
Robotica (2014) volume 32, pp. 305–324. © Cambridge University Press 2014
doi:10.1017/S0263574714000022

Stochastic optimal enhancement of distributed
formation control using Kalman smoothers
Ross P. Anderson† and Dejan Milutinović‡∗
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SUMMARY
Beginning with a deterministic distributed feedback control for nonholonomic vehicle formations, we
develop a stochastic optimal control approach for agents to enhance their non-optimal controls with
additive correction terms based on the Hamilton–Jacobi–Bellman equation, making them optimal and
robust to uncertainties. In order to avoid discretization of the high-dimensional cost-to-go function,
we exploit the stochasticity of the distributed nature of the problem to develop an equivalent Kalman
smoothing problem in a continuous state space using a path integral representation. Our approach is
illustrated by numerical examples in which agents achieve a formation with their neighbors using
only local observations.

KEYWORDS: Multi-robot systems; Control of robotic systems; Motion planning; Mobile robots.

1. Introduction
The focus of this work is on an approach to optimally enhance a given distributed feedback control
for nonholonomic agents, such as mobile robots,1 or vehicles. We are motivated by the problem
of distributed formation control, in which each agent is tasked with attaining and maintaining
pre-specified distances from its neighbors. Various control approaches have been proposed for
formation control, including proportional-integral-derivative (PID) control,2, 3 artificial potentials,4–6

navigation functions,7 constraint forces,8 geometric methods,9 adaptive control design,10, 11 sliding
mode control,12 and consensus algorithms,13, 14 for example. These approaches are attractive due to
their often intuitive design principles, the transparent, analytic forms of the resulting control laws,
and their generally satisfactory results. However, developing a control law that is both optimal and
robust to uncertainty presents a greater challenge.

Here we begin with a reference distributed control policy4 for formations of nonholonomic vehicles
consisting of a feedback-controlled turning rate and acceleration and based on an artificial potential
function. Next, we numerically compute the additional additive control input necessary to drive
the non-optimal system into a formation optimally and in a manner that is robust to uncertainty.
Consequently, our control approach is optimal, and, due to the adopted artificial potential function,4 it
provides collision-free agent trajectories. Moreover, in some sense to be defined later, the computed
optimal feedback control is “close” to the reference feedback control, preserving many of the nicer
properties of the latter, including collision avoidance and, to some extent, qualitative behavior of the
controlled agents. We are not aware of other works that improve upon existing, rather than build from
the ground up, mobile robot feedback control laws in this manner.

To compute an optimal feedback control, one must solve the Hamilton–Jacobi–Bellman (HJB)
equation, which is a nonlinear partial differential equation (PDE), and, accordingly, the solution of
the optimal control problem is necessarily numerical. However, the computational complexity of
the solution to the HJB equation grows exponentially with the state space dimension of the system
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(i.e., with the size of the robotic team), making conventional approaches to computing the stochastic
optimal feedback control intractable. In this work, we exploit the distributed nature of the problem
at hand in order to make the solution to the HJB equation computationally feasible. The distributed
formation control problem is inherently stochastic – from the perspective of one agent, its neighbors’
observations and control inputs are unknown, as well as the effects of these inputs on agent trajectories
due to model uncertainties. Accordingly, this work considers the problem of controlling one agent
based on its own observations of its neighbors in a way that anticipates the probability distribution
of their future motion. This probability distribution arises from an assumption that a prior for the
unknown control input of an agent can be robustly described as Brownian motion,15 which, for the
agent model considered in this paper, results in a so-called “banana distribution” prior.16 Based on our
prior and the system kinematics, we can induce a probability distribution of the relative state x to all
neighbors in an interval (x, x + dx) at a particular future time.17 It follows that the cost function to be
minimized by an agent not only computes the optimal control with respect to the current system state
as viewed by that agent but also with respect to the distribution of possible trajectories originating
from the current state.

