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Nonlinear interactions between surface and internal gravity waves in a two-layer
system are studied using explicit second-order nonlinear evolution equations in
Hamiltonian form. Motivated by the detailed experiment of Lewis, Lake & Ko
(J. Fluid Mech., vol. 63, 1974, pp. 773–800), our focus is on surface wave modulation
by the group resonance mechanism that corresponds to near-resonant triad interactions
between a long internal wave and short surface waves. Our numerical solutions show
good agreement with laboratory measurements of the local wave amplitude and slope,
and confirm that the surface modulation becomes significant when the group velocity
of the surface waves matches the phase speed of the internal wave, as the linear
modulation theory predicts. It is shown, however, that, after the envelope amplitude is
increased sufficiently, the surface and internal waves start to exchange energy through
near-resonant triad interactions, which is found to be crucial to accurately describe
the long-term surface wave modulation by an internal wave. The reduced amplitude
equations are also adopted to validate this observation. For oceanic applications,
numerical solutions are presented for a density ratio close to one and it is found
that significant energy exchanges occur through primary and successive resonant triad
interactions.
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1. Introduction
Internal waves occur between subsurface layers in water that is stratified due

to temperature and salinity variations. Observations from remote sensing, as well
as in situ measurements, have demonstrated that internal waves can substantially
change the top free surface of the ocean (Hughes & Grant 1978; Osborne & Burch
1980; Alpers 1985; Gasparovic, Apel & Kasischke 1988; Watson & Robinson 1990).
Basic signatures reported are surface roughness and slicks that are characterized
by areas of increased surface wave steepness and wide bands of smooth water
surface, respectively. Such surface signatures have been also observed in laboratory
experiments in a two-layer system, for example, by Lewis, Lake & Ko (1974) for
a monochromatic internal wave train and by Kodaira et al. (2016) for an internal

† Email address for correspondence: wychoi@njit.edu

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

18
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0002-4433-3013
mailto:wychoi@njit.edu
https://doi.org/10.1017/jfm.2020.180


892 A14-2 T. M. A. Taklo and W. Choi

solitary wave. The observed surface signatures were then attributed to short surface
waves modulated by the long internal wave through near-resonant triad interactions.

For surface gravity waves on a homogeneous fluid, resonant interactions are possible
among four waves at third-order nonlinearity (Phillips 1960) although three-wave
resonant interactions can occur among gravity–capillary waves (McGoldrick 1965).
On the other hand, in a two-layer density-stratified fluid, it is well known that
three-wave resonant interactions are possible between surface and internal gravity
waves at second-order nonlinearity, even in the absence of surface tension.

The exact resonance conditions for one-dimensional surface and internal gravity
waves have been identified, for convenience, as three different classes. While the
class-I (Ball 1964) and class-II (Segur 1980; Wen 1995; Hill & Foda 1996) resonance
conditions are for counter-propagating waves, the class-III (Alam 2012) resonance
conditions are for co-propagating waves. Recently, much attention has been paid to
the class-III resonance that occurs among two short surface waves and one, relatively
longer, internal wave. Alam (2012) studied the class-III resonance in detail with
a third-order high-order spectral (HOS) method and observed a cascade of surface
wave energy through successive resonant triad interactions. More general interactions
between broadband surface and internal waves were studied numerically using a
second-order HOS method by Tanaka & Wakayama (2015).

In this paper, we focus on the modulation of short surface waves satisfying the
so-called group resonance condition, which is an approximation to the class-III
resonance condition and requires the group velocity of the surface waves to match
the phase speed of a long internal wave. As the group resonance condition can be
easily met under realistic oceanic conditions, this phenomenon has been investigated
for several decades both theoretically and experimentally with special emphasis on the
critical case relevant for internal solitary waves (as discussed in § 2.1). For example,
after imposing the group resonance condition, Funakoshi & Oikawa (1983) derived a
reduced weakly nonlinear model for the mutual interaction between short surface and
long internal waves. This is a generalization of the model of Kawahara, Sugimoto
& Kakutani (1975) and Benney (1977), who studied the interaction between long
and short surface gravity–capillary waves on a homogeneous layer. However, the
reduced model obtained by Funakoshi & Oikawa (1983) is incomplete in describing
the surface current variation induced by the long internal wave, which is crucial
in explaining surface wave modulation. In addition, Jiang et al. (2019) studied a
similar wave interaction in a two-fluid system, but, as they used a weakly nonlinear
long wave model for both surface and internal waves, the dispersion relation for
short surface waves and, therefore, resonance conditions are not accurately modelled.
Recently, among others, Hwung, Yang & Shugan (2009) and Craig, Guyenne &
Sulem (2012) studied surface signatures of internal solitary waves using reduced
models for surface and internal wave interactions.

Motivated by the previous observations of Ewing (1950), LaFond (1962) and
Gargett & Hughes (1972), the group resonance was investigated experimentally
by Lewis et al. (1974) by generating simultaneously a short surface wave with a
small amplitude and a long internal wave with a relatively large amplitude in a
wave tank. Using the fact that the internal wave in the experiment remained almost
unchanged, Lewis et al. (1974) modelled the internal wave effect as a surface current
and described the observed surface wave modulation as the surface wave–current
interaction using the linear modulation theory (Longuet-Higgins & Stewart 1960, 1961;
Whitham 1962; Gargett & Hughes 1972; Phillips 1977; Hughes 1978). Significant
modulation of the free surface was observed in the experiment and was quantified in
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terms of local amplitude and slope variations. It was found that the most significant
modulation occurs when the group velocity of the surface waves is close to the
phase speed of the internal wave, which is consistent with the group resonance
condition. Therefore, it is confirmed that the group resonance mechanism plays
a major role in describing modulated short surface waves that interact with long
internal waves. Despite its success in comparison with experimental observations, the
linear modulation theory that Lewis et al. (1974) used with a prescribed current field
is unable to describe any energy exchange between surface and internal waves, which
could be important for surface modulation over a longer time scale.

Here, we develop an explicit Hamiltonian system correct to the second order in
wave steepness using a weakly nonlinear asymptotic expansion approach adopted
by Choi (1995). Then, under the group resonance condition, we solve the system
numerically and compare in detail the numerical solutions with the experiments
of Lewis et al. (1974) along with the linear modulation theory. In particular, we
investigate the long-term evolution of modulated surface waves, for which no
measurements were made in Lewis et al. (1974).

The paper is organized as follows. After discussing in § 2 the class-III resonance
condition, an explicit second-order Hamiltonian system is obtained using an
asymptotic expansion technique in § 3. The numerical model to solve the system
is described in § 4 and is validated with the Stokes wave solutions of Thorpe (1968)
and the numerical solutions of Alam (2012) for exact resonant interactions using the
HOS method. In § 5, the experiment of Lewis et al. (1974) and the linear modulation
theory are revisited and analytic expressions for surface wave amplitude and slope
variations are obtained. In § 6, the numerical solutions of the Hamiltonian system
are compared with the measurements of Lewis et al. (1974). In § 7, the results are
discussed with the amplitude equations of the primary resonant triad and numerical
solutions for a more realistic density ratio are presented. Finally concluding remarks
are given in § 8.

2. Near-resonant class-III interactions
For a system of two layers of densities ρi and thicknesses hi with i = 1 and 2

corresponding to the upper and lower layers, respectively, the linear dispersion relation
can be obtained (Lamb 1932) by solving

(ρ1T1T2 + ρ2)ω
4
− ρ2gk(T1 + T2)ω

2
+ (ρ2 − ρ1)g2k2T1T2 = 0, (2.1)

where g is the gravitational acceleration, ω is the wave frequency, k is the wavenumber
and Ti = tanh(khi). Equation (2.1) has two positive real roots for ω2, say ω2

+
and ω2

−
,

which correspond to the frequencies of fast surface (or barotropic) and slow internal
(or baroclinic) wave modes.

For the class-III resonant triad interactions, we consider two short surface waves and
one long internal wave propagating in the same direction. After introducing K and Ω
for the wavenumber and frequency of the internal wave to distinguish them from those
of the surface wave (denoted hereafter by k and ω), the resonance conditions are given
by

k1 − k2 ±K = 0, (2.2a)
ω1 −ω2 ±Ω = 0, (2.2b)

where ωj = ω(kj), and k1±, k2±, K and their corresponding wave frequencies are
assumed positive. For one-dimensional waves, equation (2.2) has a one-parameter
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FIGURE 1. (a) Dispersion curves for surface (solid, denoted by S) and internal (dashed,
I) waves. The two intersection points represent the class-III resonant triads for fixed k1:
(k1, k2±,K±). Here, kc represents the critical wavenumber defined by (2.3). For any surface
wave whose wavenumber is greater than kc, one can find two class-III resonant triads. On
the other hand, km is the smallest possible wavenumber in a resonant triad. (b) Solution
curves for the resonance condition given by (2.2). The solutions can be found for a fixed
value of K or k1.

family of solutions (two equations for three unknowns). For example, for a fixed
value of k1, one can find two sets of solutions: (k1, k2+, K+) and (k1, k2−, K−), as
shown in figure 1(a).

Alternatively, for a fixed value of K, the solutions can be denoted by (k1±, k2±,K)
with 0 < K � k2− 6 k1− and 0 < K � k1+ 6 k2+ . Similar inequalities hold for the
corresponding wave frequencies (ω1±, ω2±,Ω). As there is no real distinction between
the surface waves of k1 and k2 that share the same dispersion relation, one can find the
solution on one branch from that on the other branch by interchanging the subscripts
1 and 2. For example, if (k1−, k2−, K) is the solution of (2.2) with the negative sign
(the negative branch), (k1+, k2+, K) = (k2−, k1−, K) is the solution set on the positive
branch, as shown in figure 1(b).

2.1. Critical wavenumber

It is known that the class-III resonance occurs only when the slope of the dispersion
curve for the surface wave at (k1, ω1) is smaller than that for the internal wave at
(K, Ω) = (0, 0) (see figure 1a). This can happen only when k1 is greater than a
certain critical value kc. Considering that the two dispersion curves should be tangent
to each other as k1(= k2) → kc and K → 0, the critical surface wavenumber can
be found by matching the slopes of the two curves: dΩ/dK|K=0 = dω/dk|k=kc . From
dΩ/dK|K=0 = Ω/K|K=0, the criticality condition implies that the linear long wave
speed of the internal wave C0=Ω/K|K=0 and the group velocity of the surface wave
cg(kc)= dω/dk|k=kc must be equal to each other so that

C0 = cg(kc), (2.3)
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FIGURE 2. The critical wavenumber kch1 as a function of the density ratio for ρ1/ρ2
between 0.85 and 1 for three different depth ratios: h1/h2= 10 (solid); h1/h2= 1 (dashed);
h1/h2 = 1/2 (dotted).

where C0 is the linear long internal wave speed given by

C0
2
=

gh1h2(ρ2 − ρ1)

ρ1h2 + ρ2h1
. (2.4)

Then, it can be concluded from (2.3) that the class-III resonance is always possible
when at least one of the surface wavenumbers is greater than kc, which depends on
the density and depth ratios: kc = kc(ρ1/ρ2, h1/h2).

Figure 2 shows the dimensionless critical wavenumber kch1 as a function of density
ratio ρ1/ρ2 for values of the latter between 0.85 and 1 for different depth ratios h1/h2.
The critical wavenumber kch1 increases with ρ1/ρ2 and h1/h2. As the density ratio
ρ1/ρ2→1, the dimensionless critical wavenumber kch1 increases rapidly and, therefore,
only short surface waves satisfy the class-III resonance conditions given by (2.2). For
example, for ρ1/ρ2 = 0.99 and h1/h2 = 1/2, one can find kch1 ' 37.42 so that the
critical wavelength λc = 2π/kc is given by λc/h1 ' 0.168.

2.2. Group resonance condition near criticality
Near criticality, the two surface wavenumbers k1 and k2 are close to each other so that
k2 can be written as k2 = k1(1±K/k1) with K/k1� 1. When ω2 =ω(k2) is expanded
around k1, one can show that

ω1 −ω2 ±Ω =∓
dω
dk

∣∣∣∣
k1

K ±Ω +O(K/k1)
2. (2.5)

This implies that the resonance condition given by (2.2b) can be satisfied approxi-
mately under the so-called group resonance condition defined by

C|K ' cg|kg, (2.6)
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FIGURE 3. Two-layer system.

where kg is the wavenumber of the carrier wave whose group velocity matches the
phase speed of the internal wave C=Ω/K. This condition is a slight modification to
(2.3) for an internal wave whose wavenumber is small, but not zero.

