Robotica (2014) volume 32, pp. 867-887. © Cambridge University Press 2013
doi:10.1017/S0263574713001057

New computational method for three-fingered
force-closure test

Nattee Niparnan, Thanathorn Phoka, Yuttana Suttasupa
and Attawith Sudsang*

Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, 10330,
Thailand

(Accepted October 29, 2013. First published online: December 5, 2013)

SUMMARY

This paper proposes an efficient implementation of a force-closure test for frictional three-finger
grasps. The implementation is based on a condition that transforms force-closure testing into the
problem of convex hull intersection in projective space. The proposed implementation further reduces
the problem into the problem of computing whether a line segment intersects a convex hull of at
most four points. Implementation results are presented along with a thorough performance analysis
and comparison with several existing methods. The results are also verified with arbitrary precision
floating point computation. This provides comparison of qualitative error resulting from floating
point roundoff. The result shows that the proposed implementation outperforms other methods in
terms of speed and precision.

KEYWORDS: Grasping; Force closure; Projective geometry.

1. Introduction
Grasping has been an active research topic in robotics since the pioneering works of Salisbury and
Roth.!"2 A reader is referred to Bicchi and Kumar? and Bicchi* for recommended surveys of the topics.
There is one central question being shared among all grasping problems: Whether an object can be
securely grasped? Several definitions of a secure grasp have been proposed, but a particular grasping
property that has captured the maximum attention is undoubtedly force closure, which indicates a
grasp that can resist any external disturbance. The best known force-closure condition states that a
grasp achieves force closure when the convex hull of vectors describing exertable force—torque, called
wrench, contains the origin. This condition is the root of many force-closure tests. Tests that adopt this
approach are usually general, being able to handle any number of contacts and dimensions. Ferrari
and Canny® uses this concept to provide a quality metric for force-closure grasp. Other examples
include a qualitative test of Liu,% which is used in many subsequent works of Ding el al.>* and Liu
et al.>* The Q Distance of Zhu and Wang and the gauge function are also included in this category.”
Algorithms for calculating a distance between two convex objects can be used for this problem.
Examples include the GJK algorithm,’ a very fast collision checking algorithm which was
recommended for force-closure testing,'® and other algorithms that compute distance between a point
and a convex object.!’1? As opposed to a general test, there exist specific tests that are applicable
under some criteria. For example, Nguyen proposes a simple test of force closure for two fingers in
2D.!3 The linear programming system in the work of Ponce and Faverjon'* is also a test for a planar
three-finger grasp. This approach is usually more efficient than a general test since it is specially
designed by exploiting a priori knowledge of a particular case. A good example on how significant
this can help is demonstrated in the work of Li et al.,'> where a fast planar three-finger force-closure
test is presented. Although there are several force-closure testing methods, unfortunately there exists
no performance comparison between these methods under the same input and setting.

* Corresponding author. E-mail: attawith@gmail.com

https://doi.org/10.1017/50263574713001057 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001057

868 New computational method for three-fingered force-closure test

A main contribution of this paper is to present a comparative study of available force-closure tests
in dealing with three-fingered grasps under the Coulomb friction. Grasping with three contact points
is the simplest form of grasp that can achieve force closure on 3D objects. Its practical advantage not
only attracts a great deal of research attention but also a wide range of applications. This is evidenced
by increasing popularity of three-fingered hand such as the Barrett hand, which recently has become
a practical alternative to the less flexible specialized gripper solution. One important basic problem in
this area is the determination whether a given three-fingered grasp achieves force closure. Although
several methods in the literature can handle this problem, there exists no comparison to describe
how well they perform relative to one another. In robotic grasping, a computational aspect is usually
given a weaker emphasis than the mechanical counterpart. New methods are often proposed without
any comparison with the existing ones. As a result, we are often left to choose the method to be
used without adequate information. In our study, many methods that can verify three-fingered force
closure are implemented as described in their original papers, and their performances are evaluated
under the same input and setting in terms of speed and accuracy. It is proven in Li et al.!> that 3D
three-fingered grasps under the Coulomb friction can be reduced to 2D computation. Hence, most of
the results in this paper consider 2D cases, while 3D are discussed briefly.

Another contribution of this paper is a novel implementation of the method by Mason and Brost,'
for which computational implementation has never been reported. This is by no means trivial since
intricate geometric nature of the method is needed to be translated into an efficient algorithm and
implementation. More precisely, our presented algorithm relies on representing wrenches associated
with the input grasp using a 2D representation, referred to in Brost and Mason as the force-dual space.
With this representation, we transform force-closure test into the problem of computing whether a
line segment intersects a convex polygon of at most four vertices. Interestingly, it turns out that this
decade old method by Mason and Brost under our novel implementation outperforms many methods
proposed recently in the literature. This is quite a surprise since this method was originally proposed
primarily for intuition and for working problem by hand (using graphical drawings). Our comparative
study considers speed and accuracy of different methods. We pay great attention to the accuracy of the
results by comparing them with reference results computed using exact arithmetic. This comparison
and the accompanied analysis reveal drastic difference in the performance of different methods
and several interesting issues, including incompleteness and errors, regarding existing force-closure
tests. To the best of our knowledge, this presentation provides the first performance comparison on
available force-closure tests that has been conducted at this level of thoroughness. We hope that this
comparative study would help stimulate development of more efficient methods and facilitate the
readers in choosing a suitable force-closure test or implementing their own.

The paper is organized as follows. Section 2 briefly describes necessary background on grasping
and force closure. Our proposed implementation is presented in Section 3. Section 4 describes existing
tests in brief, and Section 4.2 presents the comparison between these tests and our method. Sections 5
and 6 give a brief explanation on how our method is used in the 3D case and its example, respectively.
Finally, Section 7 concludes the paper.

2. Background

In this section, we review some background necessary for understanding the proposed algorithm. In
particular, we briefly review the concept of force closure and the main idea of the graphical analysis
of frictional contact forces presented in Brost and Mason'® (see also chapter 5 in Mason!”). The
discussion only concerns planar grasps.

A grasp achieves force closure when it can counterbalance any external disturbance to the object
being grasped. The external disturbance and the effect of a grasping device are represented as the
force f and the torque 7. It is conventional to combine the force f = (fy, f,) and the torque T
into an entity called the wrench, w = (f, f,, 7). This work assumes the hard contact model, which
means that a contact is unable to exert a pure torque. This implies that the effect of a contact point
at p that exerts the force f can be represented by the wrench w = (f, p x f) € R? (recall that for
x = (x1, x2) and y = (y1, ¥2), their cross product x x y is the scalar x;y, — y;x,). This work also
assumes frictional contact with the Coulomb friction. Let n be the inward pointing normal vector of
the object at p, and let i be the coefficient of friction. The Coulomb friction indicates that, in order
to ensure non-slipping contact, the exerted force must lie inside a cone defined by two vectors f; and

https://doi.org/10.1017/50263574713001057 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001057

New computational method for three-fingered force-closure test 869

AT

Fig. 1. (a) Set of non-slip force under the Coulomb friction. The vectors f; and f, are the tangential and the
normal forces, respectively. Let u be the friction coefficient, f;/f, = w. In other words, the angle between the
normal force and the boundary force is & = arctan(u). (b) Wrenches associated with a contact point form a fan
in the wrench space.

f,,thathave an angle 6 = tan~! w with the normal vector n (see Fig. 1). In other words, a force that
is a positive combination of f; and f, can be exerted by the contact. The wrenches associated with
frand f,arew;, =(f,, p x f))and w, = (f,, p x f,), respectively. Similarly, a wrench that is a
positive combination of w; and w, is associated with some corresponding force of the contact point.
Therefore, it suffices to describe a contact by w; and w, only. These wrenches are called primitive
wrenches.

In force-closure analysis, a contact wrench is allowed to take arbitrarily large magnitude, leaving
only its direction to affect the determination of force closure. As a result, it is obvious that force
closure is achieved when all the contact wrenches positively span the entire wrench space (i.e., any
disturbing wrench can be resisted by the fingers’ wrenches). This is equivalent to the following
well-known force-closure condition.

Proposition 2.1. Force closure is achieved when the origin is contained in the interior of the
convex hull of all the primitive wrenches.

Proposition 2.1 is the root of several methods for force-closure test. The reader is referred to Mishra
et al.'® for the detail of the proof. In this paper, the proposition is transformed into a computational
implementation by using a representation from the graphical analysis of frictional contact forces in
Brost and Mason.!® The representation and related ideas that can be derived directly from the paper
will be described in the remainder of this section.