Besides aiding in the creation of a robust control law, this distribution over the future system
trajectories serves several additional purposes. For example, the distribution encodes the same type of
information that must be repeatedly transmitted among neighbors in some other distributed formation
control approaches,18 e.g., assumed future trajectories of a neighbor. Perhaps more importantly, this
distribution over future system trajectories can be used to statistically infer the probability distribution
of the control, and hence the optimal additive control required for the considered reference feedback
control. In particular, the relations between the solutions to optimal control PDEs and the probability
distribution of stochastic differential equations19–21 allow certain stochastic optimal control problems
to be written as an estimation problem on the distribution of optimal trajectories in continuous state
space in a manner known as the path integral (PI) approach.22–26 (1)

Related works incorporating the PI framework for multi-agent systems29–32 designed control
for systems in which agents cooperatively compute their control from a marginalization of the joint
probability distribution of the group’s trajectory. In this paper(2) we develop a method by which agents
independently compute their controls without explicit communication. Moreover, previous works
using the PI approach have formulated an unconstrained receding horizon optimal control problem
for which stability is difficult to guarantee.35 We therefore consider two formulations admitting time-
invariant feedback control policies. The first is based on a planning horizon that ends only when the
formation is reached, while the other is based on an infinite-horizon, discounted cost control problem.

In addition, we establish a connection between the presented optimal feedback control problem
and nonlinear Kalman smoothing algorithms so that each agent can compute its control in real-time
in a way that preserves the optimality and stability properties of the HJB equation solution. That a
Kalman smoother can be used to compute an optimal control is related to the well-established duality
between linear-quadratic-Gaussian (LQG) control and linear-Gaussian estimation.36 Although other
robotic control algorithms have employed Kalman filters or smoothers for motion planning and path
planning,37–41 the relation of the nonlinear Kalman smoothing algorithm to the HJB equation has not
been exploited. Moreover, since our Kalman smoothing control computations are based on the current
system state and do not require a global HJB equation solution, we describe how our algorithm may
be used to test, pointwise in state space, the possibility for analytic improvements to the reference
feedback control for optimality and robustness to uncertainties.

In our approach, after each agent computes and applies the optimal control computed by its Kalman
smoother, it observes the new state of its neighbors, and then the process repeats. This method is
similar in spirit to receding horizon control/model predictive control (MPC)42 and related suboptimal
algorithms,43 some of which have been used previously for vehicle formation control.18, 44, 45 However,
our approach differs in three respects. First, as previously discussed, the control solution is derived
from the HJB equation instead of an open-loop, numerical optimization problem. In addition, for
reasons that will become clear in the sequel, the system trajectories to which the Kalman smoother
is applied are uncontrolled, whereas MPC treats the control along these paths as decision variables.
Finally, our Kalman smoother solution is generally computationally fast compared with nonlinear

(1) There is also an analogous approach in the open-loop control case.27, 28

(2) Preliminary versions of some portions of this work have been presented previously elsewhere.33, 34
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Fig. 1. In this scenario, agent A observes neighbors B and C, labeled by agent A as m = 1 and 2, and attempts
to achieve the inter-agent spacings r12 = δ12 and r13 = δ13, as well as alignment of heading angles and speeds.
Agent A is unaware of any other observation (dash lines). Consequently, both the reference control and the
optimal controls computed by agent A do not include the observation B–C.

optimization methods for systems with large dimensional state and control space, and the algorithm
quite naturally handles stochasticity. We point out that without the notion of uncertainty in a neighbor’s
control, an optimization problem resulting from distributed MPC may predict a neighbor’s trajectory
incorrectly and without an explicit remedy for this issue.

This paper is organized as follows. Section 2 introduces the formation control problem as viewed
by a single agent in the group, followed by a derivation of a PI representation in Section 3. Section 4
presents a Kalman smoother method for computing individual agent control. Section 5 compares the
optimal feedback control computed by Kalman smoothers against that computed using a numerical
method involving discretization of the state space and examines the areas of the state space where the
analytical reference feedback control could be improved. We continue in Section 5 to illustrate our
method with simulations of five agents achieving formations, and conclude with Section 6.