Since (2.6) is an approximation to (2.2b), its solution kg is slightly different from
k1±, which are the solutions of the exact resonance condition (2.2) for a fixed value
of K. Therefore, the triads of (kg, kg ±K,K) satisfy a near-resonance condition.

In this paper, we develop an explicit Hamiltonian system and study the near-
resonant triad interactions between short surface and long internal waves under
the group resonance condition. Then the results will be compared with previous
theoretical and experimental results.

3. Explicit Hamiltonian system for two-layer flows
3.1. Basic equations

We consider a system of two layers with constant densities, where the ith layer
(i = 1, 2) is bounded by the upper and lower boundaries located at z = ηi(x, t) and
z=ηi+1(x, t), respectively, with x= (x, y). Here, η1= ζ1, η2=−h1+ ζ2, η3=−(h1+h2)

with ζ1(x, t) and ζ2(x, t) being the surface and interface displacements, respectively
(see figure 3).

Under the potential flow assumption, the kinematic boundary condition at the upper
boundary of the ith layer is given, after using the chain rule, by

∂ζi

∂t
+∇Φi · ∇ζi =

(
1+ |∇ζi|

2
)

Wi, (3.1)

where ∇ is the horizontal gradient, and i = 1 and 2 correspond to the upper and
lower layers, respectively. Here, Φi and Wi are the velocity potential and the vertical
velocity, respectively, evaluated at z = ηi such that Φi(x, t) ≡ φi(x, z = ηi, t) and
Wi(x, t) ≡ ∂φi/∂z(x, z = ηi, t), with φi being the solution of the three-dimensional
Laplace equation for the ith layer. In addition, the kinematic boundary condition at
the interface (z= η2) can be written, in terms of the velocity potential for the upper
layer, as

∂ζ2

∂t
+∇Φ∗1 · ∇ζ2 =

(
1+ |∇ζ2|

2
)

W∗1 . (3.2)

Here, the variables with asterisks represent those evaluated at the interface such that
Φ∗1 ≡ φ1|z=η2 and W∗1 ≡ ∂φ1/∂z|z=η2 . When combined with (3.1), the second kinematic
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condition given by (3.2) can be written as

W∗1 −
∇ζ2

1+ |∇ζ2|
2
· ∇Φ∗1 =W2 −

∇ζ2

1+ |∇ζ2|
2
· ∇Φ2, (3.3)

which implies continuity of the normal velocities at the interface located at z= η2, or
z=−h2 + ζ2(x, t).

On the other hand, the dynamic boundary conditions at the top free surface and
interface are given by

P1 = Patm at z= η1, P2 = P∗1 at z= η2, (3.4a,b)

where Pi (i= 1, 2) are the pressures evaluated at z= ηi while P∗1 is the pressure of the
upper layer evaluated at the interface (z= η2). Here, Patm is the applied atmospheric
pressure in the presence of wind; otherwise, Patm = 0. From the Bernoulli equation
given, after being evaluated at z= ηi, by

∂Φi

∂t
+ gηi +

1
2
|∇Φi|

2
+

Pi

ρi
=

1
2
(1+ |∇ζi|

2)Wi
2, (3.5)

the dynamic boundary conditions (3.4) can be written as

∂Ψ1

∂t
=−ρ1gζ1 −

1
2
ρ1|∇Φ1|

2
+

1
2
ρ1(1+ |∇ζ1|

2)W1
2
− Patm, (3.6)

∂Ψ2

∂t
=−1ρgζ2 −

1
2
(ρ2|∇Φ2|

2
− ρ1|∇Φ

∗

1 |
2)+

1
2
(1+ |∇ζ2|

2)(ρ2W2
2
− ρ1W∗1

2
), (3.7)

where 1ρ = ρ2 − ρ1 > 0 for stable stratification and Ψi are defined as

Ψ1 = ρ1Φ1, Ψ2 = ρ2Φ2 − ρ1Φ
∗

1 . (3.8a,b)

Once Φi, Wi, Φ∗1 and W∗1 can be expressed in terms of ζi and Ψi, equations (3.1)
and (3.6)–(3.7) yield a closed system of nonlinear evolution equations for ζi and Ψi
(i= 1, 2).

As shown by Benjamin & Bridges (1997) for unbounded two-layer flows, the
system for ζi and Ψi is of particular interest as it is known to have a Hamiltonian
structure such that

∂ζi

∂t
=
δE
δΨi

,
∂Ψi

∂t
=−

δE
δζi
, (3.9a,b)

where E = Ep + EK is the total energy with the potential energy Ep and the kinetic
energy EK given by

EP =
1
2

∫ [
ρ1gζ1

2
+ (ρ2 − ρ1)gζ1

2
]

dx, (3.10)

EK =
1
2

∫ (
2∑

i=1

Ψi
∂ζi

∂t

)
dx. (3.11)

For weakly nonlinear waves with ε � 1 being the typical wave steepness, the
nonlinear evolution equations given by (3.1) and (3.6)–(3.7) can be truncated at
O(ε2) as

∂ζ1

∂t
=W1 −∇Φ1 · ∇ζ1 +O(ε3),

∂ζ2

∂t
=W2 −∇Φ2 · ∇ζ2 +O(ε3), (3.12a,b)
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∂Ψ1

∂t
=−ρ1gζ1 −

1
2
|∇Ψ1|

2/ρ1 +
1
2
ρ1W1

2
+O(ε3), (3.13)

∂Ψ2

∂t
=−1ρgζ2 −

1
2

(
ρ2|∇Φ2|

2
− ρ1|∇Φ

∗

1 |
2
)
+

1
2

(
ρ2W2

2
− ρ1W∗1

2)
+O(ε3), (3.14)

where Wi =O(|∇ζi|)=O(|∇Φi|)=O(|∇Ψi|)=O(ε) have been assumed on the right-
hand sides.

In the followings, using asymptotic expansion correct up to O(ε2), we first find the
explicit expressions for Wi (i=1,2) correct to O(ε2) and those for W∗1 , and Φ∗1 correct
to O(ε) in terms of ζi and Φi. Then, by expressing Φi in terms of ζi and Ψi, we obtain
a closed system for ζi and Ψi.

3.2. Linear solutions
The solution of the Laplace equation for the ith layer can be written as

φi(k, z, t)= Ai(k, t) cosh(kz)+ Bi(k, t) sinh(kz). (3.15)

To determine Ai and Bi, we impose the following linearized boundary conditions at
z= zi and z= zi+1 for i= 1, 2

φi = φi at z= zi, (3.16)
∂φi

∂z
=w∗i at z= zi+1, (3.17)

where z= zi and z= zi+1 are the mean positions of the upper and lower boundaries,
respectively, of the ith layer so that z1 = 0, z2 =−h1 and z3 =−(h1 + h2). Here, we
impose the Dirichlet and Neumann boundary conditions at the mean upper and lower
boundaries, respectively, for convenience in the derivation of a model. For example,
for the lower layer (i= 2), the zero Neumann condition (w∗2= 0) needs to be imposed
at z= z3 as the vertical velocity vanishes at the bottom. After imposing the boundary
conditions given by (3.16) and (3.17) on the solution of the Laplace equation given by
(3.15), we attempt to find the expressions for wi and φ∗i in terms of φi and w∗i . Notice
that f i and f ∗i represent the variables evaluated at z= zi and z= zi+1, respectively.

The linear solution for the ith layer satisfying the boundary conditions given by
(3.16)–(3.17) can be found as

φi =
1

k cosh[k(zi − zi+1)]
(k cosh[k(z− zi+1)]φi + sinh[k(z− zi)]w∗i ). (3.18)

Then, the expressions for wi = ∂φi/∂z|z=zi and φ∗i = φi|z=zi+1 can be obtained, in terms
of φi and w∗i , as

wi = kTiφi + Siw∗i , φ∗i = Siφi − (Ti/k)w∗i , (3.19a,b)

where zi − zi+1 = hi has been used, and Ti and Si are given by

Ti = tanh khi, Si = sechkhi. (3.20a,b)

Here, for example, the Fourier multiplier kTi should be understood as kTiφi = LT[φi],
where LT is a linear operator whose kernel is given by kTi in Fourier space. For the
lower layer (i = 2), as w∗2 = 0, the expressions of w2 and φ∗2 given by (3.19) are
simplified to

w2 = kT2φ2, φ∗2 = S2φ2. (3.21a,b)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

18
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.180


Group resonant interactions in a two-layer system 892 A14-9

3.3. Second-order approximation

To find the expressions for Wi correct to O(ε2), we first expand both Φi and Wi about
z= zi as

Φi = φi + ζiwi +O(ε3)= φi + ζi
(
kTiφi + Siw∗i

)
+O(ε3), (3.22)

Wi =wi − ζi∇
2φi +O(ε3)= kTiφi + Siw∗i − ζi∇

2φi +O(ε3), (3.23)

where (3.19) and ∂2φi/∂z2
|z=zi =−∇

2φi have been used. After solving (3.22) iteratively
to find the following expression for φi in terms of Φi and w∗i

φi =Φi − ζi(kTiφi + Siw∗i )+O(ε3)=Φi − ζi(kTiΦi + Siw∗i )+O(ε3), (3.24)

Wi can be expressed, from (3.23), as

Wi = kTiΦi + Siw∗i − ζi∇
2Φi − kTi[ζi(kTiΦi + Siw∗i )] +O(ε3). (3.25)

Similarly to (3.22)–(3.23), Φ∗1 and W∗1 can be expanded about z= z2 as

Φ∗1 = φ
∗

1 + ζ2w∗1 +O(ε3), (3.26)
W∗1 =w∗1 − ζ2∇

2φ∗1 +O(ε3), (3.27)

which can be re-written, using (3.19) and (3.24), as

Φ∗1 = S1Φ1 −
T1

k
w∗1 + ζ2w∗1 − S1[ζ1(kT1Φ1 + S1w∗1)] +O(ε3), (3.28)

W∗1 =w∗1 − ζ2∇
2(S1Φ1 −

T1

k
w∗1)+O(ε3). (3.29)

While w∗2 = 0, one still needs to find the expressions for w∗1 in terms of Φi and
ζi, which can be obtained from the kinematic interface boundary condition (3.3)
approximated to O(ε2) by

W∗1 =W2 −∇ζ2 · ∇Φ2 +∇ζ2 · ∇Φ
∗

1 +O(ε3). (3.30)

By substituting (3.25), (3.28) and (3.29) into (3.30), one can find iteratively the
expression for w∗1 in terms of Φi and ζi as

w∗1 = kT2Φ2 −∇ · (ζ2∇Φ2)− kT2(ζ2kT2Φ2)

+∇ · [ζ2∇ (S1Φ1 − T1T2Φ2)]+O(ε3). (3.31)

After substituting (3.31) into (3.25), the expressions for Wi can be found, in terms of
ζi and Φi, as

W1 = kT1Φ1 + SkT2Φ2 − ζ1∇
2Φ1 − kT1[ζ1(kT1Φ1 + SkT2Φ2)]

+ S[−∇ · (ζ2∇Φ2)− kT2(ζ2kT2Φ2)+∇ · {ζ2∇(SΦ1 − T1T2Φ2)}] +O(ε3),(3.32)

W2 = kT2Φ2 − ζ2∇
2Φ2 − kT2(ζ2kT2Φ2)+O(ε3), (3.33)

where S = S1. Then, from (3.28)–(3.29), the expressions for Φ∗1 and W∗1 correct to
O(ε) can be found, in terms of ζi and Φi, as

Φ∗1 = SΦ1 −
T1

k
(kT2Φ2)+O(ε2), W∗1 = kT1Φ1 +O(ε2). (3.34a,b)
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To obtain an explicit Hamiltonian system, there remains one more step to write Φ2
in terms of the conjugate variables: ζi and Ψi. By substituting (3.31) into (3.28) and
using Φ∗1 = (ρ2Φ2−Ψ2)/ρ1 from the definition of Ψ2, one can find the expression for
Ψ2 as

