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This paper characterizes the saving rate in the Ramsey–Cass–Koopmans model
analytically with a general production function when there exist both exogenous and
endogenous growth. It points out conditions involving the share of capital and the
elasticities of factor and intertemporal substitution under which the saving rate path to its
steady-state value exhibits overshooting or undershooting or is monotonic. Simulations
illustrate these interesting dynamics. The paper also identifies the general class of
production functions that render the saving rate constant along the entire transition path
and hence make the Ramsey–Cass–Koopmans model isomorphic to that of Solow and
Swan.
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1. INTRODUCTION

Despite its paramount importance, little is known about the behavior of the saving
rate in perhaps the most popular workhorse model of macroeconomics and growth
theory, the Ramsey–Cass–Koopmans optimal growth model. Only recently have
there been some analytical breakthroughs on this issue. Specifically, Barro and
Sala-i-Martin (2004) examine analytically the case where the production function
takes the Cobb–Douglas form and show that the saving rate path to the steady
state is monotonic. Smetters (2003) extends the analysis to the constant–elasticity
of substitution (CES) case and proves that if the elasticity of factor substitution
is different from unity, then the saving rate may exhibit nonmonotonic behavior.
Finally, Gómez (2008) characterizes the global dynamics of the saving rate, also
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in the neoclassical model with CES production function, using qualitative phase
diagram techniques.

This paper extends the analysis to any concave production function and de-
rives general conditions, involving among others the elasticities of factor and
intertemporal substitution, under which the saving rate manifests nonmonotonic
behavior during the transition to its steady-state value. Furthermore, it contributes
to the existing literature in three more ways. First, it points out cases where, when
conditions are imposed on the intertemporal elasticity of substitution, the saving
rate path becomes monotonic. Second, it extends the work of Kurz (1968) and
Barro and Sala-i-Martin (2004) by identifying the class of production functions
that render the saving rate constant along the entire transition path and hence
make the Ramsey–Cass–Koopmans model isomorphic to that of Solow and Swan.
Finally, it does all this not only in the case of exogenous, but also in that of
endogenous unbounded growth, as in the convex model of Jones and Manuelli
(1990, 2005).

The intuition behind the nonmonotonic behavior of the saving rate lies in the
interaction between the income effect and the intertemporal substitution effect. As
the economy develops and capital rises, its marginal product (the real interest rate)
falls. This creates an income effect, which tends to raise the saving rate, and an
intertemporal substitution effect, which tends to reduce it. The magnitude of each
effect, and hence the overall change in the saving rate, depends on characteristics
of the underlying preferences and technology, which as we show include the
intertemporal elasticity of substitution and the elasticity of factor substitution.

We view the results of this paper as important for the following reasons. First
of all, the resulting nonmonotonic behavior of the saving rate accords well with
abundant empirical evidence.1 Second, our results have important implications
regarding the transitional dynamics of the economy and the speed of convergence.
Naturally, if the elasticities of factor and intertemporal substitution alter the rate
of change of the saving rate, then they will inevitably influence the speed of
convergence to the steady state [see Barro and Sala-i-Martin (2004)].2

This paper also adds to a growing literature that tries to move away from
the Cobb–Douglas restraint and toward more flexible and realistic functional
forms that enhance our understanding of complex economic phenomena without
masking the underlying relations. Examples of this literature that promote the
use of the CES production function, besides Smetters (2003) and Gómez (2008),
which are mentioned above, are Klump and de La Grandville (2000), Klump and
Preissler (2000), Turnovsky (2002, 2008) Miyagiwa and Papageorgiou (2003),
and Nishimura and Venditti (2004).3 Furthermore, there have been recent works
that have argued in favor of production functions that are more general than the
CES. Examples include Karagiannis et al. (2005), which examines the growth
implications of the variable–elasticity of substitution production function pro-
posed by Revankar (1971); Miyagiwa and Papageorgiou (2007), which analyzes
a dynamic multisector model, in which the aggregate elasticity of substitution is
endogenously determined; and Papageorgiou and Saam (2008), which investigates
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the properties of the two-level CES aggregate production function within the Solow
and Diamond growth models.

The paper is also related to the recent work of Guha (2008), who derives a set of
sufficient conditions for the saving rate to be strictly increasing, strictly decreasing,
or constant along the transition to the steady state.4 In contrast, this paper points
out conditions that not only ensure monotonicity in the behavior of the saving
rate but also can result in the nonmonotonic (overshooting and undershooting)
patterns of the saving rate that are found in the empirical literature. Moreover,
it identifies the class of production functions that render the saving rate constant
along the entire transition path. Finally, it derives these results not only for the
case of exogenous but also for that of endogenous growth, whereas Guha works
in a stationary environment where there is no growth.

The rest of the paper is organized as follows. Section 2 gives a short introduction
to the model and establishes notation. Section 3 characterizes the behavior of the
saving rate during the transition and points out general conditions under which the
saving rate path exhibits overshooting, undershooting, or is monotonic. Section 4
analyzes the case where, within the Ramsey–Cass–Koopmans model, the saving
rate remains constant over the entire transition path. Section 5 concludes the
paper.