2. Control Problem Formulation
We consider a team of agents, each described by a Cartesian position (xm, ym), a heading angle θm, a
speed vm, m = 1, . . . , Mtot, and the kinematic model:

dxm(t) = vm cos θmdt

dym(t) = vm sin θmdt

dθm(t) = ωmdt + σθ,mdwθ,m

dvm(t) = amdt + σv,mdwv,m, (1)

where ωm and am are the feedback-controlled turning rate and acceleration, respectively, and dwθ,m

and dwv,m are mutually independent Wiener process increments with corresponding intensities σθ,m

and σv,m, respectively. Our goal is for the distances separating the agents to reach a set of predefined
nominal distances δmn, where m, n = 1, . . . , Mtot, m �= n, and for the heading angles and speeds to
be equal.

To achieve a distributed control, the problem is formulated from the perspective of just one agent
whose state (x, y, θ, v) is notated without subscript. This agent observes M neighbors with subscripts
m = 1, . . . , M , M ≤ Mtot, regardless of the total number of agents Mtot in the team, and computes
an optimal feedback control to reach a formation with respect to its observed neighbors. No further
information is assumed about the observations made by its neighbors. In other words, the only
interactions modeled by an agent are undirected (bilateral) and only include that agent’s observed
neighbors. This is illustrated by Fig. 1.

We introduce collision avoidance by adding to the original kinematic model an artificial potential
function-based control4 for collision-free velocity vector alignment of groups of vehicles described
by a noiseless version of (1). The evolution equations for θ(t) and v(t) become

dθ(t) = ωRdt + ωdt + σθdwθ, (2)

dv(t) = aRdt + udt + σvdwv, (3)
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so that the controls ω and a are interpreted as the optimal correction terms to the reference turning rate
feedback control ωR and acceleration feedback control aR , respectively, in the presence of uncertainty.
For brevity, we omit details4 of ωR and aR equations. Suffice it to say that in the deterministic
case (σθ,m = σv,m = 0), the reference feedback control ωR and aR ensures collision avoidance,
that is, the inter-agent distances remain strictly positive,(3) and it aligns the agent velocity vectors. It
guarantees that the group will tend toward a minimum of the an artificially constructed potential V (rm),
where rm =

√
(x − xm)2 + (y − ym)2, m = 1, . . . , M . Our specific choice of V (rm) = δ2

m||rm||−2 +
2 log ||rm|| causes the potential4 to reach minimum value when all inter-agent distances rm → δm.

Evolutions of the heading angle θm(t) and speed vm(t) of a neighbor m are based on its own
observations that are unknown to any other agent. Therefore, their increments for an agent m are
modeled as Gaussian random variables:

dθm(t) = ωR,mdt + N
(
ωmdt, σ 2

θ,mdt
)

(4)

dvm(t) = aR,mdt + N
(
amdt, σ 2

v,mdt
)
, (5)

where ωR,m and aR,m are the reference controls computed for neighboring agents (see Fig. 1 caption),
and where σθ,m and σv,m take into account both kinematic uncertainty and control uncertainty so that
σθ,m ≥ σθ and σv,m ≥ σv . In summary, the kinematic model for one agent with M observed neighbors
takes the form

d�xm(t) = d(x(t) − xm(t)) = v cos θdt − v cos θmdt, (6)

d�ym(t) = d(y(t) − ym(t)) = v sin θdt − v sin θmdt, (7)

dθ(t) = ωRdt + ωdt + σθdwθ, (8)

dv(t) = aRdt + adt + σvdwv, (9)

dθm(t) = ωR,mdt + ωmdt + σθ,mdwθ,m, (10)

dvm(t) = aR,mdt + amdt + σv,mdwv,m, m = 1, . . . , M, M ≤ Mtot. (11)

This model can be written in a general form:

dx(t) = f (x)dt + Budt + �dw, (12)

where the state vector x includes the system state from the perspective of just one agent, f (x)
captures the kinematics, including the deterministic, collision-avoiding reference controls, and u =
[ω, a, ω1, a1, . . . , ωM, aM ]T is a vector of optimal feedback controls to be computed by the agent.
The Wiener process dw captures the uncertainty due to model kinematics for each agent, as well as
the uncertainty due to the control executed by neighboring agents m = 1, . . . , M .

