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Abstract Let G be a finitely generated group with polynomial growth, and let ω be a weight, i.e. a sub-
multiplicative function on G with positive values. We study when the weighted group algebra �1(G, ω) is
isomorphic to an operator algebra. We show that �1(G, ω) is isomorphic to an operator algebra if ω is a
polynomial weight with large enough degree or an exponential weight of order 0 < α < 1. We demonstrate
that the order of growth of G plays an important role in this problem. Moreover, the algebraic centre of
�1(G, ω) is isomorphic to a Q-algebra, and hence satisfies a multi-variable von Neumann inequality. We
also present a more detailed study of our results when G consists of the d-dimensional integers Z

d or
the three-dimensional discrete Heisenberg group H3(Z). The case of the free group with two generators
is considered as a counter-example of groups with exponential growth.
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1. Introduction

The motivation for this paper originated from a result of Varopoulos that states that
certain weighted group algebras on integers are isomorphic to Q-algebras [20]. We recall
that a commutative Banach algebra is called a Q-algebra if it is a quotient of a uni-
form algebra. There are interesting (and non-trivial) classes of Banach algebras that are
isomorphic to Q-algebras. For instance, it is shown in [20] and [6] that the spaces �p

(1 � p � ∞) with pointwise product are isomorphic to Q-algebras. The case of the
Schatten spaces Sp, 1 � p � ∞, endowed with the Schur product, has been considered
by many researchers (see [11] and [13]), and has very recently been covered for full
generality (see [4]).
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Let G be a discrete group, and let ω : G → (0,∞) be a weight on G, i.e.

ω(xy) � ω(x)ω(y), x, y ∈ G.

The weighted group algebra �1(G, ω) is the convolution algebra of functions f on G such
that ‖f‖�1(G,ω) =

∑
x∈G|f(x)|ω(x) < ∞. Varopoulos showed that in the case where

G = Z and ωα(n) = (1 + |n|)α (α � 0), �1(Z, ωα) is isomorphic to a Q-algebra if and
only if α > 1/2.

We want to extend Varopoulos’s result to other classes of weighted group algebras, pos-
sibly on non-abelian groups. However, group algebras are non-commutative in general, so
we cannot hope for them to be isomorphic to Q-algebras. Instead, we want to investigate
whether a weighted group algebra is isomorphic to an operator algebra. Recall that an
operator algebra is a closed subalgebra of B(H), the algebra of all bounded operators on
a Hilbert space H. Note that any Q-algebra is an operator algebra (see [6, Theorem 1.1]).
In the proof, Varopoulos actually proved that �1(Z, ωα) satisfies one of the sufficient con-
ditions to be isomorphic to a Q-algebra, namely, it is an injective algebra. Recall that
a Banach algebra A is called an injective algebra if the algebra multiplication map m

extends to a bounded map on the injective tensor product:

m : A ⊗ε A → A.

In this paper we also focus on the case where �1(G, ω) becomes an injective algebra.
Using a Littlewood multiplier argument we show that �1(G, ω) is an injective algebra,
and consequently is isomorphic to an operator algebra, if G is a finitely generated group
with polynomial growth and ω is a polynomial weight with a large enough degree or a
certain exponential weight. Such weights are defined later in this paper.

This paper is organized as follows. In § 2.1 we recall several basic facts about injective
algebras and Q-algebras. In § 2.2 we give an equivalence condition for �1(G, ω) to be iso-
morphic to an operator algebra. In § 2.3 we recall the definitions of Littlewood multipliers
and their consequences. In § 2.4 we give the necessary background on finitely generated
groups with polynomial growth and detail how one can use the length function to define
various weights such as polynomial and exponential weights on these groups. In §§ 3.1
and 3.2 we show our main results, namely, the case where �1(G, ω) is isomorphic to an
operator algebra. Moreover, we check that the algebraic centre of �1(G, ω) is a Q-algebra
in this case, and, hence, that it satisfies the (δ, L)-multi-variable von Neumann inequality
(see § 3.1). We also find estimates for the upper bound of the norm of the multiplication
map of the algebra for various weights and use them to determine concrete values of δ

and L.
Finally, in § 5 we apply our techniques to study the cases when G consists of the

d-dimensional integers Z
d or the three-dimensional discrete Heisenberg group H3(Z). The

case of the free group with two generators is examined to give a reasonable explanation
of why we focus mainly on groups with polynomial growth.

2. Preliminaries

In this paper, all our groups are discrete.
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2.1. p-summing algebras, injective algebras and Q-algebras

We first recall some definitions. Let X and Y be Banach spaces. For 1 � p < ∞, a
sequence (xn)n�1 ⊂ X is called p-summable (respectively, weakly p-summable) if

‖(xn)‖p =
( ∑

n�1

‖xn‖p

)1/p

< ∞

(
respectively, ‖(xn)‖w

p = sup
ϕ∈BX∗

( ∑
n�1

|ϕ(xn)|p
)1/p

< ∞
)

.