2. THE STANDARD ONE-SECTOR OPTIMAL GROWTH MODEL

The model and the notation are essentially the same as in Smetters (2003) and
Barro and Sala-i-Martin (2004). The representative household maximizes5

U =
∫ ∞

0

c1−θ
t − 1

1 − θ
exp{−(ρ − n)t}dt, ρ, θ > 0,

where ct denotes consumption per capita at time t, ρ is the rate of time preference,
and n is the population growth rate. The resource constraint is

·
k̂ = f (̂kt ) − ĉt − (x + n + δ)̂kt , (1)

where k̂t = kte
−xt and ĉt = cte

−xt denote capital and consumption per effective
unit of labor, kt is capital per labor unit, and x ≥ 0 is the rate of labor-augmenting
technical progress. The production function per effective unit of labor f (̂k) is at
least twice continuously differentiable, strictly increasing, and concave ∀ k̂ ∈ R+
and satisfies f (0) ≥ 0. Moreover, the production function in its extensive form
F(K,BL) = BLf (̂k), where K, B, and L denote respectively the capital stock,

the level of the technology and labor, exhibits constant returns to scale.
Applying standard techniques leads to the following equation of motion:

·
ĉt

ĉt

= f ′(̂kt ) − (δ + ρ + θx)

θ
. (2)
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The dynamics of the system (1)–(2) are well understood [see, for example,
Barro and Sala-i-Martin (2004)]. In particular, if 0 ≤ limk̂(t)→∞ f ′(̂kt ) ≡ A <

ρ+δ+θx, then there exists a steady-state equilibrium, which is saddle-path stable.
Capital and consumption in effective units, k̂t and ĉt , converge monotonically

toward the steady state, so that
·
k̂ > 0 and

·
ĉt > 0 ∀t > 0. If, on the other hand,

limk̂(t)→∞ f ′(̂kt ) ≡ A > ρ + δ + θx > 0 then, in addition to the exogenous part
generated by technical progress, there will be unbounded endogenous growth [see
Jones and Manuelli (1990, 2005)]. In the latter case, if we set x = 0, then the
exogenous part disappears; nevertheless, there will still be perpetual growth, as
can be seen from equation (2).

Throughout the paper we denote the limiting value of each variable with an
asterisk. If there exists a steady state in terms of effective units then k̂∗ and ĉ∗ take
finite values. If, on the other hand, there exists unbounded endogenous growth
then k̂∗ and ĉ∗ approach infinity.6 In either case, ratios such as the gross saving
rate, st , and the share of income consumed, zt = 1− st , take finite positive values,
which are denoted as s∗ and z∗, respectively.

Next, recall that the elasticity of substitution between capital and labor is defined
as

σ (̂kt ) ≡ − f ′(̂kt )

k̂tf (̂kt )

f (k̂t ) − k̂t f
′(̂kt )

f ′′(̂kt )
> 0.7 (3)

When deviating from the Cobb–Douglas (CES) production function, various pa-
rameters, such as the share of capital (the elasticity of factor substitution), become
endogenous variables. In addition, the Inada conditions may not be satisfied any
more. In fact, the limiting properties of the production function and the behavior
of the capital share are directly linked to the elasticity of factor substitution. As
all these play an important role in determining the behavior of the (gross) saving
rate, the following properties are very useful to our analysis.

LEMMA. Denote the share of capital as f ′(̂kt )̂kt /f (̂kt ) ≡ α(̂kt ). Then

(a) limk̂(t)→∞ f (̂kt )/̂kt = limk̂(t)→∞ f ′(̂kt );
(b) If σ (̂kt ) ≷ 1 then d

[
α(̂kt )

]
/dk̂t ≷ 0;

(c) If limk̂(t)→0 σ (̂kt ) > 1 then limk̂(t)→0 f (̂kt ) > 0, limk̂(t)→0 f ′(̂kt ) ≤ ∞,

limk̂(t)→0 α(̂kt ) = 0;
(d) If limk̂(t)→∞ σ (̂kt ) > 1 then limk̂(t)→∞ f (̂kt ) = ∞,

limk̂(t)→∞ f ′(̂kt ) > 0, limk̂(t)→∞ α(̂kt ) = 1;
(e) If limk̂(t)→0 σ (̂kt ) < 1 then limk̂(t)→0 f (̂kt ) = 0, limk̂(t)→0 f ′(̂kt ) < ∞,

limk̂(t)→0 α(̂kt ) = 1;
(f) If limk̂(t)→∞ σ (̂kt ) < 1 then limk̂(t)→∞ f (̂kt ) < ∞,

limk̂(t)→∞ f ′(̂kt ) = 0, limk̂(t)→∞ α(̂kt ) = 0.

Proof.
(a) If lim k̂(t)→∞ f (̂kt ) = ∞ then apply L’Hôpital’s rule. If lim k̂(t)→∞ f (̂kt ) < ∞ then

lim k̂(t)→∞ f ′(̂kt ) = 0 and the result follows.
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(b) Differentiate f ′(̂kt )̂kt /f (̂kt ) with respect to k̂t and use (3).
(c–f) See Barelli and Pessôa (2003), Litina and Palivos (2008) and Palivos and Karagiannis

(in press).