We consider two types of cost functionals that aim to bring the agents into formation. In the first,
our goal is to compute the feedback controls u(x) that minimize the total accumulated cost up until the
formation is reached (a problem sometimes called control until a target set is reached). The formation
is achieved when the inter-agent distances rm =

√
(�xm)2 + (�ym)2, m = 1, . . . , M , reach a set of

predefined nominal distances δm, the agents’ heading angles are aligned, and the speeds are equal.
Since this is a stochastic problem, we must define the target set x ∈ F as a small ball about the
formation. We define the following cost functional:

J (x) = min
u

E

{∫ τ

0

1

2
(k(x) + uTRu)ds

}
, (13)

where τ = inf{t > 0 : x(t) ∈ F} is a (finite) first exit time, i.e., the first time that the state reaches
the formation F . We note that, unlike previous works that either use a receding horizon approach or

(3) Ensuring collision avoidance among agents with non-zero collision radii would require a different
deterministic control or artificial potential function than is considered in this work.
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fix a final time, here the final time τ is not known in advance. The positive semi-definite matrix R in
(13) provides a quadratic control penalty, and the instantaneous state cost k(x),

k(x) = (h(x) − μ)TQ(h(x) − μ), (14)

is a quadratic that reaches minimum value when the inter-agent distances rm equal the predefined
nominal distances δm, the heading angles are equal, and the speeds are equal:

h(x) = [r1, . . . , rM, θ − θ1, . . . , θ − θM, v − v1, . . . , v − vM ]T , (15)

μ = [δ1, . . . , δM, 0, . . . , 0]T , (16)

and where Q is a diagonal positive definite matrix. The form of the cost function relieves the
agents’ dependence on a global coordinate frame. Since all couplings between pairs of agents in
the cost function are relative, the coordinate frame implied by the Cartesian components �xm and
�ym and angles θ and θm in (6)–(11) do not need to be shared among the agents. Further note
that this instantaneous state cost (14) reaches minimum value when the potential V (rm) associated
with the reference control also reaches minimum value. However, the reference control also prevents
collisions using an infinite potential energy when inter-agent distances approach rm = 0. Since the
correction control u is penalized, it will not overcome this barrier, and collision avoidance is still
ensured.

The second type of control problem that we consider is to minimize an infinite horizon cost
functional with a discounting factor β > 0:

J (x) = min
u

E

{∫ ∞

0

e−βs

2
(k(x) + uTRu)ds

}
, (17)

where the terms Q, R, and k(x) are as in (13).

3. Path Integral Representation
In this section we show how the optimal control problem can be represented as a PI over
possible system trajectories. The derivation is similar to that used in previous works,29 but the
new types of cost functionals used in this paper warrant a new derivation. We will first consider
the cost functional for control until the formation is reached (13), hereinafter abbreviated as
CUF.

3.1. Control until formation (CUF)
The (stochastic) HJB equation for model (12) and cost functional (13) is

0 = min
u

{
(f + Bu)T∂xJ + 1

2
Tr
(
�∂2

x J
)+ 1

2
k(x) + 1

2
uTRu

}
, (18)

where � = ��T, and the boundary condition for this PDE is

J (x(τ )) = 0, x ∈ F . (19)

The HJB equation must typically be solved numerically in a discretized state space until a steady
state is reached (see Kushner and Dupuis,52 for example). However, the structure of the problem at
hand allows us to avoid discretization through a suitable transformation.