Ψ2 = (ρ1T1T2 + ρ2)Φ2 − ρ1SΦ1 − ρ1[−S(ζ1(kT1Φ1 + SkT2Φ2))+ ζ2kT2Φ2]

−ρ1
T1

k
[kT2(ζ2kT2Φ2)+∇ · (ζ2∇Φ2)−∇ · {ζ2∇(SΦ1 − T1T2Φ2)}] +O(ε3), (3.35)

which can be inverted iteratively to find the following expression for Φ2 correct up
to O(ε2)

Φ2 = J
[
(Ψ2 + SΨ1)− Sζ1kT1Ψ1 − ρ1(Sζ1S− ζ2)kT2J(Ψ2 + SΨ1)

−
T1

k
∇ · (ζ2∇SΨ1)+ ρ1

T1

k
(kT2ζ2kT2 +∇ · ζ2(1+ T1T2)∇)J(Ψ2 + SΨ1)

]
, (3.36)

where Ψ1 = ρ1Φ1 has been used and J is defined as

J = 1/(ρ1T1T2 + ρ2). (3.37)

3.4. Second-order evolution equations
By using (3.36) along with Φ1=Ψ1/ρ1, one can express Wi, Φ∗i and W∗i , in terms of ζi
and Ψi, from (3.32)–(3.34). Then, after substituting their expressions into (3.12)–(3.14),
one can obtain a system of nonlinear evolution equations for ζi and Ψi (i=1,2) correct
to O(ε2), after lengthy manipulations, as

∂ζ1

∂t
= Γ11[Ψ1] + Γ12[Ψ2] −∇ · (ζ1∇Ψ1)/ρ1

− ρ1Γ11 [ζ1 (Γ11[Ψ1] + Γ12[Ψ2])]−1ρΓ21 [ζ2 (Γ21[Ψ1] + Γ22[Ψ2])]
+1ρ (ρ2/ρ1)Γ31 [∇ · (ζ2∇Γ31[Ψ1])]− ρ2Γ31 [∇ · (ζ2∇Γ33[Ψ2])] , (3.38a)

∂ζ2

∂t
= Γ21[Ψ1] + Γ22[Ψ2] − ρ1Γ12 [ζ1 (Γ11[Ψ1] + Γ12[Ψ2])]

−1ρΓ22 [ζ2 (Γ21[Ψ1] + Γ22[Ψ2])]− ρ2 Γ33 [∇ · (ζ2∇Γ31[Ψ1])]
− ρ2Γ30 [∇ · (ζ2∇Γ30[Ψ2])]+ ρ1Γ32 [∇ · (ζ2∇Γ32[Ψ2])] , (3.38b)

∂Ψ1

∂t
= −ρ1gζ1 +

1
2
ρ1 (Γ11[Ψ1] + Γ12[Ψ2])

2
−

1
2
(∇Ψ1 · ∇Ψ1)/ρ1, (3.38c)

∂Ψ2

∂t
= −1ρgζ2 +

1
2
1ρ (Γ21[Ψ1] + Γ22[Ψ2])

2

+
1
2
1ρ(ρ2/ρ1)(∇Γ31[Ψ1]) · (∇Γ31[Ψ1])−

1
2
ρ2(∇Γ30[Ψ2]) · (∇Γ30[Ψ2])

+
1
2
ρ1(∇Γ32[Ψ2]) · (∇Γ32[Ψ2])− ρ2(∇Γ31[Ψ1]) · (∇Γ33[Ψ2]), (3.38d)

where 1ρ = ρ2 − ρ1 and ∇ is the two-dimensional gradient. The linear integral
operators Γij can be evaluated, in Fourier space, as

Γij[·] =F−1
[γijF [·]], (3.39)
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where F and F−1 are the Fourier and inverse Fourier transforms, respectively, and the
Fourier multipliers γij are defined as

γ11 = kJ
[
(ρ2/ρ1)T1 + T2

]
, γ12 = γ21 = kJST2, γ22 = kJT2,

γ30 = J, γ31 = JS, γ32 = JT1T2, γ33 = J(1+ T1T2),

}
(3.40)

with Ti (i= 1, 2), S= S1 and J defined in (3.20) and (3.37).
When the system given by (3.38) is linearized and (ζi, Ψi) ∼ exp[i(kx − ωt)] for

i= 1, 2 are assumed, one can obtain the linear dispersion relation given by (2.1), as
shown in appendix A. In addition, various limits of the system are also discussed in
appendix A.

The nonlinear evolution equations for ζi and Ψi (i = 1, 2) given by (3.38) are
Hamilton’s equations (3.9), where the Hamiltonian E is the total energy truncated at
O(ε3) given by

E= E2 + E3, (3.41)

with

E2 =
1
2

∫ [
ρ1gζ1

2
+1ρgζ2

2

+Ψ1 (Γ11[Ψ1])+Ψ1(Γ12[Ψ2])+Ψ2(Γ21[Ψ1])+Ψ2(Γ22[Ψ2])
]
dx, (3.42)

E3 = −
1
2

∫ [
ζ1
{
−∇Ψ1 · ∇Ψ1/ρ1 + ρ1

(
Γ11[Ψ1] + Γ12[Ψ2]

)2}
+ ζ2

{
(ρ2/ρ1)1ρ(∇Γ31[Ψ1]) · (∇Γ31[Ψ1])− 2ρ2(∇Γ31[Ψ1]) · (∇Γ33[Ψ2])

+ ρ1(∇Γ32[Ψ2]) · (∇Γ32[Ψ2])− ρ2(∇Γ30[Ψ2]) · (∇Γ30[Ψ2])

+1ρ(Γ21[Ψ1] + Γ22[Ψ2])
2
}]

dx. (3.43)

Therefore, the total energy given by (3.41) with (3.42)–(3.43) is conserved exactly.
Previously, the two-layer problem with a free surface was studied by Alam, Liu

& Yue (2009) using the HOS method. While the truncated Euler equations for the
same variables were solved in Alam et al. (2009), the right-hand sides of their system
are not written so explicitly. Therefore, an extra numerical step is required to close
their system and the total energy is conserved approximately. The explicit Hamiltonian
system given by (3.38) is closed for four conjugate variables and is convenient for
both numerical and theoretical studies. When it is written in spectral space, the explicit
system provides a spectral model preserving the Hamiltonian structure (Choi, Chabane
& Taklo 2020). While the Hamiltonian system is valid for waves propagating in two
horizontal dimensions, only one-dimensional waves will be considered hereafter for
the numerical studies.

4. Numerical method and validation

To solve numerically the system (3.38) in a computational domain of length L, we
adopt for spatial discretization a pseudo-spectral method based on the fast Fourier
transform algorithm with M Fourier modes. The linear integral operators Γij are
evaluated in Fourier space using (3.39). The smallest wavenumber resolved in Fourier
space is given by 1k= 2π/L. Once the right-hand sides of (3.38) are evaluated, the
system is integrated in time using a fourth-order Runge–Kutta scheme with time step
1t.
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To avoid aliasing errors resulting from the use of truncated Fourier series, a
low-pass filter is applied to eliminate one third of the highest wavenumber modes.
The two-layer problem is known to be locally unstable and is in fact ill posed when
the velocity jump 1U across the interface is constant. While the jump induced by a
periodic internal wave varies in space, the instability might be still present for some
physical parameters, but the low-pass filter for de-aliasing is expected to remove
unstable short waves. Therefore, the problem is expected to be regularized. Based
on the local linear stability analysis for two-layer Euler equations by Jo & Choi
(2008), small amplitude disturbances can grow by instability if their wavenumbers are
greater than 2g(ρ2 − ρ1)/(ρ11U2) when khi� 1 (i= 1, 2) and (ρ2 − ρ1)/ρ1� 1 are
assumed. However, it should be remarked that, for the parameters in our simulations,
the velocity jump is so small that the unstable wavenumbers are much greater than
the critical wavenumber kc or the highest wavenumber that we resolve.

During our computations, the total energy defined by (3.41) with (3.42)–(3.43) is
monitored and the numerical accuracy is measured by the energy difference

1E= E0 − EN, (4.1)

where E0 = E(t = 0) and EN = E(t = tN = N1t) are the energies of the initial
condition and the last time step N, respectively. Before we investigate numerically
the evolution under the group resonance, we validate our numerical model by studying
(i) the propagation of Stokes waves in a two-layer system with a free surface and
(ii) exact resonant triad interactions between surface and internal waves.

4.1. Stokes waves in a two-layer system with a free surface
The numerical model is first tested with the second-order Stokes wave solutions for a
two-layer system with a free surface obtained by Thorpe (1968), for which the surface
and interface displacements ζi (i= 1, 2), respectively, are given by

ζ1 = ã+j eiθ
+ ã2je2iθ

+C.C.+O(ε3)= a+[cos θ + σ1(kja+) cos(2θ)+O(ε2)], (4.2)

ζ2 = ã−j eiθ
+ ã−2je

2iθ
+C.C.+O(ε3)= a−[cos θ + σ2(kja−) cos(2θ)+O(ε2)], (4.3)

where a+ = 2ã+j , a− = 2ã−j , θ = kjx−ωjt and σi (i= 1, 2) are defined as

σ1 = ã+2j/[2kj(ã+j )
2
], σ2 = ã−2j/[2kj(ã−j )

2
]. (4.4a,b)

In Thorpe (1968) (Professor Thorpe has kindly provided these solutions after having
corrected typos in his original paper), σi (i= 1, 2) are given explicitly by

σ1 =
(Ω − T1)

2

Ω
cosh 2kjh1 cosh2 kjh1

[
2σ2

(
T1 +

ρ2

ρ1T2
−
ρ2 − ρ1

2ρ1Ω

)
−

1
4

{
2+

ρ2(3− T2
2 )

ρ1T2
2
+

4(1−ΩT1)T1

Ω − T1
−
(1−Ω2) cosh 2kjh1 − (1− 3Ω2)

(Ω − T1)2 cosh 2kjh1 cosh2 kjh1

}]
,

(4.5)

σ2 =
ρ1ΩT2

4µ

[
(2Ω − T1)

{
2+

ρ2(3− T2
2 )

ρ1T2
2

}
+

4(1−ΩT1)(2ΩT1 − 1)
Ω − T1

+ (1−Ω2)
6Ω − (2Ω − T1) cosh 2kjh1

(Ω − T1)2 cosh 2kjh1 cosh2 kjh1

]
, (4.6)
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FIGURE 4. Numerical solutions for Stokes waves (solid line) compared with the second-
order Stokes solution (dotted): (a,c) barotropic and (b,d) baroclinic modes after 10 wave
periods. Notice that, for the barotropic mode, the comparison improves with the second-
order Stokes solution with the nonlinear speed correction (dashed). The density and depth
ratios are ρ1/ρ2 = 0.99 and h1/h2 = 1/2, respectively.

where Ti = tanh kjhi, T i = tanh 2kjhi,

Ω =ω2
j /(gkj), µ= 4Ω2(ρ1T1T2 + ρ2)− 2ρ2Ω(T1 + T2)+ (ρ2 − ρ1)T1T2. (4.7a,b)

Figure 4 shows the numerical solutions after 10 wave periods for the Stokes waves
of the barotropic and baroclinic modes whose wave steepnesses (the product between
the wave amplitude and the wavenumber) are ka= 0.1 and KA= 0.4, where a and A
are the amplitudes of the surface and internal waves, respectively. Here, we use the
number of Fourier modes M = 27 and the time step ω1t = 0.01 and Ω1t = 0.007
for the barotropic and baroclinic simulations, respectively. Then the total energy is
conserved with 1E/E0= 1.18× 10−8 and 1E/E0= 1.6× 10−9 for the two simulations.
The numerical solutions are in good agreement with the Stokes solutions, except for
a slight difference in phase for the barotropic mode. While the second-order Stokes
solutions of Thorpe (1968) have no corrections to the wave speeds, the Hamiltonian
system yields a speed correction from the interaction between the first and second
harmonics. When the Stokes wave solution of the barotropic mode is shifted with this
speed correction, it agrees well with the corresponding numerical solution.