Since only the wrench direction is counted toward force-closure determination, it suffices to
represent a wrench in the wrench space (fy, f,, T) as a point on the unit sphere centered at the origin.
As an alternative, we can instead represent a wrench using its intersection (called dual point) with one
of the following structures: (1) plane T = 1, (2) plane t = —1, or (3) the unit circle on the plane 7 = 0
with its center at the origin. Note that the dual point on the plane T =1 of the wrench (f, f,, 7)
with positive 7 is simply (fy/7, fy/7), requiring two divisions. The benefit of this representation is
that it allows a convex cone of wrenches to be conveniently represented. As described in Brost and
Mason,'¢ it is obvious from the geometry that each convex cone of wrenches with positive (resp.
negative) torques can be represented as the convex hull of the corresponding dual points on the plane
7 =1 (resp. T = —1). See Fig. 2(a) for examples.

Let us consider all primitive wrenches of a grasp and assume that their dual points lie on the
planes T =1 or T = —1 only (this assumption can be easily fulfilled by ensuring that the origin
of the primary space does not lie on the line that supports any friction cone’s boundary). On each
of these two planes, let us construct the convex hull of all the dual points that lie on the plane. If
all the dual points lie only on one plane, it is obviously impossible for the grasp to achieve force
closure. To determine force closure, Proposition 2.1 can be consulted. It can be easily shown from
geometry that the proposition is satisfied when there exists a line through the origin of the wrench
space that intersects each of the two convex hulls in its relative interior! (see Fig. 2(a)). Instead of

! A relative interior of a set is the interior relative to the affine hull of the set. Intuitively speaking, a relative
interior consists of all points not on the relative edge of the set, e.g., a relative interior of a line segment is the
segment minus its endpoints, regardless of the dimension where the line is situated.

https://doi.org/10.1017/50263574713001057 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001057

870 New computational method for three-fingered force-closure test

()

Fig. 2. Wrenches as represented on the dual space. We consider an example case of six wrenches. We would
like to determine if these wrenches achieve force closure. (a) w;, w,, w3 having positive torques are represented
as points on T = 1, and w4, ws, we having negative torques are represented as points on = —1. The shaded
regions are convex hulls representing the convex cone of the wrenches on their respective planes. The dotted
line represents a line through the origin that intersects the relative interiors of both convex hulls. This indicates
force closure. (b) Wrenches with negative torques are represented by the intersections of their negative with
7 = 1 plane. (c) Simplified illustration showing only the dual points. Symbols + and — indicate positive and
negative dual points, respectively. The intersection between the relative interiors of two convex hulls indicates
force closure.

directly checking for the existence of such line, the following equivalent method can be used. First,
label all dual points in the plane t = 1 as positive dual points. Second, for each primitive wrench w
with a negative torque, draw the dual point of its inverse —w on the plane T = 1 and label it as a
negative dual point. Third, construct the convex hull of all positive dual points and the convex hull of
all negative dual points. It is clear that Proposition 2.1 is satisfied when the two convex hulls intersect
and some intersection point is contained in the relative interior of both convex hulls. Note that the
mapping from a primitive wrench with positive (resp. negative) torque to a positive (resp. negative)
dual point in the plane T = 1 will also be used in the algorithm of the next section.

Despite sharing the same dual representation, the procedure described above is different from the
method presented in Brost and Mason.'® It is described in Brost and Mason that to confirm force
closure, one needs to find in the plane T = 1 a pair of intersecting line segments, one joining positive
dual points and the other joining negative dual points, or a triangle formed by three dual points of the
same sign that contains another dual point of the opposite sign. Our procedure avoids the enumeration
of triangles which results in a more efficient implementation. The advantage is more obvious when
the number of fingers increases, since our procedure takes O(N 1g N) for N fingers, while the original
method presented in Brost and Mason obviously takes O(N?). As mentioned in the Introduction,
the original method in Brost and Mason is developed primarily for intuition and working problems
by hand. Extra effort is needed to transform the underlying idea of the method into an efficient and
robust computational implementation.

3. The Implementation
In this section, we present a detailed algorithm for three-fingered frictional force-closure test.
The algorithm demonstrates how the concept described in the previous section can be efficiently
implemented.

Given a grasp defined by three contact points together with the corresponding contact normal
vectors and the coefficient of friction, the following algorithm determines whether a grasp achieves
force closure:

https://doi.org/10.1017/50263574713001057 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001057

New computational method for three-fingered force-closure test 871

1. Choose one of the contact points as the origin and compute the two primitive wrenches of this
contact point according to the chosen origin. Denote these two wrenches by u and v.

2. According to the origin chosen in step 1, compute the four primitive wrenches of the remaining
two contact points. If it is not true that some of these primitive wrenches have positive torques and
some have negative torques, report that the grasp does not achieve force closure and halt.

3. Compute the positive and negative dual points on the plane v = 1 of the primitive wrenches
obtained from step 2. The dual point of a wrench with zero torque, which is a point at infinity in
the direction of the wrench, is regarded as a positive dual point. In practice, a point at infinity is
presented by a vector indicating its direction and an additional flag indicating that it is a point at
infinity.

4. Depending on the number of positive and negative dual points from step 3, apply one of the
following steps:

e Two positive and two negative dual points: Let the dual points of u and v be positive dual points.
e One positive and three negative dual points, or one negative and three positive dual points: Let
the dual point of u be a positive dual point and the dual point of —v be a negative dual point.

5. It is guaranteed by step 4 that there must be four dual points of the same sign on the plane t = 1.
Compute the convex hull of these four dual points and detect if the convex hull intersects the line
segment formed by the remaining two dual points. If the intersection contains a point in the relative
interior of the convex hull and the line segment, report that the grasp achieves force closure.

This algorithm is essentially the convex hull-based method of Section 2 that is optimized for
three-fingered grasps. The optimization stems from the choice of the origin made in step 1. As the
two primitive wrenches of the chosen contact point possess zero torque, their dual points which are
points at infinity are obtained without any computation. Saving four out of 12 floating-point divisions
in dual point computation practically yields considerable speedup. In addition, the freedom to map
the primitive wrenches u and v to positive or negative dual points is exploited in step 4 to ensure that
four dual points are of one sign (either positive or negative) and the remaining two dual points are
of the other sign. This grouping allows us to apply our brute-force convex hull computation for four
input points which is more efficient in this case than generic convex hull algorithms. The optimization
described above, of course, comes at an increased complexity, i.e., dual points at infinity have to be
explicitly dealt with. Fortunately, our convex hull computation and the intersection detection (step 5)
are based on the cross product operation which can be easily extended to handle points at infinity. In
the remainder of this section, this extension will be described along with our four-point convex hull
algorithm and the intersection detection.

It should be noted that a degenerate case when some wrenches are co-punctual is possible. When
wrenches are co-punctual their associated dual points are identical. At least four wrenches are needed
to satisfy the condition in Proposition 2.1. Hence, only the case of four and five dual points needs
to be considered. For both cases, we can map the primitive wrenches u and v such that three dual
points are positive (or negative). We then compute the convex hull of three points instead, which is
much easier and straightforward. There might exist only one dual point of the opposite sign. Thus,
the intersection is only to check whether this dual point lies strictly inside the convex hull. Again,
this is straightforward.

3.1. The cross product

Our convex hull algorithm for four input points and the detection of intersection between a line
segment and a polygon (to be described shortly) rely critically on a test to determine for three points,
say a, b, and ¢, whether a lies on the directed line bc, or on which side of it. The test can be

- —
performed by inspecting the sign of the cross product b¢ x ba. A positive, negative, or zero outcome
indicates whether a lies, respectively, on the left, on the right, or exactly on the directed line bc. For
convenience, let sgn(x) be —1, 0, or +1 when x is respectively negative, zero, or positive. To describe

how to compute sgn(b_z x ba) when a, b, or ¢ could be points at infinity, some properties of points
at infinity are needed.