The Chevet–Saphar tensor norms on the algebraic tensor product X ⊗ Y are defined by

gp(u) = inf
{

‖(xj)‖p‖(yj)‖w
p′ : u =

n∑
j=1

xj ⊗ yj , xj ∈ X, yj ∈ Y

}
,

where p′ is the conjugate index of p. We denote the completion of (X ⊗Y, gp) by X ⊗gp Y .
We say that a linear map T : X → Y is p-summing if there exists a constant C > 0

such that
‖(Txn)‖p � C‖(xn)‖w

p

for any sequence (xn)n�1 ⊂ X. We denote the infimum of such a C by πp(T ), and
Πp(X, Y ) refers to the Banach space of all p-summing maps with the norm πp(·). It is
well known that we have the isometry

(X ⊗gp Y )∗ ∼= Πp′(Y, X∗), A ⊗ B 	→ T,

where A ∈ X∗, B ∈ Y ∗ and

Ty = 〈y, B〉A (x ∈ X, y ∈ Y ).

See [17, Chapter 6] for the details of p-summing maps and Chevet–Saphar tensor norms.
Standard Banach space theory (see [17, Proposition 3.22] and [19, Corollary 9.5]) tells

us that we have the isometry

(�1(G) ⊗ε �1(G))∗ ∼= Π1(�1(G), �∞(G)), A ⊗ B 	→ S. (2.1)

One more standard fact we use later is that the composition of two 2-summing maps is a
1-summing map (actually, a nuclear map). More precisely, let T : X → Y and S : Y → Z

be 2-summing maps between Banach spaces; then S ◦ T is 1-summing with

π1(S ◦ T ) � π2(S)π2(T ). (2.2)

We say that a Banach algebra A is a p-summing algebra if the algebra multiplication
map m extends to a bounded map

m : A ⊗gp A → A.
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Theorem 2.1 (Tonge [7, Theorem 18.19]). Every 2-summing algebra is isomorphic
to an operator algebra.

Corollary 2.2. Every injective algebra is isomorphic to an operator algebra.

Proof. Recall that the injective tensor product is the minimum among Banach space
tensor products, so the formal identity A ⊗g2 A → A ⊗ε A is a contraction for a Banach
algebra A. Thus, we can conclude that every injective algebra is a 2-summing algebra,
which completes the proof. �

Definition 2.3. Let m be the algebra multiplication of a Banach algebra A. In the
case that A is an injective algebra, we define

‖m‖ε := ‖m : A ⊗ε A → A‖.

We say that a Banach algebra A is a Q-algebra if it is a quotient of a uniform alge-
bra, which is automatically a commutative algebra. Q-algebras are characterized by a
von Neumann-type inequality [2, § 5.4.3 (2)].

Theorem 2.4. Let A be a commutative Banach algebra. Then, A is isometrically
isomorphic to a Q-algebra if and only if we have

‖p(a1, . . . , an)‖ � ‖p‖∞

for any n ∈ N , {a1, . . . , an} ⊂ A with norm less than or equal to 1 and every polynomial
p in n variables without constant terms, where

‖p‖∞ = sup{|p(z1, . . . , zn)| |zi| � 1, i = 1, . . . , n}.

Motivated by the above, we give the following definition.

Definition 2.5. Let A be a commutative Banach algebra. Then, A is said to satisfy
the multi-variable (δ, L)-von Neumann inequality provided that, for every n ∈ N , every
set of n elements {a1, . . . , an} ⊂ A with ‖ai‖ � δ (i = 1, . . . , n) and every polynomial p

in n variables without constant terms, we have that

‖p(a1, . . . , an)‖ � L‖p‖∞.

All commutative injective algebras are Q-algebras (see [20]). Actually, a commutative
Banach algebra is an injective algebra if and only if it is isomorphic to a quotient of a
uniform algebra by a complemented ideal (see [21]). A more qualitative result can be
found in [2] using a modern language of operator spaces.

Theorem 2.6 (Blecher and Le Merdy [2, Theorem 5.4.5, Corollary 5.4.11]).
Let A be a commutative injective algebra with the multiplication map m. Then, A
satisfies the multi-variable (δ, L)-von Neuman inequality with

δ =
1

(1 + ‖m‖ε)e
and L = 1.
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2.2. Weighted group algebras

Let G be a group, and let ω : G → (0,∞) be a weight on G, i.e.

ω(xy) � ω(x)ω(y) (x, y ∈ G).

The weighted group algebra �1(G, ω) is the convolution algebra of functions f on G such
that ‖f‖�1(G,ω) =

∑
x∈G |f(x)|ω(x) < ∞. Using the natural duality �1(G)∗ = �∞(G), we

can show that �1(G, ω)∗ = �∞(G, ω−1), where

�∞(G, ω−1) = {ϕ | ϕω−1 ∈ �∞(G)}
with

‖ϕ‖�∞(G,ω−1) = ‖ϕω−1‖∞.

In § 2.1 we showed that every injective Banach algebra is isomorphic to an operator
algebra. As we show in Theorem 2.8, the converse of the preceding statement is also
true in the case of weighted group algebras. However, this requires some operator space
knowledge, including the Haagerup tensor product ⊗h of operator spaces. We refer the
reader to [2] or [15] for details. We first recall the following form of the celebrated
Grothendieck theorem.

Theorem 2.7. If we equip �1(G) with its max operator space structure, then the
formal identity id : �1(G) ⊗ε �1(G) → �1(G) ⊗h �1(G) has norm less than or equal to KG,
where KG is the Grothendieck constant.

Proof. See [2, (1.47), (A.7)] and [16, (3.11)]. �

Theorem 2.8. Let G be a group, and let ω be a weight on G. Then, �1(G, ω) is an
injective Banach algebra if and only if it is isomorphic to an operator algebra.