4.2. Class-III resonant triads and comparison with a HOS model
Alam (2012) studied a class-III resonant triad interaction using a third-order HOS
method. An interesting feature observed in his study was that the initial energy of
two waves can spread to several triads through successive resonant interactions. As in
Alam (2012), we initialize the Hamiltonian system (3.38) with one surface and one
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FIGURE 5. Evolution of surface wave amplitudes under resonant triad interactions:
numerical solutions of the Hamiltonian system (3.38) (black curves) compared with those
of Alam (2012) using the HOS method (grey curves). Solid curves: an− (n = 2, 3, 4).
Dashed curves: an+ (n= 2, 3, 4). (a) a1. (b) a2± . (c) a3± . (d) a4± .

internal wave with wavenumbers k1h1' 8.014 and Kh1' 0.308, respectively, in a two-
layer system of ρ1/ρ2 = 0.95 and h1/h2 = 1/2. The corresponding wave steepnesses
are k1a1 = 0.008 and KA= 0.001, respectively. Considering the surface wavenumbers
at resonance with the internal wave of Kh1 ' 0.308 are k1h1 ' 8.014 and k2−h1 '

7.706, the interaction among the primary triad (k1, k2−,K) can be considered the exact
resonance.

In the computation, we choose the number of Fourier modes M= 211 and the time
step ω11t=0.1, where ω1 is the surface wave frequency. The total computation period
is 600 T1, where T1 is the surface wave period given by T1 = 2π/ω1, and the total
energy is conserved with 1E/E0 = 3.44× 10−4.

Figure 5 shows the time evolution of a1 and an± (n = 2, 3, 4), where an± are the
amplitudes of kn± = k1± (n− 1)K. Notice that the amplitudes are normalized with the
initial amplitude a0 = a1(t = 0) of ζ1. Through the resonant triad interaction of class
III with two initial waves of K and k1, the waves of k2± are excited initially. As this
primary triad interaction is exact, the three modes exchange their energies significantly
so that the magnitudes of a2± excited is comparable to that of a1 and the variation of
a1/a0 is O(1). Although the wave steepnesses are rather small, the surface waves of
kn± (n= 3, 4) are also excited over longer time scales through successive near-resonant
triad interactions (Alam 2012).

As can be observed in figure 5, the numerical solutions of the second-order
Hamiltonian system (3.38) compare well with the third-order HOS model except
for some minor discrepancies. From the comparison between the two results, it can
be concluded that the second-order Hamiltonian system would serve as a reliable
theoretical model.
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Ω K A C U0 ω1 k1 a1

Case (rad s−1) (rad m−1) (mm) (m s−1) (m s−1) (rad s−1) (rad m−1) (mm)

I 1.61 6.30 7.6 0.26 2.10× 10−4 20.61 43.29 1.3
II 1.65 6.46 7.6 0.26 1.89× 10−4 13.7 6ω1 6 28.0 19.1 6 k1 6 79.7 1.3

TABLE 1. Dimensional parameters for the experiments of Lewis et al. (1974) with the
density ratio ρ1/ρ2 = 0.87 and the depth ratio h1/h2= 10. Ω: internal wave frequency. K:
internal wavenumber. A: amplitude of internal wave. C=Ω/K: internal wave phase speed.
U0: speed of surface current induced by the internal wave given by (5.4). ω1: surface wave
frequency. k1: surface wavenumber. a1: amplitude of surface wave. Notice that the values
of k1 were not given in Lewis et al. (1974), but are computed using the linear dispersion
relation (2.1).

5. Modulation of short surface waves by long internal waves
5.1. Previous experiments of Lewis, Lake & Ko (1974)

The group resonance was studied experimentally by Lewis et al. (1974), who
examined the slow modulation of a short surface wave with a small amplitude
interacting with a long internal wave with a larger amplitude. The experiments were
performed in a 0.9× 0.9× 12 m tank filled with two fluids whose density ratio was
ρ1/ρ2 = 0.87. The depths of the upper and lower fluid layers were h1 = 0.762 m and
h2= 0.076 m, respectively, giving a depth ratio of h1/h2= 10. Monochromatic surface
and internal waves propagating in the same direction were generated simultaneously in
the tank and the resulting modulation of the free surface was examined. The surface
and internal wave displacements were measured using two independent resistance
gauges at several downstream locations over 10 m. In addition, an optical wave slope
gauge was used to obtain slope estimates of the free surface.

As a measure of the local amplitude, a, and slope modulation, m, of the surface
wave, Lewis et al. (1974) introduced the following fractional changes

a∗ =
amax − amin

amax + amin
, m∗ =

mmax −mmin

mmax +mmin
, (5.1a,b)

where the subscripts max and min represent maximum and minimum of the temporal
measurements of the envelope amplitude and the wave slope at different locations.
Notice that 06 a∗,m∗6 1 with a> 0 and m> 0. As a∗ and m∗ increase from zero with
modulation, they are well suited to quantifying the amplitude and slope modulation of
the surface wave and are measured experimentally as functions of the distance from
the wavemaker, or x.

Lewis et al. (1974) performed two different experiments: cases I and II. For case I,
an internal wave train with frequency Ω and a surface wave train with frequency ω1
were generated. For the group resonance, the wave frequencies were chosen such that
the phase speed of the internal wave, C, is close to the group velocity of the surface
wave, cg. Then the spatial evolutions of a∗ and m∗ were computed from temporal
measurements of the surface elevation at a few different locations.

For case II, while an internal wave with a fixed value of Ω was generated, the
surface wave frequency ω1 was varied to identify the dependence of modulations on
C/cg. In particular, the question was if the maximum modulation occurs when C/cg=

1, or the group resonance condition is met.
Physical parameters for the experiments are summarized in table 1. The data for

cases I and II correspond to rows one and five in the table on page 780 in Lewis

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

18
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.180


892 A14-16 T. M. A. Taklo and W. Choi

Case AK a1k1 Kh1 Kh2 k1h1 C/cg U0/C

I 0.048 0.055 4.80 0.48 33.0 1± 0.02 7.1× 10−4

II 0.048 0.02 6 a1k1 6 0.10 4.93 0.49 14.6 6 kh1 6 60.7 0.75<C/cg < 1.4 6.9× 10−4

TABLE 2. Dimensionless parameters for the experiments of Lewis et al. (1974), where
the density ratio ρ1/ρ2 = 0.87 and the depth ratio h1/h2 = 10 are fixed for both cases.

et al. (1974), respectively. The corresponding dimensionless parameters are listed in
table 2. Notice that the wave steepnesses (KA = 0.048 and k1a1 = 0.055) are small,
but are much greater than those of Alam (2012) discussed in § 4.2, where KA= 0.001
and k1a1 = 0.008.

For ρ1/ρ2 = 0.87 and h1/h2 = 10, the critical wavenumber kc can be computed as
kch1 ' 20.924 from (2.3) while the surface wavenumber for the group resonance kg

is given by kgh1 ' 28.717 from (2.6). It should be remarked that C/cg for the values
of Ω and ω1 in Lewis et al. (1974) is approximately 0.932, which is different from
1± 0.02 in table 2. The source of this discrepancy is unclear, but we use values of
C/cg close to 1 in our numerical simulations, as described later.

5.2. Linear modulation theory
As the amplitude of the surface wave is much smaller than that of the internal wave
(a/A' 0.17), one can assume, at leading order, that the internal wave is little affected
by the surface wave while the surface wave is modulated by a current induced
by the internal wave. When the interface displacement can be approximated by a
monochromatic internal wave so that

ζ2(x, t)= A cos K(x−Ct), (5.2)

the horizontal velocity U induced by the internal wave at the mean free surface can
be approximated by

U(x, t)≈
1
ρ1

∂Ψ1

∂x
=−U0 cos K(x−Ct). (5.3)

Using the linear relationship between Ψ1 and ζ2 given by (A 10) with (A 11) in
appendix A, the current speed U0 > 0 can be obtained as

U0/C= σKA, σ =
gK sech(Kh1)

gK tanh(Kh1)−Ω2
. (5.4a,b)

As U0/C is proportional to the internal wave steepness, or O(KA), one can assume
U0/C� 1 to be consistent with the experiment of Lewis et al. (1974).

When a surface wave train is modulated by a slowly varying surface current U(x, t),
it can be represented by

ζ1(x, t)= a(x, t) eiθ(x,t), (5.5)

where a(x, t) is the amplitude of the envelope varying slowly in space and time
while θ(x, t) is the phase function. The local wavenumber k(x, t) and the local wave
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frequency ω(x, t) can be found as k = ∂θ/∂x, and ω = −∂θ/∂t, respectively. Then,
the slowly varying k and ω satisfy the kinematic wave conservation equation

∂k
∂t
+
∂ω

∂x
= 0. (5.6)

As relatively short surface waves are of interest, one can assume kh1 � 1 so that
the short surface waves satisfy the linear dispersion relation for infinitely deep water,
which is given, in the presence of a slowly varying current U(x) induced by a long
internal wave, by

ω= (gk)1/2 + kU. (5.7)

Substituting (5.7) into (5.6) then yields

∂k
∂t
+ (cg +U)

∂k
∂x
=−k

∂U
∂x
, (5.8)

where cg(k) is the group velocity of the surface wave given by cg =
1
2(g/k)

1/2.
When short surface waves propagate over a non-uniform current, their energy is not

conserved. Instead, the wave action defined by E/(gk)1/2 is conserved (Bretherton &
Garrett 1969), from which the energy density E of the surface wave is governed by

∂E
∂t
+
∂

∂x
[(cg +U)E] =−

1
2

E
∂U
∂x
, (5.9)

where the right-hand side of (5.9) represents the radiation stress in the direction of
the wave field (Longuet-Higgins & Stewart 1960, 1961; Whitham 1962). Under the
small wave steepness assumption, as E is proportional to a2, the evolution equation
for a(x, t) can be obtained, from (5.9), as

∂a2

∂t
+ (cg +U)

∂a2

∂x
=−

3
2

a2 ∂U
∂x
− a2 ∂cg

∂x
. (5.10)

It should be pointed out that the system for k(x, t) and a(x, t) given by (5.8) and
(5.10) can be obtained from the Hamiltonian system (3.38) by taking an appropriate
limit and, therefore, the linear modulation theory is contained in our numerical model.
Although the exact decomposition of the surface and interface displacements into the
barotropic and baroclinic modes should be made in the spectral space, as described in
Choi et al. (2020), it can be shown from (3.38) that the evolution of the barotropic
components of ζ1 and Ψ1 can be approximated, using a small parameter associated
with the slow variation of a baroclinic current U (specifically, K/k1� 1), by

∂ζ1

∂t
= Γ11[Ψ1] −

∂(Uζ1)

∂x
,

∂Ψ1

∂t
=−ρ1gζ1 −U

∂Ψ1

∂x
. (5.11a,b)

Here, U(x, t) is the surface current given by (5.3) that is assumed to vary slowly in
space and time, and the Fourier multiplier for Γ11 acting on the barotropic component,
or short surface waves, is approximated by γ11= |k|/ρ1. Then, substituting (5.5) for ζ1

and a similar expression of Ψ1 into (5.11) yields, at the leading-order approximation
for small K/k1, the evolution equations for a(x, t) and k(x, t) given by (5.8) and (5.10)
(Choi & Lyzenga 2006).
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As shown in Lewis et al. (1974), equations (5.8) and (5.10) can be solved using
the method of characteristics when they are written as

dk
dτ
=−k

∂U
∂x
, (5.12)

da2

dτ
=−

3
2

a2 ∂U
∂x
− a2 ∂cg

∂x
, (5.13)

where the characteristic curves are given by

dx
dτ
= cg +U,

dt
dτ
= 1. (5.14a,b)

To obtain closed-form solutions of (5.12)–(5.13), Lewis et al. (1974) adopted
an asymptotic approach assuming U0/C = O(KA) � 1 from (5.4) or, equivalently,
U0/cg � 1 with C/cg = O(1) for the group resonance. While Lewis et al. (1974)
obtained an asymptotic solution in terms of the Heaviside function, which corresponds
to imposing the boundary condition at the wavemaker, we here use an asymptotic
solution of the initial value problem for (5.12)–(5.14) for the spatially periodic current
given by (5.3) for its comparison with the numerical solutions of the Hamiltonian
system (3.38). The explicit asymptotic solutions are given in appendix B.