In Projective Geometry, a point at infinity is an intersection of parallel lines.'® Informally speaking,
the farthest point of aray is a point at infinity. Unlike an ordinary point which is defined by its position,
a point at infinity p is defined by its direction vector, denoted by w(p); rays pointing in the same
direction meet at the same point at infinity (defined by the direction of the rays). We can therefore

https://doi.org/10.1017/50263574713001057 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001057

872 New computational method for three-fingered force-closure test

infer that a vector from an ordinary point to a point at infinity is in the same direction as the vector
that defines the point at infinity. All points at infinity are defined to lie on the same line called the line
at infinity. When traversing the line at infinity in the counterclockwise direction, all ordinary points
lie on the left. With the properties described above, the following rules are added for computing

- =
sgn(bec x ba):

1. When only a is a point at infinity: Since ba is parallel to w(a), sgn(bc x ba) = sgn(bc x w(a)).
—
2. When c is at infinity but b is not: Since bc is parallel to w(c), sgn(bc x ba) = sgn(w(c) x ba). If
- —
a is also at infinity, sgn(bc x ba) = sgn(w(c) x w(a)).
—

3. When b is at infinity but ¢ is not: Since sgn(bc x ba) = —sgn(c_b> X ﬁl) and c_b> is parallel to w(b),
- =
sgn(bc x ba) = —sgn(w(b) x 31). If a is also at infinity, sgn(bc x ba) = —sgn(w(b) x w(a)).

4. When b and ¢ are points at infinity: sgn(ﬁ' x ba) = sgn(w(b) x w(c)). If a is also at infinity,
- =
sgn(bec x ba) = 0.

3.2. Computing the convex hull of four points

In fact, Graham’s scan algorithm can be used here by replacing the standard cross product with the
extended version described in Section 3.1.2° However, for the case of four input points, the following
brute-force method demands less overhead, and is therefore more efficient.

Let the four input points be arbitrarily denoted by p,, p,, 4, and ¢,, and let us define segments
p =P, P, and g = q,q,. The underlying idea of our convex hull algorithm comes from observing
how p and ¢ lie with respect to each other. Note that the output convex hull is represented here as a
sequence of points arranged counterclockwise. Such sequence can be shifted freely, e.g., sequences
(c1, €2, €3, €4), (€2, €3, €4, €1), and (cy4, €1, €3, €3) represent the same convex hull.

To characterize how segments p and g lie with respect to each other, let us define 1 = sgn(pl_p; X
P71q).i =1,2, and i = sgn(q,q> X q,P,),i = 1,2. The sign of a cross product is computed as
described in Section 3.1 so that input points at infinity can be handled. From the definition, #/” (resp.
1) takes on the value of 0, +1, or —1 when g; (resp. p,) is exactly on, on the left or on the right of
segment p (resp. segment g). With this setting, arrangement of segments p and g can be classified
into one of the following three cases.

3.2.1. Whent{ =t} and t] = t. This case is illustrated in Fig. 3(a). Obviously, the resulting convex
hull is a concatenation of the endpoints of segments p and g, i.e. (py, P;» 4., 4,) Where k # I, m # n,
and k, [, m,n € {1, 2}. Assignment of k, [, m, and n has to be made such that (p,, p,;, q,,, q,) is in
the counterclockwise order. It is easy to verify that this requirement can be satisfied by the following
rule: When tf = tg =+1, we set k =1 and [= 2, otherwise we set k =2 and / = 1, and when
1! =t] =+1, wesetm =1 and n = 2, otherwise we set m =2 and n = 1.

3.2.2. Whent] # t} and t] # t}. An example of this case is shown in Fig. 3(b). Since the condition
indicates that segments p and g cross each other, the resulting convex hull is an interwoven sequence
of the endpoints from the two segments, i.e. (p,,q,,, P2,4,), where m #n and m,n € {1, 2}.
Assignment of m and n needs to cause the sequence to follow the counterclockwise order. This
requires m and n to be chosen such that #, = —1 or /' = +1 (either }; or ¢ is allowed to be zero in
case of three collinear points; see Fig. 3(c) for example).

3.2.3. When t{ =t and t] # t}, or when t] #t5 and t{ = t}. As illustrated in Fig. 3(d), the
resulting convex hull consists of only three points; one input point is discarded. Let us describe only
the case in which #] = 5 and 1/ # 1] (the other case is treated likewise). In this case, either ¢, or ¢,
(not both) has to be discarded because it lies inside the convex hull. If ¢, and g, are on the left side
of segment p (t/ =t = +1), the convex hull can be written in the form (p,, p,, q,,), m € {1, 2}.
When no three points are collinear, it is easy to verify that the value of m must be chosen such that
t# = —1. However, when some three points are collinear, it is possible that 7/ # —1 and 7] # —1.
When this occurs, choose m such that #,; = 0 in order to correctly eliminate the redundant point. For
the case that ¢, and ¢, are on the right side of segment p, we will have the resulting convex hull
(p2, P1» q,,) where the value of m must be chosen such that th = +1 if possible, otherwise choose
m such that), = 0.

https://doi.org/10.1017/50263574713001057 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001057

New computational method for three-fingered force-closure test 873

” @ P2y

(d)

Fig. 3. Arrangements of two segments forming a convex hull. The convex hull is represented by dashed lines.
Signs + and — indicate the value of " and . The plus sign (+) indicates that the point is on the left of the
other segment, while the minus sign means that the point is on the right of the other segment.

() (b)

Fig. 4. Arrangement of three points at infinity. (a) w(b) is between w(a) and w(c). Vectors w(a) and w(c) lie
on the opposite side with respect to w(b). (b) Another case where w(a) and w(c) lie on the opposite side with
respect to w(b) but w(b) does not lie between w(a) and w(c). The three vectors positively span the plane. It
should be noted that w(b) and w(c) also lie on the opposite side with respect to w(a).

A special case worth attention is when three of the input points, say a, b, ¢ are at infinity. These are
by definition collinear. As shown in Fig. 4(a), to safely discard b, it is necessary that @ and ¢ are on
different sides of b, i.e., sgn(w(b) x w(c)) = —sgn(w(b) x w(a)). This condition is only necessary
since b may not be discarded when w(a), w(b), and w(c) positively span the plane. In this case, b
and c are also on different sides of a (see Fig. 4(b)) and the convex hull of these three points covers
the entire plane. Any segment must intersect this convex hull, no detection is required.

The computation of the convex hull can be summarized as Algorithm 1. The algorithm takes as
input z/ and 1, the signs of the cross products as described above. It returns true to indicate that the
convex hull spans the entire space and no convex hull is computed. It returns false with ch as the
computed convex hull described by a list of vertices.

3.3. Intersection detection
A convex hull is represented by a sequence of extreme points p;, ..., p;. A pair of adjacent points
(with the last point adjacent to the first) define a facet of the convex hull. Let ri(-) denote the relative
interior. Given a convex hull C whose facets are cy, ¢y, . .., ¢k, a segment s can intersect the interior
of the convex hull in only three cases: (1) ri(s) does not intersect any c¢; but lies in ri(C), (2) ri(s)
intersects ri(c;) for some i such that s and ¢; do not lie on the same line, and (3) ri(s) intersects the
common boundary point of ¢; and ¢;4; when the other boundary points of ¢; and ¢;+ lie on different
sides of the line supporting s. Fig. 5 demonstrates the examples of each case.

Case 1 can be detected by enumerating all facets of the convex hull and test whether a point in
ri(s), say the middle point of s, lies on the same side of all facets. For case 2, we enumerate every
facet and check its intersection with s. The relative interior of two segments intersects and does not

https://doi.org/10.1017/50263574713001057 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001057

874 New computational method for three-fingered force-closure test

Algorithm 1 Convex hull of four points

> Handle collinear cases
if 7/ = Othen >Py, Do, q; are collinear
let ¢ ; be the other end point of g.
if p,, p,, q; positively span the plane then
return True
end if
let ch be the extreme points amongst p;, p,, ¢;
if t;’ = 0 then > all points are collinear
if ch, g ; positively span the plane then
return True
end if
let ch be the extreme points amongst ch, ¢ ;
return False
end if
end if
if 7/ = 0 then > gy, q,, p; are collinear
process similarly to the case of tip ==
end if
> No point is collinear, 7" and 7 are either —1 or +1
if 1/ =1} then
if #] = ¢J then
see Section 3.2.1
else
see Section 3.2.3
end if
else
if 1/ =t} then
see Section 3.2.3
else
see Section 3.2.2
end if
end if

lie on the same line only when different endpoints of one segment lie on different sides of the other
segment and vice versa. Case 3 occurs when an endpoint of facets of C lies on ri(s) and some part
of ri(s) lies in ri(C). Let p; be the vertex of C that lies on ri(s). We have to assert that p; | and p,
lie on different sides of s. Figs. 5(d) and (e) show examples of case 3. In Fig. 5(f), case 3 does not
occur, although one vertex of C lies in ri(s). Note that all the cross products to determine which side
Pi_1, Pi, Piy1 lie with respect to the line containing s are already computed in the testing of case 2.

