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Abstract: Colman shows that normative theories of rational decision-mak-
ing fail to produce rational decisions in simple interactive games. I suggest
that well-formed theories are possible in local settings, keeping in mind
that a good part of each game is the generation of a rational approach ap-
propriate for that game. The key is rationality defined in terms of the game,
not individual decisions.

Colman gives an intriguing, interesting, and at times amusing ac-
count of the failures of normative theories of rational decision-
making. He suggests moving toward a “psychological” game the-
ory that would be “primarily descriptive or positive rather than
normative,” and adds “a collection of tentative and ad hoc sugges-
tions” (target article, sect. 8). I suggest that a well-formed psy-
chological theory of rational decision-making may well be possi-
ble in local contexts (of a scope and generality large enough to be
interesting). The approach is rooted in the thought that rational-
ity itself is a psychological rather than axiomatic concept, justify-
ing the need to reinvent it (or at least restrict it) for different set-
tings.

I propose that all the decision-makers in a social/interactive
game are faced with a dual task: They must decide (quite possibly
without any communication) what theory of rational decision-
making applies in that situation, and given that, whether a jointly
rational solution exists, and what it is. The first of these tasks is not
typically made explicit, but is a necessary consequence of the cur-
rent lack of a general (axiomatic) theory of rational decision-mak-
ing.

It will suffice for this commentary to consider the Centipede
game (Colman’s Fig. 5). This is a good exemplar of a social/inter-
action game without communication (except through the choices
made), and with the goal for each player to maximize individual
utility (not beat the other player). I assume that both players know
that both players are rational, and not subject to the sundry “irra-
tional” forces that lead human decision-makers to their choices. I
also assume that each player knows his or her own mapping of
monetary payoffs onto subjective utility, but does not know the
mapping for the other player, other than the shared knowledge
that a larger payoff (in monetary amount, say) corresponds to a
larger utility. Note that this assumption (in most cases) eliminates
the possibility that a rational strategy will involve a probabilistic
mixture. Assuming that player A’s mixture of choices affects player
B’s mixture of outcomes, player A generally cannot know whether
the utility to B of a given mixture exceeds that for some other fixed
or mixed payoff.

Therefore, the players at the outset of a game will both consider
the same finite set of strategies Sj, where a given strategy consists
of the ordered set of decisions kD(1A), D(2B), D(3A), D(4B), . . .
D(N)l, where D(I) is one of the choices allowed that player by the
sequence of previous choices in that strategy. A game utility Uj is
associated with each strategy: kUjA, UjBl. Each player’s goal is to
reach a strategy that will maximize his or her personal Uj, in the
knowledge that both players are rational and both have this goal.

In a Centipede game with many trials (say, 20), backward in-
duction seems to lead to the “irrational” decision to stop (defect)
on trial 1, even though both players can gain lots of money by play-
ing (cooperating) for many trials. Of course, backward induction
is flawed when used here in the usual way: Player A defects on,
say, trial 15 in the certainty that Player B will defect on trial 16.
But trial 15 could not have been reached unless B had been co-
operating on all previous choices, so certainty is not possible.
Thus, by cooperating on the first trial, the player eliminates back-
ward induction as a basis for reasoning, and allows cooperation to
emerge as a rational strategy. Yet, the forces in favor of defecting

grow over trials, until backward induction seems to regain its force
on the penultimate choice (e.g., trial 19 of 20, or 3 of 4).

Consider, therefore, a two-trial version of Colman’s Centipede
game. Both players at the outset consider the three possible strate-
gies: kstopl, kplay, stopl, kplay, playl, with associated payoffs of
k0,0l, k21,10l, k9, 9l. The players look for a rational solution, in
the hope that one exists (they share the knowledge that some
games may not have a rational solution). So each player reasons:
Which of the three strategies could be rational? Player B might
like kplay, stopl, but both players could not decide this strategy was
rational. If it were, A would stop on trial 1 (forcing a better out-
come). Therefore, both players know kplay, stopl could not be a
rational strategy. Of the two remaining strategies, both players
have little trouble seeing kplay, playl as the rational choice, given
that k9, 9l is preferred to k0,0l.

This solution is “selfish,” not predicated on maximizing joint re-
turn. It derives from the shared knowledge of playing a two-trial
social game: In a one-trial game even a rational, cooperative deci-
sion-maker would clearly defect. Rationality is defined in terms of
the entire game and total payoffs, not the payoff on a given trial.
This approach could perhaps be considered a kind of generaliza-
tion of the “Stackelberg reasoning” discussed by Colman, but is
even more closely related to “dependency equilibria” discussed by
Spohn (2001). It can be generalized and formalized (though not
in this commentary). I note only that it gives justification for co-
operative choices in simultaneous-choice games, such as the Pris-
oner’s Dilemma (and sequential-play extensions of those games).

Perhaps the chief objection to this approach involves the per-
ception that accepted causal precepts are violated: What is to stop
B from defecting once trial 2 is reached? This issue is reminiscent
of that obtaining in Newcomb’s paradox (Nozick 1969), or the
“toxin” puzzle (Kavka 1983), but in those cases a defense of a
seemingly irrational later choice depends on uncertainty con-
cerning an earlier causal event (I say “seemingly” because I am
quite certain a Newcomb’s chooser should take “one” and the
“toxin” should be imbibed). The present case is more trouble-
some, because the first choice is known when the last choice is
made. I nonetheless defend cooperation with the primary argu-
ment that rationality ought to be, and in fact must be, defined in
terms of the entire game and not an individual decision within that
game.
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Abstract: On top of the puzzles mentioned by Colman comes the puzzle
of why rationality has bewitched classical game theory for so long. Not the
smallest merit of evolutionary game theory is that it views rationality as a
limiting case, at best. But some problems only become more pressing.

Aficionados of Humphrey Bogart will recognize this title’s ques-
tion as being a running gag from the film “To Have and Have Not.”
Apparently, if you step barefoot on a dead bee, you are likely to
get hurt. The assumption that human behavior is rational died a
long time ago, for reasons Colman summarizes very well, but it has
failed to be buried properly. And if you carelessly tread on it, you
will learn about its sting.

The question is, of course, why one should tread on it in the first
place. There seems no reason ever to come close. The hypothesis
that humans act rationally has been empirically refuted not only
in the context of interactive decisions, but also for individual de-
cision-making, where, in a way, it is even more striking. Indeed,
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