The optimal control u(x) that minimizes (18) is

u(x) = −R−1BT∂xJ, (20)
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which, when substituted back into the HJB equation, yields:

0 = f T∂xJ − 1

2
(∂xJ )T BR−1BT∂xJ + 1

2
Tr
(
�∂2

x J
)+ 1

2
k(x(t)). (21)

Next, we apply a logarithmic transformation46 J (x) = −λ log (x) for constant λ > 0 to obtain a
new PDE

0 = k(x)

2λ
− f T


∂x − 1

2

1


Tr
(
�∂2

x 
)

− 1

2

λ

2
(∂x)T BR−1BT∂x + 1

2

1

2
(∂x)T �∂x. (22)

In models (6)–(11), it can be seen that the optimal controls u(x) act as a correction term to the
deterministic controls and the stochastic noise. Penalizing this control (13) suggests that the optimal
control is that which is “close” (in terms of the Kullback–Leibler divergence25) to the reference
control. Moreover, this implies that the possibility of a large stochastic disturbance (either due to
neighbors’ unknown controls or model kinematics) requires the possibility of a greater control input.
Because of this, we assume that the noise in the controlled components is inversely proportional to
the control penalty, or

� = ��T = λBR−1BT. (23)

This selects the value of the control penalty that we shall use in the sequel as

R = λ diag
(
σ−2

θ , σ−2
v , σ−2

θ,1 , σ−2
v,1 , . . . , σ−2

θ,M, σ−2
v,M

)
, (24)

and also causes the quadratic terms on the second line of (22) to cancel so that the remaining PDE
for  is linear:

0 = f T∂x(x) + 1

2
Tr
(
�∂2

x 
)− k(x)

2λ
(x), (25)

(x) = 1, x ∈ F . (26)

As before, this could be solved numerically until a steady state is reached. However, the Feynman–
Kac equations20, 21 connect certain linear differential operators to adjoint operators that describe the
evolution of a forward diffusion process beginning from the current state x̃(0) = x̃0 = x. From the
Feynman–Kac equations, the solution to (25) is19

(x) = Ex̃,τ |̃x0

{
 (̃x(τ ))exp

(
− 1

2λ

∫ τ

0
k(̃x(s))ds

)}
, (27)

where x̃(t) satisfies the PI-associated, uncontrolled dynamics (cf. (12)),

d̃x(t) = f (̃x(t))dt + �dw, (28)

with initial condition x̃(0) = x, and which, as before, includes the reference control inputs for one
agent and its observed neighbors (see Fig. 1). The expectation in (27) is taken with respect to the joint
distribution of (̃x, τ ) of sample paths x̃ = x̃(t) that begin at x̃0 = x and evolve as (28) until hitting the
formation x̃(τ ) ∈ F at time τ . Unlike previous PI works, where the terminal time is fixed and known
in advance, this stopping time is a property of the set of stochastic trajectories x̃(t).

The distribution (̃x, τ ) is difficult to obtain. Monte Carlo techniques may be used to sample
trajectories x̃, but hitting the formation is a rare event unless there is a mechanism to “guide” the
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trajectory into the formation. In this work, we determine the trajectory x̃|τ, x0 conditioned on its
hitting time. From the law of total expectation,

(x) = Eτ |x0

{
Ex̃|τ,̃x0

[
 (̃x(τ ))exp

(
− 1

2λ

∫ τ

0
k(̃x(s))ds

)]}
(29)

= Eτ |x0 {(x|x0, τ )]} . (30)

In practice, we find that the inner distribution (x|x0, τ ) exhibits small tails for most τ and has high
probability for just a small range of τ . Moreover, the range of τ with higher likelihood (x|x0, τ )
is the one that appears to equally balance state and control costs. Therefore, we consider a discrete
set (τ1, . . . , τNτ

) of Nτ possible values for τ with non-informative, uniform prior probabilities.
This implies that the distribution of the hitting times is implicitly encoded in the length (and the
ensuing cost) of the path x̃|τi, x0. Since (x(τi)) = 1 from (26), the solution (29) can be expanded as
follows:

 (̃x) = 1

Nτ

Nτ∑
i=1

Ex̃|̃x0,τi

{
 (̃x(τi))exp

(
− 1

2λ

∫ τi

0
k(̃x(s))ds

)}
(31)