To accommodate the situation in which extreme points of the convex hull C or endpoints of the
segment s might be points at infinity, we exploit the modified cross product of Section 3.1 with the
following special treatment. For the case 1 above, when s is a ray (one ordinary end point, and one
end point at infinity), instead of the middle point, we take any point on the ray that is not the ordinary
endpoint.

Algorithm 2 describes the intersection detection. The algorithm requires input p;, the vertices of
the convex hull in counterclockwise order, and s1,5,, the end points of segment s.

3.4. Extension to any number of fingers

The method described above is specially developed to benefit three finger cases. However, the general
idea based on convex hull intersection introduced in Section 2 is applicable to any number of fingers. In
particular, the two convex hulls can be constructed using algorithms such as Graham’s Scan algorithm
and detecting whether the two convex hulls can intersect by computing their Minkowski difference
and checking whether the origin is contained inside the difference. For N fingers, computing the
two convex hulls takes O(N lg N) and computing their Minkowski difference and testing origin

https://doi.org/10.1017/50263574713001057 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001057

New computational method for three-fingered force-closure test 875

&
>

L

Fig. 5. Examples of convex hulls and segments. (a) and (b) satisfy the first condition, (c) satisfies the second.
The last three figures represent the case when the segment intersects the common boundary of the convex hull.
(d) and (e) satisfy the last condition, while (f) has no intersection.

containment takes O(N), provided that the primitive wrenches are sorted by their angles when
constructing the convex hulls. The standard Minkowski difference algorithm can be easily extended
to handle points at infinity using the idea given in Section 3.1. An alternative is to make sure that no
dual points are at infinity. This can be done by choosing the origin that does not lie on the boundary
of any friction cone. A practical approach is to generate a new origin at random until the condition
is satisfied. This generate-and-test scheme is more efficient than directly computing an appropriate
origin since it is rare that a randomly chosen point lies exactly on the boundary of a friction cone.
This test can even be omitted altogether in practice in preference of speed over completeness.

4. Comparison

Although several force-closure tests were presented in the past decade, we can rarely find a
comparative study regarding the performance of these tests. New methods were often proposed
without comparing any existing ones. Results are usually presented under different computational
settings using different input sets. Obviously, it is difficult, if not impossible, for the reader to fairly
compare and evaluate the strength and weakness across available methods. A solution is to establish
a common framework for performance benchmark that allows new methods to be compared simply
by publishing their results that are produced in compliance with the framework. We take the first step
toward this direction. In particular, we implement selected methods in C++ programming language
and test them under the same running environment using the same input. Validity of the results
are assessed using reference obtained from computation with exact arithmetic. Interestingly, the
comparison identifies many discrepancies never stated in the respective original works. This helps
us analyze the source of errors exhibited by each method. Of course, performance depends strongly
on the quality of implementation. The implementation of the selected methods is done with great

https://doi.org/10.1017/50263574713001057 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001057

876 New computational method for three-fingered force-closure test

Algorithm 2 Intersection detection

Pi+1 < P
m <— any point in ri(s)
if sgn(p, p, x pym) = sgn(p,p3 X pm) = ... = sgn(p, p x pym) then
return True > Case 1
end if

fori=1—k+1do
17— sgn(ppiy X Pisy)
17 < sgn(s182 X §17,)
end for
fori=1— kdo
if 1" x 1" < 0 then > §; and s, are on different side
if 77 x ¢/ | < 0 then
return True > Case 2
end if
iff ==0and#;_; x#,; <O then
return True > Case 3
end if
end if
end for
return False

consideration on optimization. All the source codes and data used in our study are available upon
request to the reader of the paper.

4.1. Selected methods

Plethora of force-closure assertion methods exist in the literature. Some methods pursue generality so
that they can be applicable for any number of contacts and/or dimensions of the work space. Examples
include the ray shooting method by Liu,° the Q Distance method in Zhu and Wang,” and a quantitative
test by Zhu and Ding,® who also suggest in ref. [10] the use of GJK, a well-known collision detection
algorithm in computer graphics, as a general test of force closure. Han et al. proposes a method that
can operate on a wide range of finger type using a convex optimization technique.?! The method of
Brost and Mason!¢ is also applicable with any number of contacts, although it cannot be used in a
3D grasp, except for the case of three-finger, where it is shown in Li et al.' that the method can be
easily adopted. Cornella and Suarez??> propose a condition for planar force-closure grasps, which is
applicable with any number of fingers, to identify independent contact region of a polygonal object.
Related condition is also presented for a discretized object in Cornella and Suarez.?

Many researchers derive methods that are specialized to a particular number of contacts and/or
dimensions of the workspace. These methods usually exploit a priori knowledge of the specialized
situation to achieve better performance. Example includes the disposition algorithm of Li et al.,'
which is very fast in assertion of force closure of three fingers. Tung and Kak?* propose a geometrical
approach to compute two-finger force-closure grasp of a polygonal object. Ponce et al.'*2>2% derive
several conditions for two- to four-finger grasps and present algorithms for synthesizing grasps. Grasp
synthesis is also considered in many other works such as Pollard and Wolf..?” Cheong et al.?®?° uses
a representation similar to force-dual representation to compute all 2D force-closure grasp.

Among the aforementioned methods, many are presented as explicit tests, while several are
implicitly integrated in their grasp synthesis methods. We select seven recent methods that distinguish
themselves as stand-alone tests of force closure. These methods and our novel implementation will be
compared in this section. The first method is the method of Brost and Mason,'¢ in which we provide
an efficient implementation based on convex hull intersection. The next one is the disposition method
of Li et al.,"”> which is included as a representative of specialized methods for three-finger grasps.
The other five methods are general methods which can accommodate any number of fingers in any
dimension. One of them is GJK in van den Bergen.’® The other two methods, i.e., the ray shooting
method of Liu® and the quantitative test of Zhu and Ding,® are based on linear programming. Another

https://doi.org/10.1017/50263574713001057 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001057

New computational method for three-fingered force-closure test 877

ray shooting-based method by Zheng and Chew!! is also included. Finally, the standard convex hull
routine, QHull in Barber et al.3! is chosen. In our comparison, only QHull is deployed with arbitrary
precision arithmetic so that its results can be used as reference.

4.1.1. Straightforward implementation of Brost and Mason. The work of Brost and Mason'® provides
the fundamental of a dual representation of force. The work suggests that force closure can be asserted
in the force-dual representation. As originally described in Brost and Mason, the test is simply to
check whether one point of a given sign lies strictly inside the triangle defined by three points of
the other sign, or whether two segments of different signs intersect. It was presented originally as an
instruction for drawing and inspection. No explicit computational implementation detail was given.
Nevertheless, we derive a method that we believe to be a straightforward implementation. To do so,
the instruction is translated into an implementation using computational geometry algorithms, e.g.,
checking for point containment is implemented as an intersection test with convex hull.

More precisely, the straightforward implementation (as noted toward the end of Section 2) is as
follows: We compute two convex hulls, one for positive dual points and the other for negative dual
points, and test whether their interior intersects. We use Graham’s scan algorithm for convex hull
construction and apply the intersection detection described in Section 3.3.

It should be noted that this method differs from our novel implementation (Section 3). We include
the straightforward implementation of Brost and Mason'® to emphasize that our implementation
actually outperforms the straightforward implementation.

4.1.2. Disposition method of Liet al. > This method distinguishes itself from the others because it
specifically takes into account the nature of three-finger grasps. It can quickly identify a certain class
of non-force-closure grasps. In short, this method removes unnecessary portion of the force cones
and show that, with the trimmed force cones, to achieve force closure, it is necessary and sufficient
that there exists an intersection point of the boundary of two force cones that lies inside the third
cone. The disposition of the cone requires only a few algebraic calculations (see Fig. 5 in Li et al.').