Proof. The necessary part has been proven in Corollary 2.2. For the sufficient part,
suppose that there exist an operator algebra B ⊆ B(H) and a bounded algebra isomor-
phism ψ : �1(G, ω) → B. This, in particular, implies that ψ : �1(G, ω) → B is completely
bounded when �1(G, ω) is given its max operator space structure. Now, since from [2, The-
orem 2.3.2] the multiplication map m : B ⊗h B → B is completely contractive, we have
the bounded map

ψ−1 ◦ m ◦ (ψ ⊗ ψ) : �1(G, ω)⊗h�1(G, ω) → �1(G, ω).

But, it is easy to see that ψ−1 ◦ m ◦ (ψ ⊗ ψ) is exactly the multiplication map

m : �1(G, ω)⊗h�1(G, ω) → �1(G, ω).

On the other hand, since the mapping

�1(G, ω) → �1(G), f 	→ fω

is a complete isometric surjection (here, we have again given max operator space structure
to both �1(G, ω) and �1(G)), it follows from the Grothendieck theorem (Theorem 2.7)
that the formal identity id : �1(G, ω)⊗ε�

1(G, ω) → �1(G, ω)⊗h�1(G, ω) has norm less than
or equal to KG. This implies that the multiplication map �1(G, ω)⊗ε �1(G, ω) → �1(G, ω)
is bounded, and so �1(G, ω) is injective. �
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2.3. Littlewood multiplier

Let G be a (discrete) group. We let the space of Littlewood multipliers, denoted
by T 2(G), be all the functions f : G × G → C for which there exist functions
f1, f2 : G × G → C such that

f(s, t) = f1(s, t) + f2(s, t) (s, t ∈ G)

and
sup
t∈G

∑
s∈G

|f1(s, t)|2 < ∞, sup
s∈G

∑
t∈G

|f2(s, t)|2 < ∞.

We equip this space with the norm

‖f‖T2(G) = inf
{

sup
t∈G

( ∑
s∈G

|f1(s, t)|2
)1/2

+ sup
s∈G

( ∑
t∈G

|f2(s, t)|2
)1/2}

,

where the infimum is taken over all possible decompositions. Note that the term ‘Little-
wood functions’ has been used for T 2(G) in the literature, but we use the term ‘Littlewood
multipliers’ instead, since it explains the meaning of T 2(G) better.

It easily follows that T 2(G), with the action of pointwise multiplication, is a symmetric
Banach �∞(G × G)-module. Indeed, we have the following contraction:

�∞(G × G) ⊗γ T 2(G) → T 2(G), f ⊗ g 	→ fg, (2.3)

where ⊗γ is the projective tensor product of Banach spaces. Moreover, we have the
following bounded embedding, which is well known to experts but we have presented its
proof for the sake of completeness.

Proposition 2.9. Let G be a discrete group, and let I : T2(G) → (�1(G) ⊗ε �1(G))∗

be the formal identity. We then have

‖I‖ � KG.

Proof. For simplicity, we write �1 instead of �1(G), �2 instead of �2(G), and �∞ instead
of �∞(G). We first note that, since �2 is reflexive, we have the isometric isomorphisms

B(�1, �2) ∼= (�1 ⊗γ �2)∗ ∼= (�1(�2))∗ ∼= �∞(�2), (2.4)

where �1(�2) and �∞(�2) are Banach spaces of �2-valued 1-summable functions and
bounded functions, respectively. Now, let f1 : G × G → C be a function with

α := sup
t∈G

( ∑
s∈G

|f1(s, t)|2
)1/2

< ∞.

Then, by (2.4), the associated linear map u : �1 → �2, g 	→ u(g) given by

u(g)(t) =
∑
s∈G

g(s)f1(s, t)
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has the norm ‖u‖ = α, and I(f1) corresponds to id2,∞ ◦u, where id2,∞ : �2 → �∞ is the
formal identity. We now recall that

(�1(G) ⊗ε �1(G))∗ ∼= Π1(�1(G), �∞(G))

and
(�1(G) ⊗h �1(G))∗ ∼= Γ2(�1(G), �∞(G)),

the space of 2-factorable operators, as Banach spaces (see [15, Proposition 5.16], [7,
Chapter 7]). Then, by Grothendieck’s theorem (Theorem 2.7), we have that

‖I(f1)‖ = π1(id2,∞ ◦u) � KGγ2(id2,∞ ◦u) � KGα,

where γ2(·) is the 2-factorable norm. Similarly, for f2 : G × G → C with

β := sup
s∈G

( ∑
t∈G

|f1(s, t)|2
)1/2

< ∞

we get ‖I(f2)‖ � KG · β, which gives the desired result. �

2.4. Groups with polynomial growth

Let G be a finitely generated group with a fixed finite symmetric generating set F

with the identity of the group G. We say that G has polynomial growth if there exists a
polynomial f such that

|Fn| � f(n) (n ∈ N).

Here, |S| is the cardinality of any S ⊆ G and

Fn = {u1 · · ·un : ui ∈ F, i = 1, . . . , n}.

The least degree of any polynomial satisfying the above relation is called the order of
growth of G and is denoted by d(G). It can be shown that the order of growth of G does
not depend on the symmetric generating set F , i.e. it is a universal constant for G.