Case (d) of the above lemma warrants further comments. It is well known
that a CES production function with a value of σ > 1 can lead to endogenous
growth [see, for example, Solow (1956) and Pitchford (1960)]. Nevertheless, the
CES is not the only production function that can deliver endogenous growth; any
production function with a variable elasticity of substitution whose value is asymp-
totically greater than unity can result in endogenous growth. More specifically, if
lim k̂(t)→∞ σ (̂kt ) > 1 then lim k̂(t)→∞ f ′(̂kt ) ≡ A > 0; hence, if A > ρ + δ + θx,
then there will be unbounded endogenous growth [for details see Palivos and
Karagiannis (in press)].

3. VARIABLE SAVING RATE: UNDER- AND OVERSHOOTING

It is well known that in the Ramsey–Cass–Koopmans model, along the (asymp-
totic) balanced growth path, the limiting values of the growth rates of consumption
and capital, both measured in effective units, are equal; that is, γ ∗

ĉ(t) = γ ∗
k̂(t)

= γ ∗.
Using then (1) and (2), we can write γ ∗ and the limiting value of the (gross) saving
rate s∗ = 1 − ĉ ∗/f (̂k∗) as

γ ∗ = f ′(̂k∗) − (δ + ρ + θx)

θ
, (4)

s∗ = (γ ∗ + x + n + δ)
k̂∗

f (̂k∗)
. (5)

Of course, if there exists only exogenous growth, then γ ∗ = 0.

Next let γz(t) denote the growth rate of zt = 1 − st = ĉt /f (̂kt ). The following
equation is derived with the use of (1), (2), (4), and (5) and is analogous to equation
(10) in Smetters (2003) and (2.95) in Barro and Sala-i-Martin (2004):

γz(t) = ż

zt

=
·
ĉ

ĉt

− f ′(̂kt )

f (̂kt )

·
k̂

= f ′(̂kt )

[
zt − θ − 1

θ

]
+ f (̂k∗)

k̂∗

[
s∗ f ′(̂kt )̂kt

f (̂kt )
− 1

θ

f ′(̂k∗)̂k∗

f (̂k∗)

]

+ γ ∗
[

1 − f ′(̂kt )̂kt

f (̂kt )

]
. (6)

Equation (6) applies to the case where there exists only exogenous growth as
well as to the case where there exist both exogenous and endogenous growth. In
particular, if there is only exogenous growth then the last term in (6) disappears
because γ ∗ = 0. On the other hand, if limk̂(t)→∞ σ (̂kt ) > 1 and there is endogenous
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growth as well, then (6) can be simplified further because f ′(̂k∗) = f (̂k∗)/̂k∗

[Lemma, part (a)].8 In either case, γ ∗
z = 0.

Finally, we also use the following expression, which gives the change of γz(t)

with respect to time, γ̇z(t) ≡ d(γz(t))/dt, and is obtained after differentiating (6)
and using (3) and (5):

γ̇z(t) = f ′′(̂kt )
·
k̂

[
zt − θ − 1

θ

]
+f ′(̂kt )γz(t)zt + (x +n+ δ)

[
1−σ (̂kt )

] f ′′(̂kt )̂kt

f (̂kt )

·
k̂

(7)

We are now ready to establish our first proposition. Throughout the paper, we
consider the (realistic) case where a country starts with a capital stock below its
steady-state value k̂∗.

PROPOSITION 1.
(a) Let k̂1 be a value of k̂ such that k̂1 < k̂∗. If σ (̂kt ) > 1 ∀ k̂t and

s∗ f ′(̂k1)̂k1

f (̂k1)
>

1

θ

f ′(̂k∗)̂k∗

f (̂k∗)
, (1A)

then the saving rate is increasing along the transition path from k̂1 to k̂∗.
(b) Moreover, there exists k̂0 < k̂1 such that

s∗ f ′(̂k0)̂k0

f (̂k0)
<

1

θ

f ′(̂k∗)̂k∗

f (̂k∗)
. (1B)

In addition, the saving rate is decreasing at k̂0 iff

1 > z0 > 1 − 1

θ
−

[
s∗ f ′(̂k0 )̂k0

f (̂k0)
− 1

θ

]
f ′(̂k∗)

f ′(̂k0)
− γ ∗

f ′(̂k0)

[
1 − f ′(̂k0 )̂k0

f (̂k0)

]
. (1C)

Proof.
(a) We prove this proposition for the case where there are both exogenous and endogenous

growth (̂k∗ → ∞). The proof for the case where there is only exogenous growth and
hence the economy accepts a steady state in effective units is similar. Recall from the
lemma that if σ (̂kt ) > 1 and there is endogenous growth, then f ′(̂k∗)̂k∗/f (̂k∗) = 1.

Also, because f ′(̂k1)̂k1/f (̂k1) < 1, it follows from condition (1A) that s∗ > 1/θ or
z∗ < (θ − 1)/θ. Next suppose that there is a value of t > tk1 , say t ′, such that zt ′ >

(θ −1)/θ, where tk1 denotes the value of time that corresponds to k̂1. Then (6) implies
that γz(t ′) > 0 (because every term on the RHS is positive) and γz(q) > 0 ∀q > t ′;
hence, z∗ > (θ − 1)/θ, which is a contradiction. Thus, zt < (θ − 1)/θ ∀t > tk1 .