At group resonance (C = cg), the solutions of (5.12)–(5.14) for k(x, t) and a(x, t)
valid to O(ε) can be reduced, from (B 12)–(B 13), to

k(x, t)= k0 exp(−U0Kt sin θ1), (5.15)
a(x, t)= a0 exp

[
−

3
4 U0Kt sin θ1 −

1
8 U0C(Kt)2 cos θ1

]
, (5.16)

where θ1 = K(x− Ct). Then, the maxima and minima of a and k at a fixed time are
given by

kmax,min = k0 exp
[
±(U0/C)(Ωt)

]
, (5.17)

amax,min = a0 exp
[
±

3
4(U0/C)(Ωt)

(
1+ 2

72(Ωt)2
)1/2
]
, (5.18)

where Ω=KC has been used and the plus and minus signs are chosen for the maxima
and minima, respectively. Based on the linear modulation theory, both |kmax,min| and
|amax,min| increase with t. Then a∗ and m∗ defined by (5.1) with m= ka can be found
as

a∗(t)= tanh[ 34(U0/C)(Ωt)(1+ 1
36(Ωt)2)1/2], (5.19)

m∗(t)= tanh[ 74(U0/C)(Ωt)(1+ 1
196(Ωt)2)1/2], (5.20)

which are independent of the initial surface wave parameters and depend only on the
internal wave steepness since U0/C= σKA, as shown in (5.4). While k and a increase
in time exponentially, a∗(t) and m∗(t) approach 1 as t→∞.

For small t, or Ωt� 1, a∗(t) and m∗(t) can be approximated by

a∗(t)' 3
4(U0/C)(Ωt), m∗(t)' 7

4(U0/C)(Ωt). (5.21a,b)

Therefore, for small Ωt, or equivalently, small Kx with x=Ct , both a∗(t) and m∗(t)
grow linearly in time and the growth rates increase with the internal wave steepness.
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In fact, Lewis et al. (1974) noticed that the experimental data for different physical
parameters collapse when a∗/(U0/C) and m∗/(U0/C) are used. This shows that their
measurements were made over a relatively short distance or short time.

The exponential growths of a(x, t) and k(x, t) in time given by (5.15)–(5.16) are the
result of the linear modulation theory for surface waves without considering the energy
exchange with the internal wave. Therefore, the solutions given by (5.15)–(5.16) would
be valid for Ωt�O(1/ε). As time increases so that Ωt=O(1/ε), the energy exchange
through near-resonant triad interactions becomes important and the linear modulation
theory is expected to less accurately describe the evolution of a(x, t) and k(x, t).

Another interesting feature in question is the location of the rough sea surface
relative to the phase of the internal wave. Previously, its exact location for the long
internal wave or the internal solitary wave has not been well understood as different
field observations have been made (Gasparovic et al. 1988; Watson & Robinson 1990;
Hwung et al. 2009).

From (5.15)–(5.16), the local wave steepness m= ka is given by

m(x, t)=m0 exp[ 74(U0/C)(Ωt)(1+ 1
196(Ωt)2)1/2 cos(θ1 − ϕ)], (5.22)

where m0 = k0a0, and ϕ is defined as

ϕ = tan−1

(
6
Ωt

)
+π, (5.23)

which yields ϕ = 3π/2 for small t and ϕ = π for large t. Then, from (5.22), as the
maximum surface wave steepness is observed at θ1 = ϕ, its location can be found
initially at up-crossings behind the crests of the internal wave, or at the points where
the surface current given by (5.3) converges. On the other hand, as t increases, the
location of the maximum surface wave steepness is expected to be right above the
internal wave troughs. Therefore, under the group resonance condition, steep surface
waves are expected to appear at a point where the surface current converges only for a
relatively short interaction period, but eventually appear right above the wave troughs.
This conclusion, based on the linear modulation theory, will be further discussed later
with the numerical solutions of the nonlinear Hamiltonian system.

6. Numerical solutions compared with the experiment
When the internal wave characteristics (K, Ω) are used to non-dimensionalize

physical variables, a∗(t) and m∗(t) are functions of the following dimensionless
parameters

(a∗,m∗)= f (Ωt, k1/K, Ka1, KA, Kh1, Kh2, ρ1/ρ2) . (6.1)

Under the group resonance condition (cg = C), the ratio between the surface and
internal wavenumbers k1/K is fixed and can be dropped from (6.1). Then, an
alternative form of (6.1) is given by

(a∗,m∗)= f (Ωt, k1a1, KA, Kh1, h1/h2, ρ1/ρ2) . (6.2)

Equation (6.2) identifies the dimensionless parameters involved for the surface wave
modulation under group resonance. As shown in (5.21), at the early stage of surface
modulation, both a∗ and m∗ are independent of the surface wave steepness εS = k1a1
and depend linearly on the internal wave steepness εI = KA for fixed values of the
remaining parameters. In the simulations presented hereafter, following Lewis et al.
(1974), we use fixed values of εS= 0.055 and Kh1= 4.8, but vary εI , h1/h2 and ρ1/ρ2.
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6.1. Initialization for the experiment of Lewis, Lake & Ko (1974)
After employing h1/h2 = 10 and ρ1/ρ2 = 0.87, the same as those in the experiment
of Lewis et al. (1974), we assume that the internal wave is a monochromatic wave
(5.2) with Kh1 = 4.8. Due to the periodic boundary conditions used in the pseudo-
spectral method, a surface wavenumber identical to that used in the experiment is not
admissible. As an integer number of surface wavelengths must be employed within an
internal wavelength, the wavenumber of the initial monochromatic surface wave can
be written as

k1 = κK, (6.3)

where κ is an integer.
For case I, we choose κ = 6 so that the surface wavenumber k1h1 = 28.8, which is

close to the wavenumber for group resonance, kgh1 ' 28.717. Then, C/cg ' 1.009. In
comparison with C/cg= 1± 0.02 in Lewis et al. (1974), our choice of κ = 6 gives k1,
which is within the error estimate of the experiment. For case II, κ = 2–14, giving a
range of ratios for C/cg in the experiment.

In our numerical simulations, we use wave steepnesses identical to those used in the
experiments: εS= 0.055 and εI= 0.048. While εS and εI are comparable, the amplitude
of the internal wave is much greater than that of the surface wave: A/a1 ' 5.24. The
initial conditions for ζ1 and ζ2 are given by a linear superposition of the surface
(barotrophic) and internal (baroclinic) wave modes so that

ζ1 = a1 cos(k1x)+ β−3 A cos(Kx), ζ2 = α
+

3 a1 cos(k1x)+ A cos(Kx), (6.4a,b)

where α+3 = α3(k1, ω1) and β−3 = β3(K, Ω) with α3 and β3 given by (A 9) and (A 11),
respectively. For the physical parameters in the experiment, α+3 ≈ 0 and β−3 =−7.18×
10−4. Therefore, it can be safely assumed that the surface and interface displacements
represent mostly those from the surface and internal wave modes, respectively. In
addition, the linear relations in appendix A are used for Ψ1 and Ψ2.

The computational domain length and time are chosen to be sufficiently large
for short surface waves to be fully evolved, typically, 5Λ and 12T , respectively,
where Λ = 2π/K and T = 2π/Ω are the wavelength and period of the internal
wave, respectively. Convergence tests are performed for different choices of the
computational domain length L and the number of grid points per surface wavelength
Mζ1 and their results will be discussed in § 6.2. The time step 1t is chosen such that
the Courant–Friedrichs–Lewy conditions are met: c11t/1x � 1 and C1t/1x � 1,
where 1x= L/M while c1=ω1/k1 and C=Ω/K are the phase speeds of the surface
and internal waves, respectively.

As the numerical model solves initial value problems with periodic boundary
conditions, it computes the temporal evolution of the surface and internal waves.
For comparison with the measurements of a∗ and m∗, the temporal evolution of the
surface wave envelope needs to be transformed to the corresponding spatial evolution,
or vice versa. Here, the transformation with the group velocity of the surface wave is
adopted, i.e. x= cgt, and the interaction distance measured with respect to K becomes
Kx=Kcgt =KCt=Ωt when C/cg = 1.

6.2. Comparison with experiments of Lewis et al. (1974)
Figure 6 shows the time evolution of the surface and internal wave displacements for
case I. From figure 6(a), it is observed that the simulated surface wave is modulated
by the internal wave and evolves into almost spatially periodic wave packets. When it
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FIGURE 6. Snapshots of (a) surface (ζ1) and (b) interface (ζ2) displacements for case
I with C/cg ' 1. Solid curves: simulated wave displacements. Dashed curves: theoretical
upper wave envelope from (5.16) in § 4. Dotted curves: the interface displacements shown
in (b) to display the relative phase between the surface and interface displacements. Notice
that the vertical scales of the surface and interface displacements are different. At t = 0
the amplitude ratio between the surface and internal wave modes is A/a1 = 5.24. The
horizontal axis is given by x/λ1, where λ1 is the surface wavelength.

is compared with the numerical solution, the linear modulation theory in § 5.2 predicts
accurately the amplitude of the envelope, but, for instance, around Ωt≈ 80, starts to
overpredict the surface modulation. From figure 6(b), a slight change in the internal
wave profile is observed relative to the initial profile. Slightly steep crests and flattened
troughs are observed. This change could be attributed to the effect of the second-order
nonlinearity in the Hamiltonian system on the internal wave. This nonlinear behaviour
seems to appear due to the shallowness of the lower layer, where the dimensionless
internal wavenumber Kh2= 0.48 or h2/Λ= 0.076. In the simulations for larger values
of Kh2, the internal wave of the same steepness shows little changes in its profile.

As shown in figure 6(a), the maximum surface wave steepness is observed
approximately right above the internal wave troughs. This is consistent with the
theoretical prediction discussed in § 5.2. Therefore, while the linear modulation
theory starts to deviate from the numerical solution (and the observation) at Ωt≈ 80,
it predicts well the location of steep surface area.

Figure 7 shows the numerical results for the amplitude modulation a∗ given by (5.1)
as a function of Ωt for varying two numerical parameters: Mζ1 and L, which are the
number of spatial grid points per surface wavelength and the computational domain
length, respectively. The numerical data for a∗ are shown scattered for fixed values
of Mζ1 and L. For the convergence test, the scattered numerical results are smoothed
with 50 iterations of a three-point moving average. The solid black and grey curves
show smoothed numerical data for various choices of Mζ1 and L. This convergence
test shows that the choice of Mζ1 = 32 and L= 5Λ, employed in figure 6, is sufficient
to capture the amplitude modulation described by a∗.

Figure 8 shows the amplitude a∗ and slope m∗ modulations for case I, as
functions of Ωt, from the experiment, simulation and linear modulation theory.
The experimental data shown by open circles are extracted from figures 12 and 13
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Numerical data, MΩ1
 = 32, L/Ò = 5

Smoothed data, MΩ1
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Smoothed data, MΩ1
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FIGURE 7. Convergence of amplitude modulation, a∗, as a function of Ωt for case I for
different values of the number of spatial grid points per surface wavelength Mζ1 and the
computational domain length L. The numerical data (dots) are smoothed with 50 iterations
of a three-point moving average.
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FIGURE 8. Normalized amplitude and slope modulation, a∗ and m∗ defined by (5.1), as
functions of Ωt for case I. Open circles: experiment; dots: simulation employing κ = 6 in
(6.3); dashed curves: smoothed numerical solutions; solid curves: linear modulation theory
of Lewis et al. (1974) given by (B 15)–(B 16); dash–dotted curves: linear modulation
theory given by (5.19)–(5.20).

on page 796 in Lewis et al. (1974) and are normalized by U0/C. As shown in (5.21),
this normalization makes their experimental data for different physical parameters
collapse almost onto a single curve over a short interaction distance or time. The two
theoretical solutions discussed in appendix B, corresponding to those of the boundary
and initial value problems, respectively, are also presented, but show little difference.
This confirms that the transformation from the temporal evolution of the surface wave
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FIGURE 9. Normalized amplitude and slope modulation, a∗ and m∗, from (5.1) as
functions of C/cg at Kx=Ωt= 43 for case II. Open circles: experiment; dots: simulations
employing κ = 2–14 in (6.3); dash–dotted curves: linear modulation theory given by
(B 12)–(B 13).

to the spatial evolution using its group velocity is reliable. Therefore, hereafter, only
the asymptotic solutions in § 5.2 will be presented.