It is immediate that finite groups are of polynomial growth. More generally, every G

with the property that the conjugacy class of every element in G is finite has polynomial
growth [12, Theorem 12.5.17]. Also, every nilpotent group (hence, abelian group) has
polynomial growth [12, Theorem 12.5.17]. A deep result of Gromov [9] states that every
finitely generated group with polynomial growth is virtually nilpotent, i.e. has a nilpotent
subgroup of finite index. Moreover, there exist a polynomial f and a constant 0 < λ � 1
such that

λf(n) � |Fn| � f(n) for all n ∈ N, (2.5)

where deg f = d(G). If we further assume that G is nilpotent, then, by the Bass–Guivarch
formula (see [1,10]), we can actually compute the order of growth of G. More precisely,
let G be a finitely generated nilpotent group with lower central series

G = G1 ⊇ G2 ⊇ · · · ⊇ Gm = {e}.
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In particular, the quotient group Gk/Gk+1 is a finitely generated abelian group. The
order of growth of G is then

d(G) =
m−1∑
k=1

k rank(Gk/Gk+1), (2.6)

where rank denotes the rank of an abelian group, i.e. the largest number of independent
and torsion-free elements of the abelian group.

Using the generating set F of G we can define a length function τF : G → [0,∞) by

τF (x) = inf{n ∈ N : x ∈ Fn} for x �= e, τF (e) = 0. (2.7)

When there is no fear of ambiguity, we write τ instead of τF . It is straightforward to
verify that τ is a subadditive function on G, i.e.

τ(xy) � τ(x) + τ(y) (x, y ∈ G). (2.8)

Note that, since F is symmetric, for every x ∈ G, τ(x) = τ(x−1). If we combine this fact
with (2.8), then a straightforward calculation shows that

|τ(x) − τ(y)| � τ(xy) � τ(x) + τ(y) (x, y ∈ G). (2.9)

We can use τ to define various weights on G. More precisely, for every 0 � α � 1, β � 0
and C > 0, we can define the polynomial weight ωβ on G of order β by

ωβ(x) = (1 + τ(x))β (x ∈ G), (2.10)

and the exponential weight σα,C on G of order (α, C) by

σα,C(x) = eCτ(x)α

(x ∈ G). (2.11)

3. Weighted group algebras isomorphic to operator algebras

In this section, we use G to denote a finitely generated infinite group with polynomial
growth. We denote by F a fixed symmetric generating set of G with the identity, and f

and λ refer to the polynomial and the constant satisfying (2.5), respectively.

3.1. The case of polynomial weights

For some weight ω : G → (δ, ∞) with δ > 0, we want to check whether �1(G, ω) is an
injective algebra. In order to do so we recall the co-multiplication

Γ : �∞(G) → �∞(G × G)

f 	→ Γf,

with Γf(s, t) = f(st), s, t ∈ G. Let Γω : �∞(G, ω−1) → �∞(G × G, ω−1 × ω−1) be the
extension of Γ to �∞(G, ω−1). Consider the isometries

P : �∞(G) → �∞(G, ω−1)

f 	→ fω
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and

R : �∞(G × G, ω−1 × ω−1) → �∞(G × G)

F 	→ F · (ω−1 × ω−1).

We define the operator Γ̃ : �∞(G) → �∞(G × G) so that the following diagram com-
mutes:

�∞(G, ω−1)
Γω �� �∞(G × G, ω−1 × ω−1)

R

��
�∞(G)

P

��

Γ̃ �� �∞(G × G)

Hence,

Γ̃ (f) = ΩΓ (f) (f ∈ �∞(G)), (3.1)

where

Ω :=
Γ (ω)
ω × ω

. (3.2)

Now, �1(G, ω) is an injective algebra if and only if the multiplication map

m : �1(G, ω) ⊗ε �1(G, ω) → �1(G, ω)

is bounded or, equivalently, Γ̃ extends to a bounded map

Γ̃ : �∞(G) → (�1(G) ⊗ε �1(G))∗.

Note that we have

‖m‖ε = ‖Γ̃‖.

An application of the Littlewood multiplier argument gives the following positive results
on the weighted group algebra �1(G, ωβ), where ωβ is the polynomial weight defined
in (2.10).

Theorem 3.1. �1(G, ωβ) is an injective algebra if one of the following conditions holds.

(i) λ = 1 and β > d(G)/2.

(ii) 0 < λ < 1 and β > (d(G) + 1)/2.

Moreover, we have that

‖m‖ε � KG min{1, 2β−1}
[
1 +

∞∑
n=1

f(n) − λf(n − 1)
(1 + n)2β

]1/2

. (3.3)
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Proof. Let Ωβ := Γ (ωβ)/(ωβ × ωβ). We first show that Ωβ ∈ T 2(G). For every
x, y ∈ G, we have that

Ωβ(x, y) =
ωβ(xy)

ωβ(x)ωβ(y)

=
(1 + τ(xy))β

(1 + τ(x))β(1 + τ(y))β

� (1 + τ(x) + τ(y))β

(1 + τ(x))β(1 + τ(y))β

� Aβ [(1 + τ(x))β + (1 + τ(y))β ]
(1 + τ(x))β(1 + τ(y))β

(∗)

=
Aβ

(1 + τ(x))β
+

Aβ

(1 + τ(y))β
,

where Aβ = min{1, 2β−1} and the inequality (∗) follows from the classical inequality

(a + b)β � Aβ(aβ + bβ) (a, b � 0).

Hence, there exists the function u ∈ �∞(G × G) with ‖u‖∞ � 1 such that

Ωβ(x, y) = u(x, y)
[

Aβ

(1 + τ(x))β
+

Aβ

(1 + τ(y))β

]
(x, y ∈ G).