Also, equation (7) implies that γz(t) < 0 ∀t > tk1 , for if γz(t) ≥ 0 for some value of t,

say t ′′, then γ̇z(q) > 0 ∀q > t ′′, which means that γ ∗
z > 0; this is also a contradiction,

because along the balanced growth path s and hence z remain constant (γ ∗
z = 0).

But then if γz(t) < 0 ∀t > tk1 , we have that ṡ > 0 ∀t > tk1 , or that st is increasing
along the transition path from k̂1 to k̂∗.
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(b) The proof that there exists k̂0 such that (1B) holds follows immediately from the
lemma [parts (c) and (d)]. If (1B) holds, then zt ≶ (θ −1)/θ and γ (z) in equation (7)
can take either positive or negative values. The rest of the proof is straightforward;
namely, set γz(0) > 0 in equation (6) and solve for z0, taking into account the lemma
[parts (a) and (d)].

According to Proposition 1, the behavior of the saving rate can be nonmonotonic.
More specifically, if the elasticity of factor substitution exceeds unity and condition
(1A) holds, then the saving rate will be increasing before it reaches the balanced
growth path and becomes constant. Furthermore, under condition (1C), there exists
a value of capital k̂0 < k̂1 such that the saving rate is decreasing over the range
from k̂0 to k̂1. Hence, looking over the entire transitional path, we see that if
σ (̂kt ) > 1 and conditions (1A) and (1C) hold, then the saving rate undershoots its
long-run value.

As expected, conditions (1A) and (1B) in Proposition 1 encompass the condi-
tions that appear in Barro and Sala-i-Martin (2004) and in Smetters (2003).9 Barro
and Sala-i-Martin (2004) show that if the production function is Cobb–Douglas
and s∗ = 1/θ then the income and substitution effects of a change in k̂ offset each
other. If s∗ > (<)1/θ then the income (substitution) effect dominates and the
saving rate increases (decreases) during the transition. Naturally, with a general
production function, what also matters is the share of capital, f ′(̂kt )̂kt /f (̂kt ),

relative to its steady state value, f ′(̂k∗)̂k∗/f (̂k∗). That is why these terms appear
in conditions (1A) and (1B). Note that if condition (1A) holds at some point k̂1,

then the assumption that σ (̂kt ) > 1 ∀̂kt ensures that it holds everywhere between
k̂1 and k̂∗ (Lemma, part 2). Similarly, if condition (1B) holds for some value
k′ < k1, then it holds for all values of k that are lower than k′. Finally, if σ (̂kt ) = 1
(Cobb–Douglas) and hence f ′(̂kt )̂kt /f (̂kt ) = α, then either (1A) is true or (1B) is
true, but not both. If (1A) is true (s∗ > 1/θ), then only part (a) of the proposition
holds and the saving rate increases during the transition. If, on the other hand,
(1B) is true (s∗ < 1/θ), then only part (b) holds and the saving rate decreases
along the entire transition path [this is the result shown in Barro and Sala-i-Martin
(2004)].

We can also illustrate the results of Proposition 1 graphically (Figure 1). We do
so in the (̂k, z)-plane because this enables us to deduce easily the behavior of the
saving rate (recall that st = 1−zt ). To save space, we analyze only the case where

there is only exogenous growth γ ∗ = 0.10 Setting
·
k̂ = 0 [equation (1)] we obtain

·
k̂ = 0 locus: ẑt = 1 − (x + n + δ)

k̂t

f (̂kt )
, (8)

which is downward-sloping and convex under the assumption that σ (̂kt ) > 1 ∀̂kt

(to make Figure 1 less cluttered, though, it is drawn as a straight line, since this
does not affect our conclusions). Moreover, by setting γz(t) = 0 [equation (6)] we
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11 θ−

0z

z′

0z
•

=
0k

•
=

*z

*k̂0̂k

tz

1̂k

FIGURE 1. Overshooting of the consumption ratio: undershooting of the saving rate.

get

ż = 0 locus: ẑt = 1 − 1

θ
− f (̂k∗)

k̂∗
1

f ′(̂kt )

[
s∗ f ′(̂kt )̂kt

f (̂kt )
− 1

θ

f ′(̂k∗)̂k∗

f (̂k∗)

]
. (9)

The ż = 0 locus is more complex. The exact shape of the curve is based on the
properties that appear in the lemma. We analyze the case where θ > 1 and the
maximum of the locus occurs at a value of k̂t < k̂∗. The steady-state equilibrium
(̂k∗, z∗) exhibits saddle-path stability. As we see in Figure 1, for values of the
initial capital stock that are greater than k̂1, the consumption–output ratio zt is
monotonically decreasing and, hence, the saving rate is monotonically increasing.
However, if the initial capital stock is sufficiently low, then zt is first increasing
and then decreasing; hence, zt (st ) exhibits overshooting (undershooting). Notice
from Figure 1 that the nonmonotonicity of the ż = 0 locus is necessary for z

to overshoot its steady-state value. Indeed, conditions 1A and 1B concern the
behavior of this locus. More specifically, condition 1A is sufficient for the ż = 0
locus to be eventually decreasing, whereas condition 1B is necessary for the same
locus to be initially increasing. The figure also provides an intuitive explanation of
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FIGURE 2. Undershooting of the saving rate: f (̂kt ) = A(̂kt )
α − γ , A = 1, α = 0.695,