As shown in figure 8, the experimental and numerical data are in good agreement,
although relatively minor discrepancies are observed. On the other hand, the linear
modulation theory agrees with the experimental and numerical data approximately up
to Ωt= 30, but clearly overestimates the surface wave modulation approximately for
Ωt> 40. This observation indicates that the linear modulation theory fails to describe
the modulation after the initial exponential growth and needs to be modified to include
nonlinear effects, as discussed in the following section.

To investigate how effective the group resonance mechanism is for the modulation
of short surface waves, we numerically study case II of Lewis et al. (1974). Figure 9
shows a∗ and m∗ as functions of C/cg at a fixed propagation distance of Kx=Ωt= 43,
chosen in their experiment. The experimental data are extracted from figures 14
and 15 on page 797–798 in Lewis et al. (1974). From figure 9, it is observed
experimentally, numerically and theoretically that the largest amplitude and slope
modulation appear under the group resonance condition, C/cg = 1. Notice that, due
to the periodic boundary conditions of our numerical model, only a few data points
are available through κ = 2–14 in (6.3). Nevertheless, the limited numbers of data
points reveal the trend of the experiment and theory.

6.3. Evolution of surface waves over a longer period
Figure 10 shows a∗ and m∗ as functions of Ωt for case I for a longer period than
that displayed in figure 8. It is observed that, after the initial exponential growth, the
modulation reaches a maximum at Ωt≈ 90 before it starts to oscillate. This implies
that the k1 wave is modulated and starts to exchange energy with its sidebands through
near-resonant wave interactions, as discussed in Alam (2012). In Lewis et al. (1974),
as the measurements were made over a short distance, the initial growth of sidebands
were reasonably well described by the linear modulation theory and no energy flow
back to the carrier wave was observed.
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FIGURE 10. Normalized amplitude and slope modulation, a∗ and m∗ defined by (5.1),
as functions of Ωt for case I for a longer period than the experiment of Lewis et al.
(1974). Open circles: experiment; dots: simulation employing κ = 6 in (6.3); dashed
curves: smoothed numerical solutions; dash–dotted curves: linear modulation theory given
by (5.19)–(5.20).
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FIGURE 11. Numerical solutions of the Hamiltonian system for the amplitudes of surface
and internal waves for internal wave steepness εI = 0.048 corresponding to case I of the
experiments. (a) Internal wave amplitude A. (b) Surface wave amplitude a1. (c,d) Near-
resonant surface wave amplitudes an+ (dashed curves) and an− (dash–dotted curves) for
n= 2, 3. The amplitudes are normalized by the initial surface wave amplitude a0= a1(t=
0).

Figure 11 shows the time evolution of A, a1 and an± (n = 2, 3) that are
the wave amplitudes of wavenumbers K, k1 and kn± = k1 ± (n − 1)K. These
amplitudes are computed from the moduli of the numerical surface and interface
displacements |ζ̂1(k, t)| and |ζ̂2(k, t)|, respectively, which have been shown to be good
approximations to the amplitudes of the surface and internal wave modes, as pointed
out in (6.4). The amplitudes are normalized by the initial amplitude of the surface
wave a0 = a1(t= 0) of ζ1.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

18
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.180


Group resonant interactions in a two-layer system 892 A14-25

From figure 11(a), the internal wave amplitude A whose magnitude is approximately
5 times higher than a1 is observed to oscillate with a relatively small amplitude. While
the source of this oscillation of a relatively short period (but much greater than 2π/Ω)
is unclear, it seems to be the effect of the shallow lower layer (Kh2 = 0.48) as the
simulations with deeper lower layers do not exhibit such an oscillation. Unfortunately,
no measurements of internal waves were reported in Lewis et al. (1974).

In the meantime, it is observed from figure 11(b) that a1 also oscillates with
a small amplitude, but with a much longer period than the oscillation period of
A. Initially a1 decreases and reaches its minimum around Ωt ≈ 90 indicating that
energy is transferred to neighbouring wave components that satisfy the near-resonant
conditions. As can be seen from figure 11(c), a2± , which are the third members of
the primary resonant triads, receive energies from the waves of A and a1 to grow
from zero and then decay by returning their energies back to a1 and A. This process
repeats with distinct recurrence periods: Ωt ≈ 150 for a2+ and Ωt ≈ 210 for a2− .
When a2± are close to their maxima around Ωt ≈ 90, the surface wave modulation
measured by a∗ and m∗ reaches its maximum, as shown in figure 10. Similarly to
Alam (2012), a3± are also excited by successive interactions, but their amplitudes
observed in figure 11(d) are much smaller than those of the primary resonant triads,
e.g. approximately one order of magnitude smaller than a2± .

Unlike the resonant interaction studied by Alam (2012) (also considered in § 4.2),
the interactions are relatively weak for the parameters used in the experiment of
Lewis et al. (1974). For example, the variation of the amplitude of the k1 wave
during the primary triad interaction with k2± is much smaller than that observed in
Alam (2012). Furthermore the amplitudes of the sidebands excited by the successive
interactions (kn± for n > 3) are much smaller than those in Alam (2012). Although
they are necessary to accurately describe the surface wave field, the sidebands excited
by successive interactions are less important for the parameters in the experiment of
Lewis et al. (1974).

7. Discussion
7.1. Amplitude equations for group resonance

When an internal wave train of wavenumber K co-exists with a surface wave train of
k1 that is equal or close to kg, it has been shown that the surface wave is modulated
by a non-uniform surface current induced by the internal wave. In particular, the
description of the two primary triads (k1, k2−,K) and (k1, k2+,K) seems to be critical.

When the amplitudes of the kj and K waves are denoted by aj and A, respectively,
it is well known that their time evolution can be studied by a system of amplitude
equations. In Choi et al. (2020), such a system for two-layer flows is obtained in
terms of complex conjugate variables Aj and B0, which are related approximately to
the real amplitudes aj and A as

aj(t)≈

√
2
ωj
|Q(1,1)

j |
∣∣Aj

∣∣ , A(t)≈

√
2
Ω
|Q(2,2)

0 | |B0| , (7.1a,b)

where Q(m,n)
j = Q(m,n)(kj) are real-valued functions depending on the wavenumber

and physical parameters (density and depth ratios), as listed in appendix C. These
relationships are found by assuming that the surface and interface displacements
approximately represent the amplitudes of the barotropic and baroclinic modes as the
leading-order approximation.
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Then, the amplitude equations for surface (A1,A2±) and internal (B0) wave modes
are given by

dA1

dt
= i V (2)

1,2−,0 A2− B0 e−iδ−t
+ i V (2)

2+,1,0 A2+ B∗0 eiδ+t, (7.2a)

dA2−

dt
= i V (2)

1,2−,0 A1 B∗0 eiδ−t,
dA2+

dt
= i V (2)

2+,1,0 A1 B0 e−iδ+t, (7.2b)

dB0

dt
= i V (2)

1,2−,0A1A∗2−eiδ−t
+ iV (2)

2+,1,0A
∗

1A2+eiδ+t, (7.2c)

where the expressions for the interaction coefficients V (2)
1,2±,0 = V (2)(k1, k2±, K) can be

found in appendix C. Notice that the amplitude equations for exact resonance have
been modified to describe near-resonant interactions by multiplying the exponential
functions with δ− and δ+, which are detuning parameters from exact resonance defined
as

δ− =ω1 −ω2− −Ω, δ+ =−ω1 +ω2+ −Ω. (7.3a,b)

While it is not written explicitly, the system given by (7.2) describes the evolution of
the slowly varying wave amplitudes that depend on the slow time εt with ε being the
wave steepness, which could be either εI or εS with εI =O(εS). In addition, δ±/ω1 =

O(ε) has been assumed for near-resonant interactions.
For the experiment of Lewis et al. (1974), the wavenumbers and frequencies of the

primary triads are

(k1, k2−,K)= (28.8, 24.0, 4.8)/h1, (ω1, ω2−, Ω)' (5.367, 4.899, 0.448)/(g/h1)
1/2,

(7.4a)
(k1, k2+,K)= (28.8, 33.6, 4.8)/h1, (ω1, ω2+, Ω)' (5.367, 5.797, 0.448)/(g/h1)

1/2,

(7.4b)

which yield δ− ∼ 0.020/(g/h1)
1/2 and δ+ ∼ −0.018/(g/h1)

1/2. Using the expressions
presented in appendix C, the interaction coefficients in (7.2) are computed as

V (2)
1,2−,3 ' 0.265, V (2)

2+,1,3 ' 0.314, (7.5a)

while the transformations given by (7.1) become

a1(t)≈ 3.512|A1|, a2−(t)≈ 3.356|A2− |, a2+(t)≈ 3.650|A2+ |, A(t)≈ 2.624|B0|,
(7.6a−d)

where we have used the computed values of Q(1,1)
1 ' 5.754, Q(1,1)

2− ' 5.252, Q(1,1)
2+ '

6.215 and Q(2,2)
0 '−1.242.

From k1a1(0)= εS(=0.055) and KA(0)= εI(=0.048) with k1h1=28.8 and Kh1=4.8,
the initial wave amplitudes are found a1(0)/h1 ' 1.91 × 10−3 and A(0)/h1 ' 1.0 ×
10−2, which yield, from (7.1), A1(0)' 5.43× 10−4 and B0(0)'−3.81× 10−3 while
A2±(0)= 0.

For small t, one can show from (7.2b) that A2± grow linearly in t so that a2±(t)
are given by

a2−/a0 ' 2.16× 10−3Ωt, a2+/a0 ' 2.77× 10−3Ωt, (7.7a,b)

where a0 = a1(0). The estimated linear growth rates from the numerical solutions
shown in figure 11 are approximately 2.3×10−3 and 2.8×10−3 for a2−/a0 and a2+/a0,
respectively, which are in good agreement with the theoretical predictions in (7.7).
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FIGURE 12. Numerical solutions of the amplitude equations given by (7.2) for the
time evolution of the surface wave amplitudes for case I. Solid: a1(t); dashed: a2+(t);
dash–dotted: a2−(t). The amplitude of the internal wave shows little change from its initial
value and is not shown here. The amplitudes are normalized by the initial amplitude
a0 = a1(t= 0).

Figure 12 shows the numerical solution of the amplitude equations given by (7.2).
The recurrence period of a2− is different from that in the numerical solution of
the Hamiltonian system for a2− shown in figure 11. The cause of this difference
is unclear, but could be attributed to the assumption that the surface displacement
can be approximated only by the amplitude of the barotropic mode as the density
difference between the two fluids is non-negligible. Nevertheless, considering that
we only describe the primary triad interactions, the comparison between the two
numerical solutions for surface waves is reasonable, for example, in terms of the
amplitudes of a2± .

It should be stressed that the exponential functions with δ± in (7.2) are crucial
to describe near-resonant wave interactions. If δ± = 0 are used, the solutions of the
amplitude equations would be so different from those of the Hamiltonian system.
The numerical solution of the amplitude equations for the internal wave amplitude
shows no short-period oscillation observed in figure 11 and remain almost constant.
As mentioned previously, the oscillation of the internal wave might result from its
own nonlinear effect amplified by the shallowness of the lower layer, which cannot
be described by the amplitude equations given by (7.2).

7.2. Realistic oceanic condition
Simulations were performed with a density ratio close to one, ρ1/ρ2 = 0.99, for a
realistic oceanic condition. The depth ratio is chosen to be h1/h2 = 1/2 so that the
thickness of the lower layer is greater than that of the upper layer. In the experiment
of Lewis et al. (1974), the density and depth ratios were ρ1/ρ2= 0.87 and h1/h2= 10,
respectively. The internal wave is assumed to have the same wavelength as before, so
that Kh1 = 4.8 and Kh2 = 2Kh1. Therefore, the internal wavelength is comparable to
both the upper and lower layer thicknesses for the condition of long waves. For this
internal wavenumber, the resonance condition of C/cg = 1.0025 yields κ = k1/K = 50
in (6.3). This implies that the wavelength of a surface wave at group resonance is
50 times smaller than the internal wavelength. Furthermore, the waves to be excited
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FIGURE 13. Numerical solutions for the time evolution of surface and interface
displacements with realistic parameters ρ1/ρ2 = 0.99 and h1/h2 = 1/2. The surface wave
steepness is fixed as εS = 0.06 while two different internal wave steepnesses εI are used.
(a,c) Surface wave displacements. (b,d) Internal wave displacements. (a,b) εI = 0.05; (c,d)
εI = 0.10. The internal wave amplitudes shown in (b) and (d) are 25 and 45 times larger
than the surface wave amplitudes in (a) and (c), respectively. Notice that the surface
displacement is shown over one internal wavelength while the interface displacement is
shown over the whole computational domain.

by successive near-resonant interactions would have wavenumbers close to k1. For
example, k2± = k1 ±K = k1(1±K/k1)≈ k1 with K/k1 = 1/50� 1.