Thus, by the definition of T 2(G) and (2.3),

‖Ωβ‖T 2(G) � Aβ

( ∑
x∈G

1
(1 + τ(x))2β

)1/2

. (3.4)

Hence, it suffices to find when
∑

x∈G 1/(1 + τ(x))2β is finite. To see this, from our
hypothesis and (2.5), we have that

∑
x∈G

1
(1 + τ(x))2β

=
∞∑

n=0

∑
τ(x)=n

1
(1 + n)2β

= 1 +
∞∑

n=1

∑
x∈F n\F n−1

1
(1 + n)2β

� 1 +
∞∑

n=1

f(n) − λf(n − 1)
(1 + n)2β

,

where the series in the last line converges if λ = 1 and 2β > d or if 0 < λ < 1 and
2β > d + 1. Moreover, in either case, we have that

∑
x∈G

1
(1 + τ(x))2β

� 1 +
∞∑

n=1

f(n) − λf(n − 1)
(1 + n)2β

.
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Hence, by Proposition 2.9 and (2.3),

‖Γ̃ (f)‖(�1(G)⊗ε�1(G))∗ � KG‖Γ̃ (f)‖T 2(G)

� KG‖Ωβ‖T 2(G)‖Γ (f)‖∞

� KGAβ

[
1 +

∞∑
n=1

f(n) − λf(n − 1)
(1 + n)2β

]1/2

‖f‖∞

for any f ∈ �∞(G). �

3.2. The case of exponential weights

In this section we study when the weighted group algebra �1(G, σα,C) is an injective
algebra, where σα,C is the exponential weight defined in (2.11). If we consider the same
additional function Ω = Γ (ω)/(ω × ω), then it is not clear this time whether we can
split the function into two parts with a suitable square summability. However, we can
majorize the function with a similar one coming from a polynomial weight. We begin
with a technical lemma.

Lemma 3.2. Let 0 < α < 1, let C > 0 and take β � max{1, 6/Cα(1 − α)}. Define
the functions p : [0,∞) → R and q : (0,∞) → R by

p(x) = Cxα − β ln(1 + x), q(x) =
p(x)
x

. (3.5)

Then, p is increasing and q is decreasing on [(β2/Cα(1 − α))1/α,∞).

Proof. We have

p′(x) = Cαxα−1 − β

1 + x
=

Cαxα−1 + Cαxα − β

1 + x
.

Hence, p′(x) � 0 if Cαxα − β � 0. This implies that

p is increasing on
[(

β

Cα

)1/α

,∞
)

. (3.6)

Now consider q(x) = Cxα−1 − β ln(1 + x)/x. Then,

q′(x) =
C(α − 1)xα − βx/(1 + x) + β ln(1 + x)

x2 =
h(x) − βx/(1 + x)

x2 , (3.7)

where
h(x) := C(α − 1)xα + β ln(1 + x).

Hence, in order to find an interval for which q′(x) � 0, it suffices to find when h(x) � 0.
We have

h′(x) =
Cα(α − 1)xα + Cα(α − 1)xα−1 + β

1 + x
.
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Thus, if we set
C1 = Cα(1 − α),

then h′(x) � 0 whenever −C1x
α + β � 0, or, equivalently, x � (β/C1)1/α. Hence,

h is decreasing on
[(

β

C1

)1/α

,∞
)

. (3.8)

Now, since, by hypothesis, β � 1 we have that
(

β2

C1

)1/α

�
(

β

C1

)1/α

,

and so, by (3.8),

h(x) � h

((
β2

C1

)1/α)
whenever x �

(
β2

C1

)1/α

.

This implies that if x � (β2/C1)1/α, then

h(x) � C(α − 1)
β2

C1
+ β ln

(
1 +

(
β2

C1

)1/α)

= β

[
ln

(
1 +

(
β2

C1

)1/α)
− β

α

]
.

On the other hand, since β � 6/Cα(1 − α) = 6/C1, we have that β2/C1 � β3/6. Hence,
considering the fact that 1/α > 1,

1 +
(

β2

C1

)1/α

� 1 +
(

β3

3!

)1/α

�
(

1 +
β3

3!

)1/α

�
( ∞∑

n=0

βn

n!

)1/α

= eβ/α.

Therefore,

ln
(

1 +
(

β2

C1

)1/α)
− β

α
� 0.

Hence, h(x) � 0 if x � (β2/C1)1/α. By (3.7),

q(x) is decreasing on
[(

β2

C1

)1/α

,∞
)

. (3.9)

The final result follows from (3.6) and the fact that (β2/C1)1/α � (β/Cα)1/α. �
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Theorem 3.3. Suppose that 0 < α < 1, C > 0 and β � max{1, 6/Cα(1 − α)}. Let p

and q be the functions defined in (3.5), and consider the function ω : G → (0,∞) defined
by

ω(x) = ep(τ(x)) = eτ(x)q(τ(x)) (x ∈ G).

Then,
ω(xy) � Mω(x)ω(y) (x, y ∈ G),

where
M = max{ep(t)−p(s)−p(r) : t, s, r ∈ [0, 4K] ∩ Z} (3.10)

and

K =
(

β2

Cα(1 − α)

)1/α

. (3.11)

Proof. By Lemma 3.2, p is increasing and q is decreasing on [K, ∞). We prove the
statement of the theorem considering various cases.

Case 1 (max{τ (x), τ (y)} � 2K). In this case, τ(xy) � τ(x) + τ(y) � 4K. Hence,

ω(xy)
ω(x)ω(y)

= ep(τ(xy))−p(τ(x))−p(τ(y)) � M.