γ = −61, n = 0.01, δ = 0.0645, ρ = 0.035, θ = 2.4, x = 0.01.

condition 1C. Consider a point (̂k0, z0) on the stable arm. Holding the capital stock
the same (̂k0), if we extend this point to the ż = 0 locus we reach another value z′.
Condition 1C requires that z0 > z′; that is, it requires that the consumption ratio
be higher than the one that corresponds to a constant value (given by the ż = 0
equation). Up to point k̂1, where z0i > z′

i , as k rises so does z, whereas from point
k̂1 onwards, where z0i < z′

i , as k rises z falls (z0i denotes values of z on the stable
arm and z′

i values on the ż = 0 locus).
The following example shows that undershooting can arise when there exist

plausible functional forms and reasonable parameter values.

Example 1

Consider the production function f (̂kt ) = A(̂kt )
α − γ, where A > 0 > γ

and 1 > α > 0. The elasticity of substitution for this production function is
1−αγ/[(1−α)f (̂kt )], which is greater than unity for every finite value of k.11 To
compute the transitional dynamics of the model, we use the backward integration
method proposed by Brunner and Strulik (2002), which transforms an unstable
boundary value problem into a stable initial value problem by a time reversal of
the dynamic system. Figure 2 presents the transitional path; clearly, the saving
rate undershoots its long-run value.

COROLLARY 1. If σ (̂kt ) > 1 ∀ k̂t and θ is sufficiently high so that zt ≤
(θ − 1)/θ ∀t, then the saving rate increases monotonically along the entire
transition path.
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FIGURE 3. Increasing saving rate: f (̂kt ) = A(̂kt )
α − γ , A = 1, α = 0.695, γ = −61,

n = 0.01, δ = 0.0645, ρ = 0.035, θ = 5, x = 0.01.

Proof. As θ approaches infinity zt ≤ (θ − 1)/θ, ∀t and not just for t > tk1 as in
Proposition 1. Consider next equation (7). Because the first and the third terms on
the RHS are both positive, it follows that γz(t) < 0, for if γz(t) > 0 then γ̇z(t) > 0
as well, which means that γ ∗

z will never become zero. But then if γz(t) < 0, it
follows that żt < 0 and ṡt > 0 ∀t.

The intuition behind Corollary 1 is that a sufficiently high θ weakens the
substitution effect and makes the income effect dominate; hence, the saving rate
path is increasing.12 The condition that zt ≤ (θ − 1)/θ is analogous to s∗ < 1/θ

in the Cobb-Douglas case analyzed in Barro and Sala-i-Marin (2004). Strictly
speaking, one can be certain that Corollary 1 holds always only in the limit as θ

approaches infinity. Nevertheless, this Corollary gives us also a direction towards
which we can search for an increasing path of the saving rate. We illustrate this
point in Figure 3, where we change θ from 2.4 to 5, holding the production function
and all other parameters the same as in Figure 2. The undershooting vanishes and
the saving rate is strictly increasing along the entire transition path.

PROPOSITION 2.
(a) Let k̂1 < k̂∗. If σ (̂kt ) < 1 ∀̂kt and

s∗ f ′(̂k1)̂k1

f (̂k1)
<

1

θ

f ′(̂k∗)̂k∗

f (̂k∗)
(2A)

then the saving rate is decreasing along the transition path from k̂1 to k̂∗.
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(b) If there exists k̂0 < k̂1, such that

s∗ f ′(̂k0)̂k0

f (̂k0)
>

1

θ

f ′(̂k∗)̂k∗

f (̂k∗)
, (2B)

then the saving rate is increasing at k̂0 iff

0 < z0 < 1 − 1

θ
−

[
s∗ f ′(̂k0)̂k0

f (̂k0)
− 1

θ

f ′(̂k∗ )̂k∗

f (̂k∗)

]
f (̂k∗)

f ′(̂k0 )̂k∗ . (2C)

Proof.
(a) First note that because σ (̂kt ) < 1, γ ∗ = 0. Furthermore, the lemma and assumption

(2A) imply that s∗ < 1/θ and z∗ > (θ − 1)/θ. Suppose there is a value of t > tk1 ,

say t ′, such that zt ′ < (θ − 1)/θ . Then (6) implies that γz(t ′) < 0 (because every
term on the RHS is negative) and γz(q) < 0 ∀q > t ′; hence, z∗ < (θ − 1)/θ, which
is a contradiction. Thus, zt > (θ − 1)/θ ∀t > tk1 . Also, equation (7) implies that
γz(t) > 0 ∀t > tk1 , for if γz(t) ≤ 0 for some value of t, say t ′′, then γ̇z(q) < 0 ∀q > t ′′,
which means that γ ∗

z < 0; this is inconsistent with the economy approaching a steady
state where s and hence z are constant (γ ∗

z = 0). But then if γz(t) > 0 ∀t > tk1 , we
have ṡ < 0 ∀t > tk1 , or st is decreasing along the transition path from k̂1 to k̂∗.