4.1.3. GJK algorithm. Invented by Gilbert et al.,’ GJK algorithm is a well-known collision detection
algorithm. It determines the closest distance between two convex polyhedra. A variation of the GJK
algorithm also supports a binary query; instead of reporting a distance between two objects, it decides
whether the two objects collide with each other. Taking the Minkowski difference of two convex
polyhedra as an input, the algorithm determines whether the origin lies inside the convex hull of the
Minkowski difference. As suggested in Zhu et al.,'? this query is suitable for a qualitative test of force
closure. In this work, we use the GJK separating-axis algorithm presented in van den Bergen..>* The
separating-axis algorithm is an improved version of the GJK algorithm and is designed for binary
query. The algorithm can quickly determine whether the origin lies inside the convex hull of wrenches.
However, it should be noted that the separating-axis algorithm cannot distinguish whether the origin
lies on the boundary or in the interior of the convex hull. The original GJK algorithm in Gilbert et
al® is an iterative algorithm that runs in linear time with respect to the number of wrenches.?> The
GJK separating-axis algorithm improves on this by reducing the running time used in each iteration.

4.1.4. Ray shooting algorithm of Liu. Liu® proposes a simple test of force closure by drawing a ray
from an arbitrary point P within the convex hull of primitive wrenches to the origin and calculate
the intersection X between the ray and the boundary of the convex hull. Force closure is achieved if
and only if the distance between the point P and the origin is smaller than the distance between the
point P and the intersection point X. This condition transforms the problem into the ray shooting
problem which is extensively studied in the field of Computational Geometry and is solvable by linear
programming. This test is used in many subsequent works of Liu.?*3*

4.1.5. Numerical ray shooting algorithm of zheng and Chew. Like the work of Liu,°® this force-
closure test is also based on ray shooting computation. The difference is that instead of using linear
programming to solve the ray shooting problem, Zheng and Chew'! introduced an efficient numerical
solution based on an iterative method for computing the distance between a point and a convex set.
Like most numerical methods, a proper termination tolerance € is required.

4.1.6. Q Distance of Zhu and Wang. Zhu and Wang’ propose the concept of Q distance for analysis
and synthesis of force-closure grasps. The Q distance is a grasp quality measure, calculated for the

https://doi.org/10.1017/50263574713001057 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001057

878 New computational method for three-fingered force-closure test

convex hull of primitive wrenches, denoted by A. Given a ruler convex polyhedron Q, which contains
the origin, the Q distance determines a positive scaling factor of Q (if exists) such that the scaled
Q is entirely contained in A. The Q distance consists of two subfunctions, Q* distance and Q~
distance. The Q" distance determines whether there exists a positive scaling factor that causes a
nonempty intersection between A and the scaled Q. This is required for the calculation of Q~, which
actually determines the Q distance. It can be formulated as a set of linear programming problems.
In our experiments, the ruler polyhedron Q is set to be a regular tetrahedron to achieve maximum
computation speed.

4.1.7. Quick hull with arbitrary precision arithmetic. A straightforward approach to force-closure
testing is to directly compute the convex hull of primitive wrenches. The convex hull can be described
by the intersection of its bounding half spaces. To test whether the origin lies strictly inside the
convex hull, we test whether the origin lies in the interior of every bounding half space (described by
the corresponding bounding facet). We use the Quick Hull algorithm in Barber ez al.’! to compute
the convex hull and its bounding facets. The algorithm is implemented using the CGAL library.®
The internal computation of the library relies on an arbitrary precision number support from GNU
Multiple Precision Arithmetic Library.*® Employing the arbitrary precision arithmetic avoids the
problem of roundoff errors encountered when using ordinary floating point operations. Of course,
using exact arithmetic requires tremendous computing power. The method is therefore selected only
as a reference method for validating the results.

4.2. Numerical examples and results on three fingers

We compare the running time of our implementation with the others. In total, eight methods are
compared. One is our implementation given in Section 3 and the others are those from Section 4.1.
Nine test objects, shown in Fig. 6, are used. For each object, 200 contact points are randomly sampled
from its boundary to form a discrete point set. Specifically, we define p(¢) as the parameterized path
that represents the boundary. Each point is sampled by drawing ¢ from a uniform distribution U (0, 1).
For a polygonal object, care is taken not to sample a point at the vertices.

Using our method and that from Section 4.1, every combination of three contact points from each
set is tested whether it achieves force closure. The friction coefficient of 1120/6351 is used, which
yields a friction cone with half cone angle at approximately 10.001°. Note that the friction coefficient
used in every experiment is a rational number so that the sine and cosine values of the corresponding
half friction cone angle take on rational numbers. This is to ensure that the reference method is free
from floating point operations and can generate true results. All methods are implemented in C++,
running on an Intel Core 17 3.4 GHz machine with 8-GB RAM. Of all the methods, only the Quick
Hull employs arbitrary precision arithmetic in order to ensure the validity of the result. The other
methods use primitive data type (64-bit floating point).

Table I presents the running time of each method to test all Cyg0.3 = 1,313,400 grasps. Each row
represents the result from each test object. The first column shows the actual running time of our
algorithm, labeled as “NS.” The remaining columns show the percentage between the actual running
time of a particular method and our method. The columns labeled BM, LLC, GJK, Liu, ZC, and
ZW represent the methods in Sections 4.1.1, 4.1.2, 4.1.3, 4.1.4, 4.1.5, and 4.1.6, respectively. The
Quick Hull method, which is implemented with arbitrary precision arithmetic, is not included since
the calculation obviously requires tremendous amount of time (more than 1000 folds of our method).
The result of the Quick Hull method is included in the experiment only for the purpose of result
validation, which will be discussed afterward.

The result shows that our method is the fastest one, taking less than two-third of the second
fastest, the BM method. On average, each force-closure test by our NS method takes less than 0.2
microseconds. The results show that there is a large gap between the first three methods (NS, BM,
and LLC) and the remaining methods. The major difference is that NS, BM, and LLC operate in 2D
space, while the remaining methods operate in 3D space. We analyze these faster three methods in
terms of arithmetic operations they perform. In the case of three fingers, it is unnecessary to analyze
the performance in terms of asymptotic complexity since the input size is fixed. We instead count the
number of major operations performed by each method. The major operations considered here are
divisions and cross product operations.

https://doi.org/10.1017/50263574713001057 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001057

New computational method for three-fingered force-closure test 879

(©)

(a) (b)
(d (e) 6]
(€9) (h)

Table I. Actual running time. The friction coefficient is 1120/6351. The
running time of the comparing methods is given as percentages with respect
to that of NS.

@

Fig. 6. Test objects.

Running time (%)

Test objs. Timeof NS(s) BM LLC GJK Liu ZC A

(a) 0.243 179 280 942 2921 3363 6445
(b) 0.252 161 182 759 2982 2924 4009
© 0.254 169 220 879 2768 3260 5750
(d 0.271 139 192 763 2703 2792 3688
(e) 0.273 130 203 732 2672 2750 3583
69) 0.278 132 195 712 2750 2673 3511
(2) 0.267 144 196 770 2722 2849 3813
(h) 0.253 170 233 921 2887 3201 5433
1) 0.259 143 219 841 2858 2902 4994
Avg. 0.261 152 213 813 2807 2968 4581

We first compare our method against the BM method. Our method takes eight divisions to convert
wrenches into the force dual representation, comparing with 12 divisions required by the BM method.
From our preliminary experiment, division takes more than half of the total running time of the BM
method. Another speedup of our method over BM comes from the grouping that always yields four
points to construct a convex hull. Convex hull of four points can be constructed by our brute force
algorithm using four cross products. This is obviously more efficient than the BM method, where
convex hull is constructed using Graham’s scan, which requires sorting. A four-point convex hull also
reduces the number of cross products required to detect the intersection. At worst, it takes 4 + 16
cross products, where four of them is to check whether a middle point lies inside the convex hull,
while the remaining 16 comes from the intersection checking of a segment against the boundary of
the convex hull. For the BM method, it is possible that the dual representation results in two groups
of three points each. Hence, we have to identify intersection of 3> segments, which can be done in
9 x 4 = 36 cross products. Moreover, we have to test whether a point lies in the convex hull of each

https://doi.org/10.1017/50263574713001057 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001057

880 New computational method for three-fingered force-closure test

Table II. Number of errors. The friction coefficient is 1120/6351. The column labeled
“QHULL” gives the total number of force-closure grasps computed using arbitrary
precision arithmetic system.

Number of errors

Testobjs. =~ QHULL NS BM LLC GJK Liu ZC 2ZW
(a) 538395 - - - - - -
(b) 137,598 - - - 2386 - -
©) 463,537 - - - 56 - -
() 146,353 - - 8 1676 - - -
(&) 140,013 - - 16 10,673 - -
(f) 122,081 - . 21 6021 0 - -
(2) 163,627 - - - 777 - ;
(h) 369,807 - - - 4 10762 - -
() 315531 - - - - 62266 - -
Total 2,396,942 - - 45 21593 73,038 - -

group, which takes four cross products. Hence, BM takes at most 4 4+ 4 + 36 = 44 cross products. It
is clear that our method uses fewer divisions and cross products than BM.