Case 2 (max{τ (x), τ (y)} > 2K and min{τ (x), τ (y)} � K). Without loss of
generality, we can assume that τ(x) > 2K and τ(y) � K. Then, by (2.9),

τ(x) + τ(y) � τ(xy) � τ(x) − τ(y) � 2K − K = K.

Thus, by Lemma 3.2,

ω(xy) = ep(τ(xy))

� ep(τ(x)+τ(y))

= e(τ(x)+τ(y))q(τ(x)+τ(y))

= eτ(x)q(τ(x)+τ(y))eτ(y)q(τ(x)+τ(y))

� eτ(x)q(τ(x))eKq(K)

= ω(x)ω(y)ep(K)−p(τ(y))

� Mω(x)ω(y).

Case 3 (min{τ (x), τ (y)} > K and τ (xy) � K). In this case, we have that

ω(x)ω(y) = ep(τ(x))+p(τ(y))

� e2p(K)

= e2p(K)−p(τ(xy))ω(xy)

� 1
M

ω(xy).

Hence,
ω(xy) � Mω(x)ω(y).
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Case 4 (min{τ (x), τ (y), τ (xy)} > K). In this case, by Lemma 3.2, we have that

ω(xy) = ep(τ(xy))

� ep(τ(x)+τ(y))

= e(τ(x)+τ(y))q(τ(x)+τ(y))

= eτ(x)q(τ(x)+τ(y))eτ(y)q(τ(x)+τ(y))

� eτ(x)q(τ(x))eτ(y)q(τ(y))

� ω(x)ω(y).

Thus, by comparing the above four cases and considering the fact that M � e−p(0) = 1,
it follows that, for every x, y ∈ G,

ω(xy) � Mω(x)ω(y).

�
We are now ready to show when the weighted group algebras of exponential weights

are injective algebras.

Theorem 3.4. Suppose that 0 < α < 1 and C > 0. Then, �1(G, σα,C) is a 2-summing
algebra. Moreover, we have

‖m‖ε � KGM2β−1
[
1 +

∞∑
n=1

f(n) − λf(n − 1)
(1 + n)2β

]1/2

, (3.12)

where

β = max
{

1,
6

Cα(1 − α)
,
d + (1 − δ1(λ))

2

}

(δ1 is the Dirac function at 1) and M is the constant (depending on α, β and C) defined
in (3.10).

Proof. We define a function ω : G → (0,∞) by

ω(x) =
σα,C(x)
ωβ(x)

= eCτ(x)α−β ln(1+τ(x)) (x ∈ G),

where ωβ is the polynomial weight defined in (2.10). Then, by Theorem 3.3,

ω(xy) � Mω(x)ω(y) (x, y ∈ G),

where M is the constant defined in (3.10). Therefore, if we let

Σα,C :=
Γ (σα,C)

σα,C × σα,C
and Ωβ :=

Γ (ωβ)
ωβ × ωβ

,

then

Σα,C � MΩβ � M

[
2β−1

(1 + τ(x))β
+

2β−1

(1 + τ(y))β

]
.

https://doi.org/10.1017/S0013091514000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091514000212


Some weighted group algebras are operator algebras 513

A similar argument to the one presented in the proof of Theorem 3.1 shows that

‖m‖ε � KG‖Σα,C‖T 2(G) � KGM2β−1
[
1 +

∞∑
n=1

f(n) − λf(n − 1)
(1 + n)2β

]1/2

.

In particular, �1(G, σα,C) is an injective algebra. �

We can actually show exactly when the weighted group algebras of exponential weight
are isomorphic to an operator algebra.

Theorem 3.5. Suppose that 0 � α � 1 and C > 0. Then, �1(G, σα,C) is isomorphic
to an operator algebra if and only if 0 < α < 1.

Proof. The case when 0 < α < 1 has already been proved.
If α = 0, then �1(G, σα,C) ∼= �1(G), which is known to be non-Arens regular (see [5,

Theorem 8.11]), so it is not an operator algebra. Now suppose that α = 1. For every
m, n � 2, take am,n ∈ Fm+n \ Fm+n−1 (this is possible because G is infinite). Hence,
there exist xn ∈ Fn and ym ∈ Fm such that

am,n = xnym.

Moreover, since am,n ∈ Fm+n \ Fm+n−1, we have

xn ∈ Fn \ Fn−1 and ym ∈ Fm \ Fm−1.

Therefore,
τ(am,n) = m + n, τ(xn) = n, τ(ym) = m.

Hence,
σ1,C(xnym)

σ1,C(xn)σ1,C(ym)
=

eCτ(xnym)

eC(τ(xn)+τ(ym)) =
eCm+Cn

eC(n+m) = 1.