(b) The rest of the proof is straightforward.13 Condition (2C) follows once again from
equation (6); namely, set γz(0) < 0 and solve for z0, taking into account the fact that
γ ∗ = 0.

Note that according to Proposition 2, the path of the saving rate, taken as a
whole, first increases and then decreases. Thus, under the specified conditions, if
σ (̂kt ) < 1, then the saving rate overshoots its long-run value. Furthermore, the in-
tuition behind conditions (2A) and (2B) is similar to that given after Proposition 1.
Finally, as can easily be shown, this proposition nests the cases of Cobb–Douglas
and CES.

Proposition 2 is illustrated in Figure 4. The two loci
·
k̂ = 0 and ż = 0 are

given by equations (8) and (9), respectively. We plot the case where θ > 1 and
the minimum of the locus occurs at a value of k̂t < k̂∗ (the exact shape of each
curve is again easily derived using the lemma). The steady-state equilibrium is the
point (̂k∗, z∗), which is saddle-path stable. For values of the initial capital stock
that are greater than k̂1, the consumption ratio zt is monotonically increasing
and, hence, the saving rate is monotonically decreasing. However, if the initial
capital stock is sufficiently low, then zt is first decreasing and then increasing;
hence, zt exhibits undershooting. The saving rate behaves exactly the opposite
and, therefore, it exhibits overshooting. Just as in Proposition 1, the conditions
that appear in Proposition 2 concern the behavior of the ż = 0 locus. Notice that
for undershooting of z to occur this locus must be nonmonotonic. Condition 2A
is sufficient for it to be eventually increasing, whereas condition 2B is necessary
for it to be initially decreasing. Finally, condition 2C follows the same way as
condition 1C in Proposition 1 and Figure 1. Consider first a point (̂k0, z0) on the
stable arm. Holding the capital stock the same (̂k0), if we extend this point to the
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FIGURE 4. Undershooting of the consumption ratio: overshooting of the saving rate.

ż = 0 locus we reach another value z′. Condition 2C requires that z0 < z′; that
is, it requires that the consumption ratio be lower than the one that corresponds to
a constant value (given by the ż = 0 equation). Thus, up to point k̂1, as k rises, z

falls.

Example 2

Consider the production function f (̂kt ) = 1 − e−bk̂t , b > 0. The elasticity of
substitution for this function is (1/bk̂t ) − [e−bk̂t /f (̂kt )], which is less than unity
for every value of k. Using the same numerical method as in Example 1 we can
compute the transitional dynamics of the economy. The path of the saving rate,
which is depicted in Figure 5, shows that in this case s overshoots its long-run
value.

Notice in Proposition 2 that given condition (2B) and the fact that zt > 0, a
necessary condition for (2C) to hold is θ > 1. In other words, if θ ≤ 1, then
condition (2C) in Proposition 2 cannot hold and, thus, the saving rate path will be
monotonic. More formally, consider the following corollary.

COROLLARY 2. σ (̂kt ) ≤ 1 ∀̂kt and θ ≤ 1 then the saving rate declines
monotonically along the entire transition path.14

Proof. First, note that because σ (̂kt ) ≤ 1, γ ∗ = 0. Furthermore, if θ ≤ 1 then
st < 1 ≤ 1/θ and zt > 0 ≥ (θ−1)/θ ∀t and not just for t > tk1 , as in Proposition 2.
Consider next equation (7). Because the first and third terms on the right-hand
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FIGURE 5. Overshooting of the saving rate: f (̂kt ) = 1 − e−bk̂t , b = 0.64, n = 0.01,
δ = 0.0645, ρ = 0.028, θ = 7.3, x = 0.01.

side are both negative, it follows that γz(t) > 0, for if γz(t) < 0 then γ̇z(t) < 0 as
well, which means that γ ∗

z will never become zero. But then if γz(t) > 0, it follows
that żt > 0 and ṡt < 0 ∀t, that is, the saving rate declines monotonically over time
along the entire transition path.

Example 3

Consider the case where the production function is Cobb–Douglas f (̂kt ) = kα,

α < 1, and the share of capital equals the inverse of the intertemporal elasticity of
substitution, that is, α = θ. It is known that in this case the model can be solved
analytically and the saving rate is [see Smith (2006, equation 20)]

st = 1 − ρ + (1 − α)δ − αn

α

[
(̂k∗)1−α + [

(̂k0)
1−α − (̂k∗)1−α

]
e−(1−α)

δ+ρ+θx

α
t
]
.

If k̂0 < k̂∗, then dst/dt < 0. That is, the saving rate decreases monotonically
over the transition to its steady-state value; the substitution effect dominates the
income effect along the entire transition path.

