sδa) − L(a)

s
. (A 13)

Cancelling the gradient with respect to the Lagrange multipliers ( Q+, q̂+) leads to
imposing the base-flow and perturbation equations, (A 1) and (A 7) respectively.

The adjoint equations and associated boundary conditions are obtained by
considering the gradient of the Lagrangian with respect to the state variable ( Q, σ, q̂).
According to the definition (A 13), this gradient is formally given by the sum of three
terms:

−
(
q̂+, P({σ, q̂}, δ Q)

)
−

(
Q+, BFL( Q) · δ Q

)
︸ ︷︷ ︸

(a)

+ δσ −
(
q̂+, P({δσ, q̂}, Q)

)
︸ ︷︷ ︸

(b)

−
(
q̂+, P({σ, δq̂}, Q)

)
︸ ︷︷ ︸

(c)

(A 14)

where the formal notation BFL( Q) · δ Q arises from the linearization of the base-flow
equations (2.2) around the base-flow state Q. It is equal to the homogeneous operator
defined in equations (2.12).

Let us first consider the term labelled (c) in equation (A 14). Using the relations
(A 7) and (A 8) and integrating by parts to remove the derivatives from the state
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variables yields

(c) =
(
−σ ∗Bp · q̂+ − AT

0 · q̂+ + A1 · ∂x q̂+ + A2 · ∂y q̂+ + Re−1B · (∂x2 q̂+ + ∂y2 q̂+), δq̂
)

+ boundary terms, (A 15)

where the boundary terms appear due to the integration by parts. Eliminating the
first term on the right-hand side of (A 15) leads to the definition of the adjoint
perturbation equations

−σ ∗Bp · q̂+ − AT
0 · q̂+ + A1 · ∂x q̂+ + A2 · ∂y q̂+ + Re−1B · (∂x2 q̂+ + ∂y2 q̂+) = 0. (A 16)

By eliminating the boundary terms in (A 15), the following boundary conditions are
obtained:

û+ = 0 at the inlet and on the solid walls, (A 17)

(∂yû
+, v̂+) = (0, 0) on the horizontal lateral boundaries, (A 18)

p̂+ n − Re−1(∇û+) · n = (U · n)û+ at the outlet. (A 19)

These define the boundary conditions of the adjoint perturbation problem.
Eliminating term (b) in the gradient (A 14) yields a normalization condition for the

adjoint perturbation variable (
q̂+, B · q̂

)
= 1. (A 20)

We now consider term (a) in the gradient (A 14) which leads to the definition of
the adjoint base-flow equations. This term is composed of two sub-terms (a)′ and (a)′′

which are defined as follows:

−
(
q̂+, P({σ, q̂}, δ Q)

)
︸ ︷︷ ︸

(a)′

−
(

Q+, BFL( Q) · δ Q
)

︸ ︷︷ ︸
(a)′′

. (A 21)

Rewriting term (a)′ in such a way that the base-flow state and its derivatives appear
explicitly, we obtain

(a)′ =
(
q̂+, A′

0 · δ Q + A′
1 · ∂xδ Q + A′

2 · ∂yδ Q
)
, (A 22)

where the matrices A′
0, A

′
1 and A′

2 are defined by

A′
0 =

⎛
⎜⎝

∂xû ∂yû 0

∂xv̂ ∂yv̂ 0

0 0 0

⎞
⎟⎠ , A′

1 =

⎛
⎜⎝

û 0 0

0 û 0

0 0 0

⎞
⎟⎠ , A′

2 =

⎛
⎜⎝

v̂ 0 0

0 v̂ 0

0 0 0

⎞
⎟⎠ .

Derivative terms on the right-hand side of equation (A 22) are integrated by parts. By
doing this, boundary terms appear which are zero because only base-flow variations
inside the computational domain are considered, i.e. δ Q =0 at the inlet and the solid
walls. After integration by parts and use of the incompressibility condition, we are
left with

(a)′ =
(
A′

0
H · q̂+ − A′

1
H · ∂x q̂+ − A′

2
H · ∂y q̂+, δ Q

)
. (A 23)

The term labelled (a)′′ in equation (A 21) is now considered. We first rewrite
BFL( Q) · δ Q in a convenient form:

BFL( Q) · δ Q = A0 · δ Q + A1 · ∂xδ Q + A2 · ∂yδ Q − Re−1B · (∂x2δ Q + ∂y2δ Q). (A 24)
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Introducing (A 24) in (a)′′ and integrating the derivative terms by parts yields:

(a)′′ =
(
AT

0 · Q+ − A1 · ∂x Q+ − A2 · ∂y Q+ − Re−1B · (∂x2 Q+ + ∂y2 Q+), δ Q
)

+ boundary terms. (A 25)

Collecting the terms in expressions (A 23) and (A 25) and equating them to zero yields
the definition of the adjoint base-flow equations:

AT
0 · Q+ − A1 · ∂x Q+ − A2 · ∂y Q+ − Re−1B · (∂x2 Q+ + ∂y2 Q+)

= −A′
0
H · q̂+ + A′

1
H · ∂x q̂+ + A′

2
H · ∂y q̂+ (A 26)

associated with the adjoint base-flow boundary conditions:

U+ = 0 at the inlet and on the solid walls, (A 27)

(∂yU
+, V +) = (0, 0) on the horizontal lateral boundaries, (A 28)

P +n + Re−1(∇U+) · n = −(U · n)U+ + (û∗ · n)û+ at the outlet. (A 29)

Finally the gradient of the Lagrangian with respect to the steady force QF is given
by

∂L

∂ QF

δ QF = ( Q+, δ QF ). (A 30)

Noting that

∂L

∂ QF

δ QF = (∇ QF
σ, δ QF ) (A 31)

we see that the complex sensitivity function ∇Fσ is given by knowledge of the adjoint
base-flow fields U+, according to

∇Fσ = U+. (A 32)

A.2. Sensitivity to base-flow modifications

The difference with the analysis detailed in § A1, is that the state is defined by
the perturbation variable {σ, q̂} and the control variable is now the base flow Q.
The sensitivity to base-flow modification is defined as the gradient of the eigenvalue
with respect to this control variable, i.e. ∇Qσ = (∇Uσ, ∇P σ )T . The same Lagrangian
technique is used to determine the expression for this gradient. The state being
constrained by the perturbation equation (A 7), only the Lagrange multiplier q̂+ is
introduced and the Lagrangian is now defined by

L( Q, σ, q̂, q̂+) = σ −
(
q̂+, P({σ, q̂}, Q)

)
. (A 33)

The gradients of the Lagrangian (A 33) with respect to the adjoint perturbation
q̂+ and the perturbation {σ, q̂} are the same as in the analysis developed in § A1.
Cancelling them then gives the perturbation equation and the adjoint perturbation
equations. The gradient of the Lagrangian with respect to the base flow Q reduces to
the opposite of term (a)′ of equation (A 21). According to (A 22), it may be written

∂L

∂ Q
δ Q = − (q̂+, A′

0 · δ Q + A′
1 · ∂xδ Q + A′

2 · ∂yδ Q), (A 34)
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In this formulation we can distinguish between modifications of the transport and
production of perturbations due to the base-flow modifications δ Q. The term A′

0 · δ Q
represents the modification of the transport operator, whereas the terms A′

1 · ∂xδ Q +
A′

2 · ∂y Q represent the modification of the production operator. As seen in the previous
section, successive integrations by parts leads to

∂L

∂ Q
δ Q = (−A′

0
H · q̂+ + A′

1
H · ∂x q̂+ + A′

2
H · ∂y q̂+, δ Q), (A 35)

which yields the gradient of the eigenvalue σ with respect to the control variable Q:

∇ Qσ = −A′
0
H · q̂+ + A′

1
H · ∂x q̂+ + A′

2
H · ∂y q̂+. (A 36)

It is clear that the term −A′
0
H · q̂+ arises from the modification of the transport

operator whereas the terms A′
1
H · ∂x q̂+ + A′

2
H · ∂y q̂+ arise from the modification of the

production operator. As a consequence, we obtain for the sensitivity to base-flow
modifications, the following expression:

∇Uσ = −(∇û)H · û+ + ∇û+ · û∗
. (A 37)

The first term is interpreted as the sensitivity to modifications of the transport of the
perturbation by the base flow, and the second term as the sensitivity to modifications
of the production of perturbations by the base flow.

Appendix B. Influence of non linearities on the eigenvalue variations
The sensitivity analysis is fundamentally linear since it is based on the evaluation

of a gradient. In particular, base-flow modifications resulting from a steady force
are sought as linear base-flow modifications. Therefore, a variation of the eigenvalue
computed using the sensitivity analysis is exact in the limit of a force of small
amplitude, but it only consists of a linear estimation for a force of unit order of
magnitude.

To assess how nonlinearities alter the results obtained by the sensitivity analysis,
a force of increasing amplitude, denoted δF(α), is placed at the station (x0, y0). We
consider the model force given by equation (5.1) and increase its amplitude α||U0||2
through the coefficient α. For each value α, a linear estimation of the growth rate
of the global mode pertaining to the forced base flow may be obtained using the
sensitivity analysis to a steady force applied on the unforced base flow (see equation
(5.2)). For this, the sensitivity analysis gives a linear estimation of the growth rate
variation δλ(α) which, added to the growth rate of the unforced base flow denoted
λ(0), yields a linear estimation of the growth rate of the forced base flow, denoted
λ(0) + δλ(α). This growth rate may also be evaluated exactly. To do this, the forced
base flow is computed by solving the nonlinear base-flow equations (2.2) for the same
amplitude α of the force. Solving the stability equations (2.3) and determining the
leading eigenvalue gives the growth rate of the global mode of the forced base flow,
denoted λ(α). The same procedure is applied to the global frequency to evaluate
ω(0) + δω(α) and ω(α).