Thus,

lim
n→∞

lim
m→∞

σ1,C(xnym)
σ1,C(xn)σ1,C(ym)

= 1,

which implies from [5, Theorem 8.11] that �1(G, σ1,C) is not Arens regular, and so is not
an operator algebra. �

Remark 3.6. We point out that the upper-bounded estimate obtained in (3.12) goes
to ∞ as α approaches either 0 or 1 (this happens because β → ∞). This coincides with the
result obtained in the statement of Theorem 3.5, since, as α → 0 (α → 1, respectively),
the weight σα,C → σ0,C = eC (σα,C → σ1,C , respectively), and we showed therein that
neither �1(G, eC) nor �1(G, σ1,C) is isomorphic to an operator algebra, and so ‖m‖ε is
not bounded.
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4. Remarks on Q-algebras and operator space versions

The weighted group algebras in §§ 3.1 and 3.2 are injective algebras, but not isomorphic
to Q-algebras, since they are non-commutative in general. However, their algebraic cen-
tres are actually isomorphic to Q-algebras. Indeed, the injectivity of the tensor product
tells us that the algebraic centre is also an injective algebra with the smaller norm of
the multiplication map. Then, the result in [20] implies that they are isomorphic to
Q-algebras. Moreover, Theorem 2.6 allows us to determine (δ, L) for the corresponding
multi-variable von Neumann inequality. Thus, we have the following. We note that, for
an algebra A, we denote ZA to be its algebraic centre.

Corollary 4.1. Z�1(G, ωβ) is isomorphic to a Q-algebra if one of the following con-
ditions holds.

(i) λ = 1 and β > d(G)/2.

(ii) 0 < λ < 1 and β > (d(G) + 1)/2.

In this case, Z�1(G, ωβ) satisfies the multi-variable (δ, L)-von Neumann inequality with

δ = e−1
(

1 + KG min{1, 2β−1}
[
1 +

∞∑
n=1

f(n) − λf(n − 1)
(1 + n)2β

]1/2)−1

and L = 1.

We have a corresponding result for exponential weights.

Corollary 4.2. Suppose that 0 < α < 1 and C > 0. Then, Z�1(G, σα,C) is isomorphic
to a Q-algebra. In this case, Z�1(G, σα,C) satisfies the multi-variable (δ, L)-von Neumann
inequality with

δ = e−1
(

1 + KGM2β−1
[
1 +

∞∑
n=1

f(n) − λf(n − 1)
(1 + n)2β

]1/2)−1

and L = 1,

where

β = max
{

1,
6

Cα(1 − α)
,
d + (1 − δ1(λ))

2

}

and M is the constant defined in (3.10).

We end this section with a remark on operator space versions. Most of the results
in this paper have available operator space versions upon following the approach in [8].
For example, the estimates on ‖Ωβ‖T 2(G) in Theorem 3.1 tell us that �1(G, ωβ) with the
maximal operator space structure is completely isomorphic to an operator algebra. But,
in the case of operator spaces we need to show that the algebra multiplication map m

extends to a completely bounded map on the Haagerup tensor product, so Littlewood
multiplier theory has to be developed up to the level of operator spaces as in [8].
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5. Examples

5.1. The d-dimensional integers Z
d

A common choice of generating set is

F = {(x1, . . . , xd) | xi ∈ {−1, 0, 1}}.

It is straightforward to see that

τ((x1, . . . , xd)) = max{|x1|, . . . , |xd|}

and, for every n ∈ N,

Fn = {(x1, . . . , xd) | xi ∈ {−n, . . . , 0, . . . , n}}.

Thus, we get that
|Fn| = (2n + 1)d (n = 0, 1, 2, . . . )

and the order of growth of Z
d is d with f(n) = (2n + 1)d and λ = 1. It follows from

Theorem 3.1 that �1(Zd, ωβ) is isomorphic to an operator algebra if β > d/2. Moreover,
we have that

∞∑
n=1

f(n) − λf(n − 1)
(1 + n)2β

=
∞∑

n=1

(2n + 1)d − (2n − 1)d

(1 + n)2β

�
∞∑

n=1

2d(2n + 2)d−1

(1 + n)2β

= d2d
∞∑

n=1

(1 + n)d−1−2β

� d2d

∫ ∞

1
xd−1−2β dx

=
d2d

2β − d
.

Since Z
d is an abelian group, Theorem 4.1 tells us that �1(Zd, ωβ) is actually a Q-algebra

and it satisfies the multi-variable von Neumann inequality for L = 1 and

δ = e−1
{

1 + KG min{1, 2β−1}
[
1 +

d2d

2β − d

]1/2}−1

.

On the other hand, �1(Zd, ωβ) fails to be an injective algebra if β � d/2 (see [8]).
Now, let σα,C be the exponential weight on Z

d defined in (2.11). Theorem 4.2 tells us
that �1(Zd, σα,C) is a Q-algebra and it satisfies the multi-variable von Neumann inequality
for L = 1 and

δ = e−1
(

1 + KGM2β−1
[
1 +

d2d

2β − d

]1/2)−1

,
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where

β = max
{

1,
6

Cα(1 − α)
,
d

2

}

and M is the constant defined in (3.10).
A case of particular interest occurs when we let

d = 1 and C =
6

α(1 − α)
.

In this case, we can choose β = 1. Also, if K is the constant defined in (3.11), then it is
easy to see that 0 < K < 1/6. Hence, M = 1, and so we get

δ =
1

e(1 +
√

3KG)
.

5.2. The three-dimensional discrete Heisenberg group H3(Z)

We recall that the three-dimensional discrete Heisenberg group H3(Z) is a semidirect
product of Z

2 with Z, and the product is defined as

(a1, b1, c1) · (a2, b2, c2) = (a1 + a2, b1 + b2, a1b2 + c1 + c2), (ai, bi, ci) ∈ H3(Z).

If we identify Z with the subgroup {(0, 0, c) : c ∈ Z}, then it is easy to see that
H3(Z)/Z ∼= Z

2. Hence, H3(Z) is a 2-step nilpotent group, and by the Bass–Guivarch
formula (2.6) we have that

d(H3(Z)) = 4.