Figure 13 shows the surface and interface displacements for surface wave steepness
εS=0.06 and two different internal wave steepnesses εI=0.05 and 0.1. Figures 13(a,b)
and 13(c,d) correspond to εI = 0.05 and 0.10, respectively. Figures 13(a,c) and 13(b,d)
show the surface and interface displacements, respectively. Due to the scale separation
between the two wave fields, while the entire wave field covering five wavelengths
(5Λ) is displayed for the internal wave, the surface wave field is shown over only
one internal wavelength (Λ= 50λ1) to better observe the surface wave field.

Compared with the experiment of Lewis et al. (1974) with a shallow lower
layer, when the lower layer depth is increased, the monochromatic internal wave
field experiences little change throughout the evolution regardless of the steepness
employed. Initially, for both internal wave steepnesses, the slowly varying surface
wave envelope is developed as the linear modulation theory predicts. As the steepness
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FIGURE 14. Surface and interface displacements at Ωt= 80 over one internal wavelength
from the numerical solutions shown in figure 13. (a,b) Surface wave displacements. (c,d)
Internal wave displacements. (a,c) εI = 0.05. (b,d) εI = 0.10. Solid curves: simulated
wave displacements. Dashed curves: theoretical upper wave envelope from (5.16) in § 5.2.
Dotted curves: the interface displacements shown in (b) to display the relative phase
between the surface and interface displacements. The displacements are normalized with
the initial surface wave amplitude a0 = a1(t= 0).

of the internal wave increases, the induced surface current grows. Then the surface
waves deviate quickly from the prediction of the linear modulation theory and evolve
into a number of groups.

An interesting feature observed from figure 13 is that a relatively broad single wave
packet is initially formed as the linear modulation theory predicts, but then becomes
localized as time increases. This process seems to repeat, but, after each cycle, the
number of localized wave groups increases by one. This is related to the time-periodic
exchange of wave energies through primary and subsequent resonant triad interactions,
to be discussed later in this section.

Once again, as shown in figure 14, steep surface waves are observed right above
where the internal wave troughs are located, which is consistent with the previous
observation from figure 6 and the prediction of the linear modulation theory. While it
fails to describe the detailed evolution and disintegration of wave groups, the linear
modulation theory predicts reasonably well the location of highly modulated surface
region.

Figure 15 shows a∗ and m∗ as functions of Ωt for surface wave steepness εS= 0.06
and different internal wave steepnesses εI = 0.01, 0.05 and 0.1. Both a∗ and m∗
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FIGURE 15. Amplitude and slope modulation, a∗ and m∗, as functions Ωt for surface
wave steepness εS = 0.06 and three different internal wave steepnesses with oceanic
parameters ρ1/ρ2 = 0.99 and h1/h2 = 1/2. Light grey: internal wave steepness εI = 0.01.
Dark grey: εI = 0.05. Black: εI = 0.10. Dots: simulation. Solid curves: linear modulation
theory given by (5.19)–(5.20). Dashed curves: smoothed numerical solutions.

increases with the internal wave steepness. Initially, the numerical data are distributed
close to the theoretical curves. As time increases, the numerical solutions under
the realistic density condition show a qualitatively different behaviour compared
to that observed from figure 10. After the initial exponential growth, the theory
underestimates the modulation when it is compared with the numerical data and
both a∗ and m∗ increase significantly faster. When the wave field is fully modulated,
the wave fields display short recurrence periods and a∗ and m∗ reach the maximum
theoretical value of one.

Figure 16 shows the time evolution of the surface wave amplitudes for a1 and an±
(n = 2, 3, . . . , 11) at k1 and kn± = k1 ± (n − 1)K for the simulation with εS = 0.06
and εI = 0.1. It is observed that, at Ωt = 20, only an± for n = 2, 3, 4 are exited
significantly while all modes an± are excited approximately equally at Ωt = 60.
Figure 16 shows that the initially monochromatic surface wave field evolves into a
relatively broad-band spectrum of discrete modes kn± due to successive near-resonant
interactions between long internal and short surface waves. The time evolution of
the first few modes is shown in figure 17. Unlike the results shown in figure 11 for
the parameters relevant for the experiment of Lewis et al. (1974), significant energy
exchanges between primary and secondary triad modes are observed during their
interactions. From (2.5), one can see that the group resonance condition becomes
so close to the exact resonance condition as K/k1 � 1 for the oceanic condition.
Therefore, it can be concluded that the energy spread to the sidebands of the surface
wave occurs more quickly as the density ratio is close to one.

8. Conclusion
We have developed a second-order Hamiltonian system describing the evolution

of coupled surface and internal gravity waves and have investigated the evolution of
short surface gravity waves interacting with a long internal wave under the group
resonance condition. The Hamiltonian system conserving exactly the total energy is
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FIGURE 16. Snapshots of amplitude spectrum for a1 and an± (n= 2, 3, . . . , 11) at k1 and
kn± = k1 ± (n − 1)K: (a) Ωt = 0; (b) Ωt = 20; (c) Ωt = 40; (d) Ωt = 60. Notice that
all resonant waves appear near k1 as K/k1 = 1/50. The initial surface and internal wave
steepnesses are given by εS = 0.06 εI = 0.1, respectively.
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FIGURE 17. Time evolution of the amplitudes of surface and internal waves for the
oceanic condition. (a) Internal wave amplitude A. (b) Surface wave amplitude a1. (c,d):
Near-resonant surface wave amplitudes an+ (dashed curves) and an− (dash–dotted curves)
for n = 2, 3. The amplitudes are normalized by the initial amplitude a0 = a1(t = 0).
The initial surface and internal wave steepnesses are given by εS = 0.06 and εI = 0.1,
respectively.

written explicitly for four conjugate variables and describes the coupled motions of
surface and internal waves of arbitrary wavelengths propagating in two horizontal
dimensions. Special attention has been paid to surface wave modulation observed
experimentally in a two-layer system by Lewis et al. (1974). We have attempted
to reproduce the experimental observations of Lewis et al. (1974) on the envelope
amplitude and slope variations.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

18
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.180


892 A14-32 T. M. A. Taklo and W. Choi

When an internal wave with a relatively large amplitude is interacting with
small amplitude surface waves, it is commonly assumed that the internal wave
remains almost unchanged during their interactions and can be modelled as a known
surface current. Then, the interaction between the surface and internal waves is
formulated as a wave–current interaction problem, which is in turn studied using the
linear modulation theory. In comparison of our numerical solutions with laboratory
measurements and asymptotic solutions, it has been shown that this approach can be
justified for the short-term evolution.

However, from our numerical simulations over a longer interaction period, it has
been found that the linear modulation theory becomes invalid after the amplitudes
of sidebands grow sufficiently. Then, it has been shown that the wave components
satisfying approximately the condition for resonant triad interactions of class III start
to exchange their energies. Of great interest is whether this physical process can be
observed experimentally in a two-layer system, although such an experiment might be
non-trivial.

Under a realistic oceanic condition, it has been observed that the bandwidth of
surface waves quickly increases via successive near-resonant interactions and the
evolution of such broadband waves cannot be easily described by a finite number of
discrete modes governed by a low-dimensional dynamical system. In the present study,
we have demonstrated that the second-order Hamiltonian system written explicitly
in terms of conjugate variables in both physical and spectral spaces is a useful
theoretical tool to study the resonant and near-resonant interactions of surface and
internal waves of arbitrary bandwidths.

For physical parameters relevant for the oceanic condition, the wavelengths resolved
in the simulations are much longer than those relevant for capillary waves and
therefore the surface tension effect on the free surface has been neglected, although
it can be easily included in the Hamiltonian system (Choi et al. 2020). For an
interaction that occurs over a much longer time scale than O(1/ε) with ε being the
wave steepness, a higher-order nonlinear simulation with the surface tension would
be necessary.
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Appendix A. Various limits of the Hamiltonian system
A.1. Linear system

Under the small amplitude assumption, the system given by (3.38) can be linearized
(Craig, Guyenne & Kalisch 2005) to

∂ζ1

∂t
= γ11Ψ1 + γ12Ψ2,

∂ζ2

∂t
= γ21Ψ1 + γ22Ψ2,

∂Ψ1

∂t
=−ρ1gζ1,

∂Ψ2

∂t
=−1ρgζ2.

(A 1a−d)
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When the linear solutions given by (ζ1, ζ2, Ψ1, Ψ2)= (a1, a2, b1, b2) exp [−i(kx−ωt)]
are substituted into (A 1), the equation for ω can be obtained as

ω4
− g (ρ1γ11 +1ργ22) ω

2
+ ρ11ρg2 (γ11γ22 − γ12γ21)= 0, (A 2)

which is equivalent to (2.1). The solutions of (A 2) yield the dispersion relations given
by

ω2
±
=

ρ2gk
2(ρ1T1T2 + ρ2)

[(T1 + T2)±

√
(T1 + T2)2 − 41ρ(ρ1T1T2 + ρ2)T1T2/ρ

2
2 ]. (A 3)

Notice that both ω+ and ω− are always real and represent the wave frequencies for
the barotropic (surface wave) and baroclinic (internal wave) modes, respectively.

The amplitude ratio between the surface and interface displacements is given by

a1

a2
=

(
1ρ

ρ1

)
b1

b2
=

1ρgkST2

ω2(ρ1T1T2 + ρ2)− gk(ρ2T1 + ρ1T2)
=

Sω2

ω2 − gkT1
, (A 4)

where (A 2) has been used for the last expression. It can be shown that the ratio is
always positive for the barotropic mode (ω=ω+) and negative for the baroclinic mode
(ω=ω−).

If the lower layer is infinitely deep (h2→∞) so that T2 = tanh kh2→ 1, equation
(A 3) yields the dispersion relations (Lamb 1932) for the barotropic and baroclinic
modes

ω2
+
= gk, ω2

−
=

1ρgkT1

ρ1T1 + ρ2
, (A 5a,b)

respectively.
Under the Boussinesq approximation for small density jump, i.e. 1ρ � ρ2, the

solutions given by (A 3) can be approximated (Lamb 1932) by

ω2
+
= gkT1+2

[
1+O

(
1ρ

ρ2

)]
, ω2

−
=
1ρgkT1T2

ρ2(T1 + T2)

[
1+O

(
1ρ

ρ2

)]
, (A 6a,b)

where T1+2 = tanh[k(h1 + h2)]. These correspond to the wave frequencies for surface
waves in water of depth h1 + h2 and for internal waves in a two-layer system with a
rigid top, respectively. The amplitude ratio can be then approximated as(

a1

a2

)
+

'
T1 + T2

ST2
> 0,

(
a1

a2

)
−

'−

(
1ρ

ρ2

)
ST2

T1 + T2
< 0. (A 7a,b)

To initialize the model, it is more convenient, for the surface wave mode, that b1,
b2 and a2 are expressed, in terms of the surface wave amplitude a1, as

b1 = α1a1, b2 = α2a1, a2 = α3a1, (A 8a−c)

where

α1 =
iρ1g
ω
, α2 =

(iω− γ11α1)

γ12
, α3 =−

i(γ21α1 + γ22α2)

ω
, (A 9a−c)

while, for the internal wave mode, b1, b2 and a1 are expressed, in terms of the internal
wave amplitude a2, as

b1 = β1a2, b2 = β2a2, a1 = β3a2, (A 10a−c)

where

β1 =
(iω− γ22β2)

γ21
, β2 =

i1ρg
ω

, β3 =−
i(γ11β1 + γ12β2)

ω
. (A 11a−c)
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A.2. Single layer
For the case of a single layer of finite thickness h2, substituting ρ1 = 0 into (3.38c)–
(3.38d) yields the second-order coupled equations for ζ2 and Φ2 =Ψ2/ρ2

∂ζ2

∂t
= kT2Φ2 − kT2(ζ2kT2Φ2)−∇ · (ζ2∇Φ2), (A 12)

∂Φ2

∂t
=−gζ2 +

1
2
(kT2Φ2)

2
−

1
2
(∇Φ2) · (∇Φ2), (A 13)

whose Hamiltonians are given, from (3.42)–(3.43), by

E2 =
ρ2

2

∫ (
gζ2

2
+Φ2kT2Φ2

)
dx, E3 =−

ρ2

2

∫
ζ2[(kT2Φ2)

2
−∇Φ2 · ∇Φ2]dx.