= 1

Nτ

Nτ∑
i=1

Ex̃|̃x0,τi

{
exp

(
− 1

2λ

∫ τi

0
k(̃x(s))ds

)}
. (32)

By discretizing the interval [0, τi] into Ni intervals of equal length �t , t0 < t1 < . . . < tNi
= τi , we

can consider a sample of the discretized trajectory x̃N |x0, τi = (̃x1, . . . , x̃Ni
). Under this discretization

in time, solution (32) with a right-hand Riemann sum approximation to the integral can be written as

 (̃x) = 1

Nτ

lim
�t→0

Nτ∑
i=1

∫
d̃xNP (̃xN |̃x0, τi)exp

[
−�t

2λ

Ni∑
k=1

k(̃xk)

]
, (33)

where d̃xN =∏Ni

k=1 d̃xk , and where P (̃xN |̃x0, τi) is the probability of a discretized sample path,
conditioned on the starting state x̃0 and hitting time τi , given by

P (̃xN |̃x0, τi) =
Ni−1∏
k=0

p(̃xk+1 |̃xk, τi). (34)

Since the uncontrolled process (28) is driven by Gaussian noise with zero mean and covariance
� = ��T, the transition probabilities may be written as

p(̃xk+1 |̃xk, τi) ∝ exp

(
−1

2
(̃xk+1 − x̃k − f (̃xk) �t

)T

× (�tλBR−1BT)−1 (̃xk+1 − x̃k − f (̃xk)�t)) (35)

for k < Ni − 1, and p(̃xk+1 |̃xk, τi) = 1h(̃xk+1)=μ(̃xk+1) for k = Ni − 1.
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The PI representation of  (̃x) is obtained from Eqs. (33)–(35), and can be written as an exponential
of an “action”47 S (̃xN |̃x0, τi) along the time-discretized sample trajectories (̃x1, . . . , x̃N ):

 (̃x) ∝ 1

Nτ

lim
�t→0

Nτ∑
i=1

∫
dx̃Nexp(−S (̃xN |̃x0, τi)) (36)

S (̃x1, . . . , x̃N |̃x0, τi) =
Ni∑

k=1

�t

2λ
k(̃xk) +

Ni−1∑
k=0

1

2
(̃xk+1 − x̃k − �tf (̃xk))T

× (λ�tBR−1BT)−1 (̃xk+1 − x̃k − �tf (̃xk)) . (37)

Differentiating (36) with respect to x̃0, we can obtain the optimal control (20) as29

u(̃x) = lim
�t→0

λR−1BT∂̃x log 

= lim
�t→0

1

Nτ

Nτ∑
i=1

∫
dx̃NP (̃xN |̃x0, τi)uL(̃xN |̃x0, τi) (38)

= lim
�t→0

1

Nτ

Nτ∑
i=1

EP (̃xN |̃x0,τi )
{
uL(̃xN |̃x0, τi)

}
, (39)

where lim�t→0 P (̃xN |̃x0, τi) = P (̃x|̃x0, τi) is the probability of an optimal trajectory conditioned to
hit the formation at time τi ,

P (̃xN |̃x0, τi) ∝ e−S (̃xN |̃x0,τi ), (40)

which weights the local controls uL(̃xN |̃x0, τi) in (38), defined by

uL(̃xN |̃x0, τi) = R−1BT (BR−1BT )−1

(
x̃1 − x̃0

�t
− f (̃x0)

)
. (41)

Although the resulting control law is stationary, the state space is too large for it to be computed
off-line. Because of this, after computing u(x) = u(̃x0), each agent executes only the first increment
of that control, at which point the optimal control is recomputed. Then (39) is

u(x) = R−1BT (BR−1BT )−1

(
EP (̃xN |̃x0) {̃x1} − x

�t
− f (x)

)
= R−1BT (BR−1BT )−1

(
EτEP (̃xN |̃x0,τ ) {̃x1} − x

�t
− f (x)

)
. (42)

In other words, control (42) applied by an agent in state x is constructed from a realization of the
unknown or random dynamics of the system that maximizes the probability of the trajectory that starts
from x and evolves until hitting the formation. This probability is weighted by the cost accumulated
along the path.