4. CONSTANT SAVING RATE

As mentioned above, when the production function is Cobb–Douglas and s∗ =
1/θ, the saving rate is constant over the entire transition [see Kurz (1968) and Barro
and Sala-i-Martin (2004)].15 In other words, this is a case where the income and
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substitution effects cancel each other. The following proposition generalizes this
result. It identifies the general class of production functions that yield a constant
saving rate and hence make the Ramsey–Cass–Koopmans and the Solow–Swan
models isomorphic.

PROPOSITION 3. The saving rate is constant over the entire transition if and
only if the inverse of the production function k̂(f ) belongs to the class

k̂(f ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f b

(
A − θs∗ − 1

δ + ρ + θx

f −b+1

−b + 1

)
, b 
= 1

f

(
A − θs∗ − 1

δ + ρ + θx
ln f

)
, b = 1

, (10)

where b ≡ θ(x + n + δ)/(δ + ρ + θx) and A is a constant of integration.

Proof.
(⇒) If the saving rate is constant, st = s∗ ∀t, then γz(t) = 0 ∀t. Setting equation (6) equal

to zero and using equations (4) and (5) yields

s∗ = 1

θ
+ (x + n + δ)

kt

f (kt )
− δ + ρ + θx

θ

1

f ′(kt )
(11)

or
dk

df
− θ(x + n + δ)

δ + ρ + θx

k

f
= 1 − θs∗

δ + ρ + θx
,

which is a first-order differential equation. The solution of this equation yields (10).
(⇐) If the production function is (10) then (11) holds. When (4), (5), and (11) are used

(6) becomes
γz(t) = f ′(̂kt )[s

∗ − st ].

Suppose s∗ > st for some t = t ′, then γz(t) > 0 and γs(t) < 0 for all t > t ′, a result
that is inconsistent with s approaching its steady-state value s∗. Similarly, s∗ < st

for any t = t ′ can be ruled out because it implies that γz(t) < 0 and γs(t) > 0 for
all t > t ′, a result that is again inconsistent with s approaching its steady-state
value. Thus, st = s∗ ∀t.

Of course, in general, more restrictions on the parameter values might be needed
to ensure that the inverse of (10) exists and that it is a proper production function.
We can illustrate the dynamics of this economy as well. In Figure 6 we consider

the case where γ ∗ = 0. The locus
·
k̂ = 0 is the same as before [equation (8)].

Also, the ż = 0 locus is given by equation (9), which, after equations (4) and (5)
are used, becomes

ẑt = 1 − 1

θ
− (x + n + δ)

k̂t

f (̂kt )
+ 1

θ

δ + ρ + θx

f ′(̂k)
. (12)

Moreover, it follows from equation (11) that the term

(x + n + δ)
kt

f (kt )
− δ + ρ + θx

θ

1

f ′(kt )
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FIGURE 6. Constant saving rate.

is independent of time and, hence, the ż = 0 locus becomes parallel to the
horizontal axis.

Given that zt is independent of time, we can write equation (1) as

·
k̂t = (1 − z∗)f (k) − (x + n + δ)k,

which is the fundamental Solow equation. As shown in Proposition 4 below,
however, there is still an essential difference between the Ramsey model with
a (10) production function and the Solow model; namely, the saving rate in the
Ramsey model is related to the underlying parameters and cannot be chosen
arbitrarily.

Example 4

Note that if s∗ = 1/θ then (10) yields f (̂k) = A−1/b(̂k)1/b. Of course, one needs
to assume that A > 0 for positive values of output and b ≥ 1 for concavity. If
b > 1 then we obtain the Cobb–Douglas production function; this is the result
found in Kurz (1968) and Barro and Sala-i-Martin (2004). If b = 1, then we have
the so-called “Ak” production function.
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Example 5

Consider next the case where b = 2. Then (10) becomes

Af 2 + θs∗ − 1

δ + ρ + θx
f − k̂ = 0,

which yields

f (̂k) =
− θs∗ − 1

δ + ρ + θx
+

[(
θs∗ − 1

δ + ρ + θx

)2

+ 4Ak̂

]
2A

1/2

(13)

(the other root is rejected because it yields negative values for output). We assume
that A > 0 so that output takes positive values for all possible parameter values.
Without further restrictions, the function (13) is a proper production function
whose properties depend on the values of its parameters. For example, if θs∗ < 1,

then limk̂→0 f (̂k) > 0, limk̂→∞ f (̂k) = ∞, f ′(̂k) > 0 > f ′′(̂k), limk̂→0 f ′(̂k) >

0, limk̂→∞ f ′(̂k) = 0 = limk̂→0 k̂f ′(̂k)/f (̂k), limk̂→∞ k̂f ′(̂k)/f (̂k) = 1/2,

limk̂→0 σ (̂k) = ∞, and limk̂→∞ σ (̂k) = 1.

Just as in the case of Section 2, there is a close connection between the elasticity
of substitution, the share of capital and the saving rate. Consider the following
proposition.

PROPOSITION 4. The saving rate is constant if and only if

σ (̂kt )α(̂kt ) = 1/b ∀̂kt , (14)

where it may be recalled that b ≡ θ(x + n + δ)/(δ + ρ + θx).

Proof. Notice from (11) that the saving rate is constant if and only if

(x + n + δ)
kt

f (kt )
− δ + ρ + θx

θ

1

f ′(kt )

is independent of time. Upon differentiation we see that this is the case if and only
if (14) holds.