(A 14a,b)
Equations (A 12)–(A 13) are the system of nonlinear evolution equations obtained by
Choi (1995) for surface waves when the system is truncated at the second order. The
linear dispersion relation for this system can be obtained as ω2

= gkT2.

A.3. Infinitely deep layers
For the case of infinitely deep layers (hi→∞ for i=1, 2), from

Ti = tanh khi→ 1, S= sechkh1→ 0, J = 1/(ρ1T1T2 + ρ2)→ 1/(ρ1 + ρ2),
(A 15a−c)

the system for the upper layer given by (3.38a)–(3.38b) can be reduced to

∂ζ1

∂t
= kΨ1/ρ1 −∇ · (ζ1∇Ψ1)/ρ1 − k(ζ1kΨ1/ρ1), (A 16)

∂Ψ1

∂t
=−ρ1gζ1 −

1
2
|∇Ψ1|

2 /ρ1 +
1
2
(kΨ1)

2/ρ1, (A 17)

while the system for the lower layer given by (3.38c)–(3.38d) becomes

∂ζ2

∂t
=

1
ρ1 + ρ2

[
kΨ2 −

1ρ

ρ1 + ρ2
k(ζ2kΨ2)−

1ρ

ρ1 + ρ2
∇ · (ζ2∇Ψ2)

]
, (A 18)

∂Ψ2

∂t
=−1ρgζ2 +

1
2

1ρ

(ρ1 + ρ2)2

[
(kΨ2)

2
− |∇Ψ2|

2] . (A 19)

As the top free surface is too far away from the interface, the system for the upper
layer given by (A 16)–(A 17) is completely decoupled from that for the lower layer
and can be transformed to that for the case of infinitely deep single layer given by
(A 12)–(A 13) with T2→ 1 by making the transformations given by ζ̂2 = ζ1 and Φ̂2 =

Ψ1/ρ1.
On the other hand, the system for the lower layer given by (A 18)–(A 19) describes

the internal wave motion between two infinitely deep fluids, whose linear dispersion
relation is given by

ω2
=

1ρ

ρ1 + ρ2
gk. (A 20)

One interesting observation is that (A 18)–(A 19) can be also transformed to
(A 12)–(A 13) or (A 16)–(A 17) by making simple transformations. For example,
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one can recover (A 16)–(A 17) from (A 18)–(A 19) by introducing the following new
variables

Ψ̂1 =
ρ1

ρ1 + ρ2

(
1ρ

ρ1 + ρ2

)1/2

Ψ2, ζ̂1 =

(
1ρ

ρ1 + ρ2

)
ζ2, t̂=

(
1ρ

ρ1 + ρ2

)1/2

t.

(A 21a−c)

Appendix B. Linear modulation theory: asymptotic solutions

From (5.12)–(5.14), the governing equations for k, a2 and x can be written (Lewis
et al. 1974) as

d ln k
dτ
=−

∂U
∂x
,

d ln a2

dτ
=−

3
2
∂U
∂x
−
∂cg

∂x
,

dx
dτ
= cg +U. (B 1a−c)

By assuming ε=U0/C� 1, the solutions f = (ln k, ln a2, x) can be expanded in ε as

f = ε0f0 + ε
1f1 + ε

2f2 + · · · , (B 2)

where fj =O(1) for j= 1, 2, · · · . In addition, from (B 2) for ln k, the group velocity
of the surface wave cg(k) can be expanded as

cg = ε
0cg0 + ε

1cg1 + ε
2cg2 + · · · , (B 3)

where cg0 = cg(k0) and cg1 =−
1
2 cg0 ln k1.

Substituting (B 2)–(B 3) into (B 1), one obtains at O(ε0)

dk0

dτ
= 0,

da2
0

dτ
= 0,

dx0

dτ
= cg0, (B 4a−c)

whose solutions represent the unperturbed monochromatic surface wave in the absence
of the surface current U(x). Integration of (B 4) gives k0=constant, a0=constant and

x0 = cg0τ + ξ, (B 5)

from the initial condition given by x0 = ξ at τ = 0.
At O(ε), employing (5.3) for U(x), the governing equations for k1 and a2

1 can be
found as

d ln k1

dτ
=−U0K sin K(x0 −Cτ), (B 6)

d ln a2
1

dτ
=−

3
2

U0K sin K(x0 −Cτ)−
∂cg1

∂x
, (B 7)

which represent the first-order change of the wavenumber and the square of the
amplitude of the surface wave envelope. Using the zeroth-order solution for x0 given
by (B 5),

x0 −Cτ = (cg0 −C)τ + ξ, (B 8)

equations (B 6)–(B 7) can be integrated with respect to τ from zero to t along the
characteristic ξ with ln k1 = ln a1 = 0 at τ = 0. Then, the solutions are obtained as

ln k1 =
U0

cg0 −C
(cos θ1 − cos θ2), (B 9)
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ln a1 =
1
4

U0

cg0 −C

[(
3+

cg0

cg0 −C

)
(cos θ1 − cos θ2)+ cg0Kt sin θ2

]
. (B 10)

Here, θ1 and θ2 are defined as

θ1 =K(x−Ct), θ2 =K(x− cg0t), (B 11a,b)

where x0 has been replaced by x under the same order of approximation.
Then, from ln k1 = ln(k/k0) and ln a1 = ln(a/a0), equations (B 9)–(B 10) can be re-

written as

k(x, t)= k0exp
[

U0

cg0 −C
(cos θ1 − cos θ2)

]
, (B 12)

a(x, t)= a0exp
[

1
4

U0

cg0 −C

{(
3+

cg0

cg0 −C

)
(cos θ1 − cos θ2)+ cg0Kt sin θ2

}]
. (B 13)

As cg0→C, after rewriting cos θ1− cos θ2 using trigonometric identities and expanding
to leading order, equations (B 9) and (B 10) can be reduced to the results given by
(5.15)–(5.16).

Instead of (5.3), Lewis et al. (1974) used the current U(x, t) given by

U(x, t)=U0 sin K(x−Ct)H(x)H(t− x/C), (B 14)

where H(x) is the Heaviside function representing the current field downstream from
the wavemaker at x= 0. As the current field is generated by an internal wave of the
phase speed C, it is observed only for x< Ct. In particular, in the limit of cg0→ C,
their solutions for a and k are given by

ln
k
k0
=−

U0

C
H(x)H(t− x/C){sin K(x−Ct)+Kx cos K(x−Ct)}, (B 15)

ln
a
a0
=−

U0

4C
H(x)H(t− x/C)

{(
4−

1
2

K2x2

)
sin K(x−Ct)+ 5Kx cos K(x−Ct)

}
.

(B 16)

Appendix C. Amplitude equations for class-III resonance
As shown in Choi et al. (2020), the Hamiltonian system (3.38) can be written in

spectral space as
∂a
∂t
=
δH
δb∗

,
∂b
∂t
=−

δH
δa∗

, (C 1a,b)

where a = (a1, a2)
T and b = (b1, b2)

T represent the Fourier transforms of (ζ1, ζ2)
T

and (Ψ1, Ψ2)
T, respectively. Then, the following canonical transformation is introduced

to decompose the surface and interface motions into the barotropic and baroclinic
components (a

b

)
=

(
Q O
O P

)(q
p

)
, (C 2)

where p= (p+, p−)T and q= (q+, q−)T with the subscripts + and − representing the
barotropic and baroclinic modes. In (C 2), Q and P are 2× 2 matrices given by

Q=MS1/2
=

(
Q(1,1) Q(1,2)

Q(2,1) Q(2,2)

)
, P = Γ −1MS1/2

=

(
P(1,1) P(1,2)

P(2,1) P(2,2)

)
, (C 3a,b)
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where S =M−1Γ (M−1)T, and Γ and M are given by

Γ =

(
γ11 γ12

γ21 γ22

)
, M =

(
(ω2
+
−1ρgγ22)n+ 1ρgγ12n−
ρugγ21n+ (ω2

−
− ρugγ11)n−

)
, (C 4a,b)

with n+ and n− given by

n+ = [(ω2
+
−1ργ22)

2
+ (ρugγ21)

2
]
−1/2, n− = [(ρugγ21)

2
+ (ω2

−
− ρugγ11)

2
]
−1/2.
(C 5a,b)

Then, by introducing the complex amplitude functions defined by

A(k, t)=
√
ω+

2

(
q+ − i

p+
ω+

)
e−iω+t, B(k, t)=

√
ω−

2

(
q− − i

p−
ω−

)
e−iω−t, (C 6a,b)

the slowly varying amplitude equations relevant for the class-III resonance condition
can be obtained (Choi et al. 2020) as

dA1

dt
= iV (2)

1,2,3A2B3,
dA2

dt
= iV (2)

1,2,3A1B∗3,
dB3

dt
= iV (2)

1,2,3A1A∗2, (C 7a−c)

where Aj=A(kj) ( j= 1, 2) and B3=B(k3) represent the amplitudes of the barotropic
and baroclinic modes, respectively. The coefficient of the amplitude equations is given
by

V (2)
1,2,3 =−U(2)

−1,3,2 +U(2)
2,3,−1 −U(4)

−1,2,3 −U(4)
2,−1,3, (C 8)

where

U(2)
1,2,3 =−

√
ω+1 ω

−

2

8ω+3
U(2)

1,2,3, U(4)
1,2,3 =−

√
ω+1 ω

+

2

8ω−3
U(4)

1,2,3, (C 9a,b)

U(2)
1,2,3 = 2h(1)1,2,3P(1,1)1 P(1,2)2 Q(1,1)

3 + h(2)1,2,3P(1,1)1 P(2,2)2 Q(1,1)
3 + h(2)2,1,3P(2,1)1 P(1,2)2 Q(1,1)

3

+ 2h(3)1,2,3P(2,1)1 P(2,2)2 Q(1,1)
3 + 2h(4)1,2,3P(1,1)1 P(1,2)2 Q(2,1)

3

+ h(5)1,2,3P(1,1)1 P(2,2)2 Q(2,1)
3 + h(5)2,1,3 P(2,1)1 P(1,2)2 Q(2,1)

3 + 2h(6)1,2,3P(2,1)1 P(2,2)2 Q(2,1)
3 ,

(C 10)
U(4)

1,2,3 = h(1)1,2,3P(1,1)1 P(1,1)2 Q(1,2)
3 + h(2)1,2,3P(1,1)1 P(2,1)2 Q(1,2)

3 + h(3)1,2,3P(2,1)1 P(2,1)2 Q(1,2)
3

+ h(4)1,2,3P(1,1)1 P(1,1)2 Q(2,2)
3 + h(5)1,2,3P(1,1)1 P(2,1)2 Q(2,2)

3 + h(6)1,2,3P(2,1)1 P(2,1)2 Q(2,2)
3 ,

(C 11)

with

h(1)1,2,3 =−
1
2(k1 · k2)/ρ1 −

1
2ρuγ11,1γ11,2, (C 12)

h(2)1,2,3 =−ρuγ11,1γ12,2, h(3)1,2,3 =−
1
2ρuγ12,1γ12,2, (C 13)

h(4)1,2,3 =−
1
21ρ[−(ρl/ρu)γ31,1γ31,2(k1 · k2)+ γ21,1γ21,2], (C 14)

h(5)1,2,3 =−1ργ21,1γ22,2 − ρlγ31,1γ33,2(k1 · k2), (C 15)

h(6)1,2,3 =−
1
2 [1ργ22,1γ22,2 + (ρlγ30,1γ30,2 − ρuγ32,1γ32,2)(k1 · k2)]. (C 16)

Notice that ω±j =ω±(kj), γlm,j = γlm(kj), P(l.m)j = P(l.m)(kj) and Q(l.m)
j =Q(l.m)(kj).
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