The BM method outperforms the LLC method by a noticeable fraction. LLC calculates the position
of intersection between two lines. Determining the intersection point between two lines is an expensive
operation comparable with six cross products and two divisions. There are at most six pairs of lines
to be taken into account, which amounts to 12 divisions and 36 cross products in the worst case.
Moreover, LLC also requires some additional calculation. In the worst case, it requires seven cross
products to trim one boundary of friction cone and there are at most six boundaries to be trimmed.
This amounts to 42 cross products. In conclusion, LL.C uses at most 36 + 42 = 78 cross products.
This supports the empirical result that LLC takes more running time than BM.

Table I represents only the running time, taking no account of accuracy. Every selected method is
essentially numerical in nature. Thus, unless an arbitrary precision arithmetic system is used in the
implementation, the result is inevitably affected by roundoff error of the floating point representation.
In Table II, we compare the validity of the result with the reference method, the Quick Hull algorithm
using the arbitrary precision arithmetic system. For each method, we count the number of errors of the
solution. The first column shows the number of force closure-grasps reported by the reference method,
labeled “QHULL.” Each of the remaining columns shows the number of errors of the corresponding
method. It is to be noted that this is a limited comparison considering only the validity of the result,
a complete numerical sensitivity is not addressed, and it is worth further study.

Table II shows that only our method, the BM method, the ZC method, and the Q Distance method
report solutions that totally agree with the reference method. On the other hand, results from LLC,
GJK, and Liu dissent from the reference. We examine the cause of these errors. Note that the ZC
method also suffers from some errors when the threshold e is set greater than 7 x 1073,

First, we consider the disposition method of Li ez al.'> Unlike the other cases, most of the conflicting
results of the disposition method stem not from the floating point inaccuracy but from the input that
is not covered by the case analysis in the proof of the algorithm. In brief, this method considers every
permutation of the three contact points, using one contact point (at a time) as the origin and examining
the sign of torques produced by the remaining two contact points. If one of the two contact points
can produce only positive torque (resp. negative torque), part of the force cone of the other contact
point that produces positive torque (resp. negative torque) is disposed because that portion of the cone
obviously cannot help forming a force-closure grasp. It is stated in Proposition 3 of Li et al. that after
all permutations of friction cones have undergone such disposition, existence of the intersection of
the disposed double-side friction cones is a necessary and sufficient condition of force closure.

The problem arises when no disposition can take place, i.e., when each cone can produce both
positive and negative torques no matter which contact point is chosen to be the origin. The proof of
Proposition 3 in Li et al.'” states in its second case analysis that this event can occur only when each
pair of contact points lies on the same side of the double-side friction cone of the remaining contact
point. The proof proceeds to derive that a two-finger force-closure grasp can always be found when

https://doi.org/10.1017/50263574713001057 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001057

New computational method for three-fingered force-closure test 881

(b)

Fig. 7. (a) The case covered by the disposition method. Both contact points C; and C; lie on the same side of
the double-side friction cone of C; for any permutation of i, j, k. (b) The case not covered by the disposition
method. C lies in the positive friction cone of C3, while C lies in the negative friction cone. It is clear that all
forces point leftward and it does not achieve force closure.

this event is encountered. The case analysis is unfortunately not complete: when the aforementioned
event occurs, it is not necessary that each pair of contact points lies on the same side of the double-side
friction cone of the remaining contact point. An example is shown in Fig. 7(b), where each cone can
produce both positive and negative torques, but C; and C lie on different sides of the double-side
friction cone of C3. In this example, it is obvious that no force-closure grasp can be formed (all forces
in one half plane) as opposed to the report in error by the algorithm that a two-finger force-closure
grasp is found. For our test objects, many relatively simple shapes do not exhibit this fallacy. This
case is more likely to occur when there are three contact points that lie almost collinear and their
normal directions point relatively toward the same direction. Such behavior appears noticeably in the
two complex objects (e)—(f), which could be identified from the fault of the result.

Next, we consider the errors of GJK. These errors are due to the numerical nature of the algorithm.
The GJK algorithm is sensitive to the shape of the convex hull of wrenches. It should be noted that
even though wrench representation merges the notion of force and torque together, the unit of each
component in a wrench is different. In theory, arbitrary change in the scale of each unit has no effect to
the force-closure property of the grasp. For example, changing the distance measurement of an object
results in change of position scaling of contact points and subsequently changes the torque portion of
the wrench while force portion remains intact. Scaling up the object results in a larger torque, while
scaling down the object reduces the torque. However, the direction of the force cone does not change.
When the object is enlarged, the shape of the convex hull becomes flatter and thinner. This has a great
impact on GJK algorithms.

All of our test objects have the diameter in the range of several hundred units, while the normal
direction of a contact point is a unit vector. This exhibits the aforementioned problem of scaling.
To verify this conjecture, we scale down each object by a hundred times, effectively rendering the
convex hull to become more rounded. The result is that the number of errors decreased significantly.

Finally, we consider the ray shooting method of Liu.® From all test data, it can be seen that the
results from the ray shooting method mostly agree with the reference method, except for the hexagon
and the rectangle cases (rows (h) and (i) in the table). This is because several special cases of the
convex hull of wrenches can be found in these objects. Generally, the convex hull is a full rank
polyhedron in 3D space. However, it is possible that the convex hull can be degenerated. A common
degenerate case occurs when a convex hull is not at full rank and does not contain the origin. This
problem is also identified and an enhance version that is capable of handling the degenerate case is
presented in ref. [37].

This case can occur very easily when all contact points lie in the same linear side of an object (see
Fig. 8(a)). In such a case, all contact points have the same normal direction, but different positions.
These contact points yield two groups of wrenches, each has the same force, but different torque (see
Fig. 8(b)). The convex hull of the wrenches obviously degenerates.

In theory, the ray shooting method can distinguish this degeneration. Specifically, when the problem
is transformed into a linear programming problem, the degenerate case yields an indeterminate result.
However, this is always true only when the exact arithmetic is used. Under a limited precision floating
point implementation, the linear programming could overlook this indeterminate case.

Many numerical errors encountered by each method stem from the boundary case where the grasp
is on the borderline of achieving or not achieving force closure. For several objects, including the

https://doi.org/10.1017/50263574713001057 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001057

882 New computational method for three-fingered force-closure test

(a) (b)

Fig. 8. (a) Degeneration case commonly occurred in a linear face of an object. (b) The associated wrench form
a 2D polygon not containing the origin.

polygons with parallel edges such as the test objects (h) and (i), the boundary cases may be frequently
encountered. This is because the object is likely to yield groups of three coplanar wrenches (three
collinear points in the force-dual representation).

Our method, the BM method, and the Q Distance method do not suffer from such boundary cases
because they are deliberately tailored to prevent the problem. For Q Distance, one entire instance of
linear programming is derived to eliminate the case of equilibrium and non-equilibrium. This proves
to be useful from our experiment because the problematic case of objects (h) and (i) is easily detected.
For our method and the BM method, the issue is handled by the intersection detection describe in
Section 3.3. Merely checking whether two line segments intersect cannot distinguish the case in Figs.
5(d) and (f), while checking whether endpoints lie inside the convex hull might miss the case in Fig.
5(b). These cases are more likely to occur when three points are collinear. Case (c) in Section 3.3
and the use of middle point instead of the boundary points reduce the chance on these boundary
cases. From our preliminary experiment, using a simple checking instead of the method in Section
3.3 yields a significant number of errors. Careful attention to the geometric intricacy of the problem
is crucial to achieving a robust implementation.

We also set up another experiment to demonstrate the effect of larger friction coefficient on each
method, especially the errors of LLC under larger friction coefficient. The experiment is repeated using
a fairly large friction coefficient of 3/4, resulting in a friction cone with half angle at approximately
36.87°. Table III shows the actual time used by each algorithm, and Table IV reports the number of
errors of each algorithm in the same manner as Tables I and II, respectively.