Proposition 4 determines when the income and intertemporal substitution effects
offset each other. Using equation (7), we see that in the case of exogenous growth,
that is, γ ∗ = 0, s∗ = (1/σ ∗θ) (once again in the case of Cobb–Douglas σ = 1
and we obtain the familiar result that if s∗ = 1/θ then st is constant). In the
endogenous growth case, on the other hand, where limk̂→∞ α(̂kt ) = 1, we have
σ ∗ = 1/b and s(t) = s∗ = (γ ∗ + x + n + δ)/(θγ ∗ + δ + ρ + θx).
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5. CONCLUSIONS

This paper has characterized analytically the behavior of the saving rate along the
transition path for the Ramsey–Cass–Koopmans model for any concave production
function and for cases of both endogenous and exogenous growth. It has shown that
for an elasticity of factor substitution greater (less) than unity, the saving rate path
may exhibit undershooting (overshooting). Nevertheless, by imposing conditions
on the elasticity of intertemporal substitution, we can ensure monotonicity. Finally,
the paper identifies the general class of production functions that render the saving
rate constant over the entire transition path, as in the Solow–Swan model, with
the crucial difference, however, that in this model the saving rate is endogenously
determined.

As mentioned in the Introduction, there is a growing literature that finds evidence
against the Cobb–Douglas specification and in favor of more flexible functional
forms. In view of this, the results of this paper are important and may lead to a
better understanding of the different saving patterns that are observed in the data.

NOTES

1. Maddison (1992) examines several countries and finds that after World War II the saving rate
exhibits overshooting in most of them. Overshooting of the saving rate is also found in, among others,
Bosworth et al. (1991) for the United States, Canada, and Japan; Christiano (1989) for Japan; and
Chari et al. (1996) for South Korea. Tease et al. (1991) and Loayaza et al. (2000) report similar trends
across the world.

2. Turnovsky (2002, 2008) analyzes how a change in these elasticities of substitution affects the
speed of convergence in the neoclassical growth model with CES production function.

3. The rejection of the Cobb–Douglas production function and the use of more flexible functional
forms has recently found empirical support in, among others, the papers of Duffy and Papageorgiou
(2000), Antràs (2004), Masanjala and Papageorgiou (2004), Karagiannis et al. (2005), and Klump
et al. (2007).

4. We are grateful to a referee for calling our attention to the work of Guha (2008).
5. We assume that the utility function takes the constant–intertemporal elasticity of substitution

form because this is a necessary condition for the existence of a balanced growth path; see King et al.
(1988) and Palivos et al. (1997).

6. Hence, expressions such as f ′ (̂k∗) should be understood as limk̂→k̂∗ f ′ (̂kt ) if there is exogenous
growth only and as limk̂→∞ f ′ (̂kt ) if there is endogenous growth. We abuse the notation somewhat
in order to make the two cases of just exogenous and of exogenous as well as endogenous growth
immediately comparable.

7. We remind the reader that for a general production function F(K, L) the elasticity of substitu-
tion is defined as d ln(K/L)/d ln(FL/FK). Under constant returns to scale and with two factors of
production this can be written as FKFL/FFKL, which, in terms of the intensive form f, is equal to
the expression given in (3).

8. Recall that if there is endogenous growth k̂∗ → ∞.

9. For example, if the production function is Cobb–Douglas then f ′ (̂kt )̂kt /f (̂kt ) =
f ′ (̂k∗ )̂k∗/f (̂k∗) = α and (1A) simplifies to s∗ < 1/θ , as in Barro and Sala-i-Martin. Also, if the
production function is CES then condition (1A) simplifies to s∗[f ′ (̂k1)/f

′ (̂k∗)]1−σ > 1/θ as in
Smetters (2003), Proposition 1B.

10. The case of endogenous growth involves a similar analysis after the system is transformed into
one that accepts a steady state.
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11. Note, however, that limk→∞ f ′ (̂k) = 0 and hence this production function cannot yield en-
dogenous unbounded growth.

12. Most empirical estimates of the intertemporal elasticity of substitution are quite small, certainly
less than one [for example, see Hall (1988), Ogaki and Reinhart (1998), and Biederman and Goenner
(2008)]; hence θ > 1.

13. Notice that, in contrast to Proposition 1, the existence of k̂0 such that condition (B) in
Proposition 2 holds is not guaranteed any more. The same is true in Smetters (2003). We note
that there is a small typo in Smetters (2003) toward the end of the proof of Proposition 1, case (A),
on p. 705; namely, the paper appears to claim that if f (̂k) = [αk̂1−1/σKL + (1 − α)t]1/(1−1/σKL) and
σKL < 1, then limk̂→0 f ′ (̂k) = ∞. This should read, instead, limk̂→0 f ′ (̂k) = α1/(1−1/σKL) < ∞.

14. The case where σ = 1 is also shown in Barro and Sala-i-Martin (2004).
15. Kurz (1968) reaches this conclusion by analyzing the inverse optimal problem for the Solow–

Swan model; that is, given a consumption path, he determines a class of objective functionals that
would optimally imply such a path.
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