Hence, if we let ωβ be the polynomial weight on H3(Z), then �1(H3(Z), ωβ) is isomorphic
to an operator algebra provided that

β >
4 + 1

2
=

5
2
.

Moreover, Z�1(H3(Z), ωβ) satisfies the multi-variable von Neumann inequality. On the
other hand, the restriction of ωβ to Z is a weight equivalent to the weight ω′

β(c) =
(1 + |c|)β . Hence, �1(H3(Z), ωβ) has a closed subalgebra that is isomorphic to �1(Z, ω′

β).
Thus, it follows from the result of Varopoulos [20] that �1(H3(Z), ωβ) fails to be an
injective algebra if β � 1/2.

5.3. The free group with two generators F2

In this subsection we show that �1(F2, ωβ) is not an injective algebra for any β > 0.
Since F2 is one of the typical examples of exponentially growing groups, this gives evidence
to suggest that the condition of polynomial growth on the group is necessary for a
weighted group to be realizable as an operator algebra.

Recall also the Rudin–Shapiro polynomials defined in the following recursive way
(see [3, Chapter 4]):

P0(z) := 1, Q0(z) := 1
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and, for k � 0,

Pk+1(z) := Pk(z) + z2k

Qk(z), Qk+1(z) := Qk(z) − z2k

Pk(z).

By an induction on k, it is straightforward to check that the coefficients of Pk are ±1,
that deg Pk = deg Q = 2k − 1 and

|Pk(z)|2 + |Qk(z)|2 = 2k+1 (z ∈ T).

Hence,
‖Pk‖L∞(T) �

√
2k+1.

Using the contraction (actually, it is a metric surjection due to Nehari’s theorem; see, for
example, [14, § 6])

Q : L∞(T) → B(�2)

f 	→ (f̂(−(i + j)))i,j∈Z,

we get a sequence of Hankelian matrices

A2k = Q(P̄k), k � 0,

where A2k is a 2k × 2k-matrix with entries ±1 satisfying

‖A2k‖op �
√

2k+1,

where ‖ · ‖op means the operator norm.

Theorem 5.1. For any β > 0, �1(F2, ωβ) is not an injective algebra.

Proof. Let g1 and g2 be two generators of F2, and let d be an even positive integer
with d > 2β. Consider the following subsets of F2:

Id
n = {gx1

1 gx2
2 gx3

1 · · · gxd
2 : 1 � xi � n for i = 1, . . . , d}.

We now recall the function Ωβ defined by

Ωβ(g, g′) =
ωβ(gg′)

ωβ(g)ωβ(g′)
(g, g′ ∈ F).

Let Ωn
β = Ωβ1Id

n×Id
n
. When g, g′ ∈ Id

n are given by

g = gx1
1 gx2

2 gx3
1 · · · gxd

2 and g′ = gy1
1 gy2

2 gy3
1 · · · gyd

2

for xi, yj � 1, we have

Ωn
β (g, g′) =

(
1 + x1 + · · · + xn + y1 + · · · + yn

(1 + x1 + · · · + xn)(1 + y1 + · · · + yn)

)β

.
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By a similar estimate as that in [8, Theorem 6.1] we obtain

‖Ωn
β‖op � 2−βnd/2

( ∑
1�x1,...,xd�n

1
(1 + x1 + · · · + xd)2β

)1/2

.

Now, using the Rudin–Shapiro polynomial, we have a sequence of matrices An ∈ Mn,
n = 2k (k = 1, 2, . . . ), satisfying the following conditions:

(1) An = (an
i+j)

n
i,j=1 with an

i ∈ {±1},

(2) ‖An‖op �
√

2n.

We consider b = (bh)h∈F2 given by

bgg′ = an
x1+y1

· · · an
xd+yd

for g = gx1
1 gx2

2 gx3
1 · · · gxd

2 , g′ = gy1
1 gy2

2 gy3
1 · · · gyd

2 , xi, yj � 1,

bh = 0 elsewhere.

In other words, the matrix [bgg′ ]g,g′∈Id
n

is nothing but the d-tensor power of the matrix
[an

x+y]1�x, y�n. Thus, it follows from [18, Theorem 3.1 and Corollary 3.2], (3.1) and
‖b‖op � (2n)d/2 that

‖Γ̃‖ � ‖Γ̃ (b)‖(�1(G)⊗ε�1(G))∗

= ‖Γ (b)Ω‖(�1(G)⊗ε�1(G))∗

� K−1
G ‖Γ (b)Ω‖(�1(G)⊗h�1(G))∗

= K−1
G ‖[bgg′Ωn

β (g, g′)]g,g′∈Id
n
‖Schur

� K−1
G ‖[bgg′ ]g,g′∈Id

n
‖−1
op ‖Ωn

β‖op (∗)

� K−1
G (2n)−d/22−βnd/2

( ∑
1�x1,...,xd�n

1
(1 + x1 + · · · + xd)2β

)1/2

= K−1
G 2−d/22−β

( ∑
1�x1,...,xd�n

1
(1 + x1 + · · · + xd)2β

)1/2

→ ∞ as n = 2k → ∞ since 2β < d.

Hence, �1(F2, ωβ) is not an injective algebra for any β > 0. Note that in (∗) we use the
fact that the Schur product of [bgg′ ] with itself is the matrix with all entries 1, which is
the identity in the Schur product. �
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