A larger friction coefficient yields more force-closure grasps. This reduces the benefit of the
disposition method that can speedily rejects certain class of non-force-closure grasps. A similar
slowdown also applies to the ZC method. The difference between the time used by our method
and the disposition method is increased. Our method uses approximately half the time used by the
disposition method and less than one-third of the GJK method. Moreover, when the friction cone gets
larger, it is more likely that the case in Fig. 7(b) occurs. This can be seen from a significantly larger
number of errors of LLC.

5. 3D Three-Finger Grasp

Our method mentioned above can be applied for testing three-finger grasp in 3D. The key idea can
be credited to Proposition 5 in Li et al.,'> where it is proven that three frictional 3D contact points
achieve force closure if and only if there exists a planar force-closure grasp on the plane through the
three contact points such that the three contact forces achieving force closure are constrained to lie
in the intersection between the 3D friction cones and the plane (see Fig. 9).

https://doi.org/10.1017/50263574713001057 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001057

New computational method for three-fingered force-closure test 883

Table III. Actual running time. The friction coefficient is 3/4. The running time of the comparing methods is
given as percentages with respect to that of NS.

Running time (%)

Test objs. Time of NS (s.) BM LLC GIK Liu ZC W

(a) 0.283 144 343 1086 2402 3139 8148
(b) 0.280 135 246 906 2589 3067 5186
(c) 0.293 134 255 931 2153 3112 6366
(d) 0.319 122 284 945 2287 2847 5475
(e) 0.327 117 266 882 2224 2723 5000
) 0.350 116 260 864 2100 2535 4643
(2 0.315 125 274 899 2239 2895 5307
(h) 0.294 145 306 1081 2330 3235 7185
@) 0.301 139 290 993.2 2435 3160 6223
Avg. 0.307 1314 280.9 954.5 2307.0 2968 5948.6

Table IV. Number of errors. The friction coefficient is 3/4. The column labeled
“QHULL” gives the total number of force-closure grasps computed using
arbitrary precision arithmetic system.

Number of errors

Test objs. QHULL NS BM LLC GJK Liu ZC ZW

(a) o717 - - - - -
(b) 443162 - - - 6385 -
©) 798,576 - - - 160 -
) 626,034 - - 429 2717 -
@) 549611 - - 4400 4853 -
® 543061 - - 4100 5077 s - -
(2 607,532 - - 1602 2081 -
(h) 859814 - - - 679 11323 - -
() 713,168 - - - - 77077 - -
Total 6,112,675 - - 10,531 21,952 88405 - -

This proposition is general, and can be applied to any frictional 3D three-finger grasp. The only
assumption is that the three contact points are not collinear. When the three contact points are collinear,
a torque around the collinear line cannot be countered by any force from the three contact points.

Intuitively speaking, the key observation of this proposition can be stated as follows: If the three
3D contact points form a 2D force-closure grasp on the plane through the three contact points, to
achieve 3D force closure we only have to show that the contact points can produce force and torque
along the axis perpendicular to the plane. The proof of the proposition simply shows that when its
conditions are satisfied, positive spanning along the perpendicular axis is automatically guaranteed.
With this proposition, we can compute the corresponding planar grasp through the three contact
points and directly apply our method to test whether the planar grasp achieves force closure.

We propose a method for computing all combinations of three-finger grasps, given a set of contact
points in 3D. Our method exploits a necessary condition for force closure in ref. [15] that the plane
passing through the three contact points has to intersect the three associated friction cones. Our idea
is to use this necessary condition to prune off pairs of contact points whose friction cones do not
allow intersection with any possible plane through these points. How this idea is translated into an
algorithm is described as follows.

Let us consider two contact points p, and p,, and their friction cones F, and F},. Clearly, the force
f, € F, uniquely defines the plane through p, and p, that contains the force (Fig. 10(a)). Therefore,
all planes through p, and p, that are possible to intersect F, (i.e., to contain some force of F,) are
the ones limited by the two tangent planes of the friction cone F, (Fig. 10(b)). Let us denote this set
of planes by I1, 5. The set of planes I, , is also defined in the same manner with respect to p,,, p,,,

https://doi.org/10.1017/50263574713001057 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001057

884 New computational method for three-fingered force-closure test

(b)

Fig. 9. (a) Three 3D friction cones from three contact points, fi, f>, and f3. The 3D objects are represented by the
thick lines. The dotted line is the plane defined by the three contact points. The shaded region is the intersection
between the plane and the friction cones. (b) The corresponding planar force-closure grasp problem. It is to be
noted that each friction cone in this case might have different half angle. Nevertheless, the wrenches associated
with each contact point form a fan in the wrench space and can be described by positive combinations of two
primitive wrenches.

Fig. 10. A set of planes formed by two contact points and one friction cone.

and F,. Note the special case that all possible planes cover the entire R®> when p, lies in F,, or p,,
lies in F},.

With I, ;, and I1, , identified, the set of feasible planes formed by p,, p,,, F,, and F}, is simply
1, » N I1p 4. If this intersection is empty, the pair p, and p, can be safely rejected from force-closure
test. Clearly, for the third contact point p, to be feasible, it has to lie in a plane from I, , N I1j 4.
Since a plane from this set is guaranteed to intersect F, and Fj, we only need to check whether the
friction cone F, intersect the plane through the three contact points. If the intersection is not empty,
we compute the intersection between this plane and the three friction cones so that the problem can be
reduced into a 2D three-finger force-closure test, which can be solved by our proposed implementation
in Section 3.

6. Numerical Example in 3D

The objective of this section is to demonstrate the efficiency of our proposed force-closure test in 3D
setting and the efficiency of our pruning method. All experiments are conducted on an Intel Core i7
3.4 GHz machine with 8-GB RAM. Half angle of a friction cone is set at 10°.

The first example compares our force-closure test with the method of Gilbert ez al.,” which is
known to be relatively fast, and the methods by Zhu and Wang’ and Zheng and Chew,'! which are
more precise than that given by Gilbert et al.® In this first experiment, no pruning is performed.
Given three contact points, our method requires as inputs the intersections of their friction cones and
the plane they form whereas the other methods for force-closure test directly use the given contact
points as inputs. We randomly pick 107 triples of contact points from the objects in Fig. 11 and test
whether each triple achieves force closure. We measure the total time needed to test all triples. For
our method, the time spent for intersecting the friction cones and the plane is also taken into account.
For the methods in refs. [9 and 11] and ref. [7], a quadratic friction cone is linearized by a 16-side

https://doi.org/10.1017/50263574713001057 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001057

New computational method for three-fingered force-closure test 885

(d) (e) ®
Fig. 11. Test objects.

Table V. Results of three-finger grasp computation without pruning.

Time (s)
Fig. GJK zC W NS
(@ 167.67 391.11 1098.96 37.54
(b) 90.46 300.99 995.03 35.09
() 65.84 287.94 973.84 34.14
(d) 68.07 303.33 99490 33.77
(e) 67.02 290.84 969.43 33.80

63) 134.18 349.67 107247 36.61

Table VI. Results of three-finger grasp pruning.

With pruning Without pruning

Fig. #FC #Exec Time (s) # Exec Time (s)

(a) 133,150 402,136 6.82 10,586,800 33.99
(b) 22,370 140,789 3.08 10,586,800 30.76

(c) 8525 79,500 2.24 10,586,800 30.38
(d) 11,331 74,492 2.12 10,586,800 30.41
(e) 7517 64,359 2.10 10,586,800 30.72

() 118,177 36,8286 6.09 10,586,800 33.40

pyramid. The results of this experiment given in Table V obviously show that our method is much
faster, by at least a factor of 2.

The next comparison is to demonstrate the efficiency of our pruning technique. Approximately 500
contact points are randomly generated from each test object. Every triple of these contact points has
to be tested for whether it achieves force closure. We compare the performance of our method with
and without pruning. As described above, we expect our pruning method to reject a large number of
couples or triples of contact points that are not able to satisfy the necessary condition of force closure.
The results given in Table VI confirms that when pruning is applied, the number of force-closure test
executions is greatly reduced (approximately by a factor of 25) and the running time is reduced at
least by a factor of 5.

7. Conclusion and Discussion
We have introduced an efficient implementation for force-closure testing of three frictional contact
points based on the condition derived from the graphical representation of frictional contacts originally

https://doi.org/10.1017/50263574713001057 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001057

886 New computational method for three-fingered force-closure test

given by Brost and Mason.!® Our focus is on developing an efficient implementation that properly
deals with the geometric intricacy of the problem. Performance of the test has been exhibited
from both theoretical and empirical points of view. Besides computational speed, the comparison
with the existing methods takes into account the validity of results. This is necessary because the
implementation of each method using native data type of a modern computer, which is of limited
precision by its nature, inevitably suffers from the problem of roundoff errors. Our verification is
based on reference results computed using exact arithmetic. This verification scheme has never been
presented before in the literature. It identifies errors and reveals true robustness of force-closure
testing.