Results are shown in figure 15 for the Reynolds number Re = 50. On the left (resp.
right) plots, the growth rate (resp. frequency) is depicted as a function of the amplitude
of the force α||U0||2. The pairs of figures (a, b) and (c, d) show the results obtained for
a force located at, respectively, the stations (x0 = 1.2, y0 = 1.0) and (x0 = 1.2, y0 = 2.0).
The open circles show the results of the linear estimation whereas the filled circles
show the exact nonlinear results obtained through the stability analysis of the forced
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Figure 15. Growth rate λ (a, c) and global frequency fs =ω/2π (b, d) as a function of the
amplitude α||U0||2 of a local steady force modelled by (5.1). The location of the force is (a,
b) (x0 = 1.2, y0 = 1.0) and (c, d) (x0 = 1.2, y0 = 2.0). Comparison of the linear results obtained
from the sensitivity analysis of the unforced base flow (◦) with the nonlinear results obtained
from the stability analysis of the forced base flow (•), for Re = 50.

base. The vertical dashed line indicates the amplitude of the steady force (5.4) which
models a control cylinder of diameter d = 0.1. For small amplitudes of the force
α 	 1, the open and filled circles are superposed in all the figures since the base-flow
modifications due to the force are linear in this case. This result validates the sensitivity
analysis to a steady force, and in particular the accuracy of the sensitivity function.
For the growth rate (see figure 15a, c), the linear prediction matches the growth rate
of the forced base flow for values of the amplitude less than α||U0||2 ∼ 0.2. For larger
amplitudes, and in particular, for the amplitude of the force which models a control
cylinder of diameter d =0.1, we observe a discrepancy, indicating that nonlinearities
affect the global growth rate. For the two positions tested, the growth rate of the forced
base flow is smaller than that predicted by the sensitivity analysis. Therefore the linear
and nonlinear mechanisms have a cooperative action on the variation of the global
growth rate. The true nonlinear stabilizing effect of the force is thus larger than that
estimated by the sensitivity analysis. If we assume that this tendency is valid for other
stations, we expect the extent of the stabilizing region to be larger in the experiments
than in the theoretical analysis. A comparison of figures 10 and 12 confirms this
tendency, but only for Reynolds numbers Re � 55. On the contrary, for Reynolds
numbers close to the critical Reynolds number (Re = 48 and 50), the experimental
stabilizing region is smaller than the predicted one. Therefore nonlinearities cannot be
invoked to explain the discrepancies between the experimental and predicted results.

For the frequency (see figure 15b, d), we observe that the linear estimation is
valid up to α||U0||2 ≈ 0.2. The frequency is decreased when the force is located at the
station (x0 = 1.2, y0 = 1.0) (figure 15b) and increased when placed at (x0 = 1.2, y0 = 2.0)
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Figure 16. Comparison of the spectrum obtained for the unforced base flow (filled circles)
and the forced base flow (open circles). The leading global mode is shifted from the unstable
half-plane (λ> 0) to the stable half-plane (λ< 0), as shown by the arrow, whereas the stable
global modes remain in the stable half-plane. Amplitude and location of the steady force:
α||U0||2 = . . .; (x0 = 1.2, y0 = 1.0). Re = 50.

(figure 15d). This is in agreement with results plotted in figure 11(b). For α||U0||2 � 0.2,
nonlinear mechanisms alter the linear estimation of the frequency. Their effect depends
on the location of the force. For the station (x0 = 1.2, y0 = 1.0), the linear and nonlinear
mechanisms have opposite trends, since the true nonlinear global frequency of the
forced base flow is reduced less than the linear estimation. On the other hand, for the
station (x0 = 1.2, y0 = 2.0), they cooperate since the true global frequency is increased
more than the linear estimation. The effect of nonlinearities on the frequency seems
to be more complex than on the growth rate variations.

Appendix C. Are the stable global modes destabilized by the force?
Throughout this paper, we claim that the flow is stabilized by a local steady force

if the most unstable global mode of the unforced base flow is stabilized. This is
true only if the stable modes are not destabilized by the local force. To verify this,
we compute the spectrum of the base flow forced at the station (x0 = 1.2, y0 = 1.0).
Figure 16 depicts this spectrum (open circles) and, for comparison, the spectrum of
the unforced base flow (filled circles). As expected, the most unstable global eigenvalue
is shifted in the stable half-plane (λ< 0) under the action of the force (see the arrow
in the figure). The stable global eigenvalues are only slightly shifted and remain in
the stable half-plane. This shows that the flow is stabilized by the local steady force.
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