Although the method introduced in this paper is described explicitly for planar grasps, it is
shown that the method can easily be applied to 3D grasps as well. A method for computing all 3D
three-finger grasps is proposed utilizing the necessary condition that quickly rejects several non-
force-closure grasps and test only the remaining ones. It is shown that this pruning method along
with our proposed implementation greatly reduces the time used to test 3D three-finger force-closure
grasps.

References

1. J. Salisbury, “Kinematic and Force Analysis of Articulated Hands.” PhD thesis (Stanford University,
Stanford, CA, 1982).

2. J. Salisbury and B. Roth, “Kinematic and force analysis of articulated hands,” ASME J. Mech. Transm.
Autom. Des. 105, 3341 (1982).

3. A. Bicchi and V. Kumar, “Robotic Grasping and Contact: A Review,” In: IEEE International Conference
on Robotics and Automation, San Francisco, CA (2000) pp. 348-353.

4. A. Bicchi, “Hands for dexterous manipulation and robust grasping: A difficult road toward simplicity,”
IEEE Trans. Robot. Autom. 16(16), 652-662 (2000).

5. C. Ferrari and J. Canny, “Planning Optimal Grasps.” In: IEEE International Conference on Robotics and
Automation (1992) pp. 2290-2295.

6. Y.-H. Liu, “Qualitative test and force optimization of 3-D frictional form-closure grasps using linear
programming,” IEEE Trans. Robot. Autom. 15(1), 163-173 (1999).

7. X. Zhu and J. Wang, “Synthesis of force-closure grasps on 3-D objects based on the g distance,” IEEE
Trans. Robot. Autom. 19(4), 669—-679 (2003).

8. X. Zhu and H. Ding, “Computation of force-closure grasps: An iterative algorithm,” IEEE Trans. Robot.
22(1), 172-179 (2006).

9. E. G. Gilbert, D. W. Johnson and S. S. Keerthi, “A fast procedure for computing the distance between
complex objects in three-dimentional space,” IEEE Trans. Robot. Autom. 4, 193-203 (1988).

10. X. Zhu, H. Ding and S. K. Tso, “A pseudodistance function and its applications,” IEEE Trans. Robot.
Autom. 20(2), 344-352 (2004).

11. Y. Zheng and C.-M. Chew, “A Numerical Solution to the Ray-Shooting Problem and Its Applications in
Robotic Grasping,” IEEE International Conference on Robotics and Automation (2009).

12. Y. Zheng and C.-M. Chew, “Distance between a point and a convex cone in n-dimensional space:
Computation and applications,” IEEE Trans. Robot. 25(6), 1397-1412 (2009).

13. V.-D. Nguyen, “Constructing force-closure grasps,” Int. J. Robot. Res. 7(3), 3-16 (1988).

14. J. Ponce and B. Faverjon, “On computing three-finger force-closure grasps of polygonal objects,” IEEE
Trans. Robot. Autom. 11(6), 868—881 (1995).

15. J.-W. Li, H. Liu and H.-G. Cai, “On computing three-finger force-closure grasps of 2-D and 3-D objects,”
IEEE Trans. Robot. Autom. 19(1), 155-161 (2003).

16. R. C. Brost and M. T. Mason, “Graphical analysis of planar rigid-body dynamics with multiple frictional
contacts,” In: International Symposium on Robotics Research, Tokyo, Japan (MIT Press, Cambridge, MA,
1989) pp. 293-300.

17. M. T. Mason, Mechanics of Robotic Manipulation, Intelligent Robotics and Autonomous Agents series
(MIT Press, Cambridge, MA, 2001).

18. B. Mishra, J. Schwartz and M. Sharir, “On the existence and synthesis of multifinger positive grips,”
Algorithmica Spec. Issue Robot. 2(4), 541-558 (1987).

19. R. Bix, Topics in Geometry (Academic Press, Waltham, MA, 1994).

20. J. E. Goodman and J. O’Rourke (eds.), Handbook of Discrete and Computational Geometry (CRC Press,
Boca Raton, FL, 1997). ISBN 0-8493-8524-5.

21. L. Han, J. C. Trinkle and Z. X. Li, “Grasp analysis as linear matrix inequality problems,” IEEE Trans.
Robot. Autom. 16(6), 663—674 (2000).

22. J. Cornella and R. Suarez, “Fast and Flexible Determination of Force-Closure Independent Regions to
Grasp Polygonal Objects,” In: IEEE International Conference on Robotics and Automation, Barcelona,
Spain (2005) pp. 778-783.

https://doi.org/10.1017/50263574713001057 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001057

New computational method for three-fingered force-closure test 887

23.

24.
25.
26.

27.

28.

29.
30.
31.
32.

33.
34.
35.
36.
37.

J. Cornella and R. Suarez, “A New Framework for Planning Three-Finger Grasps of 2D Irregular
Objects,” In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China (2006)
pp- 5688-5694.

C.-P. Tung and A. C. Kak, “Fast construction of force-closure grasps,” IEEE Trans. Robot. Autom. 12(4),
615-626 (1996).

B. Faverjon and J. Ponce, “On Computing Two-Finger Force-Closure Grasps of Curved 2D Objects,” In:
IEEE International Conference on Robotics and Automation, Sacramento, CA (1991) pp. 424-429.

J. Ponce, S. Sullivan, J.-D. Boissonnat and J.-P. Merlet, “On Characterizing and Computing Three- and
Four-Finger Force-Closure Grasps of Polyhedral Objects,” In: IEEE International Conference on Robotics
and Automation, Atlanta, GA (1993) pp. 821-827.

N. S. Pollard and A. Wolf, “5 Grasp Synthesis from Example: Tuning the Example to a Task or Object,”
In: Springer Tracts in Advanced Robotics, Vol. 18 Multi-Point Interaction with Real and Virtual Objects
(F. Barbagli, D. Prattichizzo and K. Salisbury, eds.) (Springer, Berlin, Germany, 2005) pp. 77-90. ISBN
978-3-540-26036-3.

J.-S. Cheong and A. F. van der Stappen, “Output-Sensitive Computation of All Form-Closure Grasps of a
Semi-Algebraic Set,” In: IEEE International Conference on Robotics and Automation, Barcelona, Spain
(2005) pp. 772-778.

J.-S. Cheong, H. J. Haverkort and A. F. van der Stappen, “On computing all immobilizing grasps of a simple
polygon with few contacts,” Algorithmica 44, 117-136 (2006).

G. van den Bergen, “A fast and robust GJK implementation for collision detection of convex objects,” J.
Graph Tools 4(2), 7-25 (1999).

C. B. Barber, D. P. Dobkin and H. Huhdanpaa, “The quickhull algorithm for convex hulls,” ACM Trans.
Math. Soft. 22(4), 469—483 (1996).

C.J. Ong and E. Gilbert, “The Gilbert-Johnson-Keerthi Distance Algorithm: A Fast Version for Incremental
Motions,” In: Proceedings of 1997 IEEE International Conference on Robotics and Automation, Vol. 2
(1997) pp. 1183 —1189. doi:10.1109/ROBOT.1997.614298.

D. Ding, Y.-H. Liu, M. Y. Wang and S. Wang, “Automatic selection of fixturing surfaces and fixturing
points for polyhedral workpieces,” IEEE Trans. Robot. Autom. 17(6), 833—-841 (2001).

Y.-H. Liu, M.-L. Lam and D. Ding, “A complete and efficient algorithm for searching 3-D form-closure
grasps in the discrete domain,” IEEE Trans. Robot. 20(5), 805-816 (2004).

The CGAL Project, CGAL User and Reference Manual (2013) (CGAL Editorial Board), available at
http://doc.cgal.org/4.3/Manual/packages.html.

T. Granlund, The GNU Multiple Precision Arithmetic Library, 4.2.1 edition (Free Software Foundation,
Boston, MA, 2006).

Y. Zheng and W.-H. Qian, “An enhanced ray-shooting approach to force-closure problems,” J. Manuf. Sci.
Eng. 128(4), 960-968 (2006).

https://doi.org/10.1017/50263574713001057 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001057