3.2. Discounted cost infinite-horizon control
For the discounted infinite-horizon costs, we will develop the derivation separately while showing the
relation to the CUF problem. We begin by writing the cost functional (17) in terms of a finite-horizon
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cost functional and an error term ε:

J (x, t) = min
u

E

{∫ T

0

e−βs

2

(
k(x) + uTRu

)
ds

}
+ ε

= min
u

E

{∫ T

0

1

2

(
(h(x) − μ)TQt (h(x) − μ) + uTRtu

)
ds

}
+ ε, (43)

where it is assumed that T > T is sufficiently large so that ε may be neglected, and where Qt = e−βtQ

and Rt = e−βtR. The feedback control u that minimizes (43) will be used in a receding horizon manner
over the horizon [0, T ], i.e., u(x) = u(x(0)).

The (stochastic) HJB equation for the system kinematics (12) and cost functional (43), assuming
ε = 0, is

0 = ∂tJ + min
u

(
(f + Bu)T∂xJ + 1

2
Tr
(
�∂2

x J
)

+ e−βt

2
k(x(t)) + 1

2
u(x)TRtu(x)

)
. (44)

Substituting the optimal control u(x, t) = −R−1
t BT∂xJ (x, t) and applying the transformation

J (x, t) = −λ log (x, t), we obtain

1


∂t = e−βt k(x)

2λ
− f T


∂x − 1

2

1


Tr
(
�∂2

x 
)

− 1

2

λ

2
(∂x)T BR−1

t BT∂x + 1

2

1

2
(∂x)T �t∂x. (45)

In order for the nonlinear terms to cancel as in (22), we use assumption (23), but with time dependence
due to the discounting factor included,

�t = eβt��T = λBR−1
t BT. (46)

Note that in a feedback setting, the control u(x) is based on the state x(0), and �0 reduces to λBR−1BT.
The remaining PDE,

∂t =
(

e−βt k(x)

2λ
− f T∂x − 1

2
Tr
(
�t∂

2
x

))
, (47)

is linear and has solution

 (̃x0, 0) = Ex̃|̃x0

⎧⎨⎩exp

⎛⎝− 1

2λ

T∫
0

e−βsk(x(s))ds

⎞⎠⎫⎬⎭ . (48)

The reader will note that this solution also appears in the case of the CUF problem in (32), but with
a few changes. First, only one horizon T is considered, and so the summation over τi is removed.
Next, the discounting factor β is included inside the expectation. Finally, the uncontrolled process x̃
is (28) but with an increasing noise intensity due to (46):

d̃x(t) = f (̃x(t))dt + e
βt

2 �dw. (49)
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The PI representation of  (̃x0, 0) corresponding to the discounted infinite-horizon problem is obtained
in the same manner as (36)–(37), and is

 (̃x0, 0) ∝ lim
�t→0

∫
d̃xNexp(−S (̃xN |̃x0)) (50)

S (̃x1, . . . , x̃N |̃x0) =
N∑

k=1

e−βtk�t

2λ
k(̃xk)

+
N−1∑
k=0

1

2
(̃xk+1 − x̃k − �tf (̃xk))T (51)

× (λ�tBR−1BTeβtk )−1 (̃xk+1 − x̃k − �tf (̃xk)) .

Along similar lines, the control may be computed as (cf. (42))

u(x) = R−1BT (BR−1BT )−1

(
EP (̃xN |̃x0) {̃x1} − x

�t
− f (x)

)
, (52)

where the path probability is

P (̃xN |̃x0) ∝ e−S (̃xN |̃x0). (53)

Both for the CUF problem and the infinite horizon problem, the matrix coefficients multiplying
(42) and (52) may be dropped since control is only affecting the noisy states.(4) One may compute
the optimal control (42) (resp. (52)) once the path probability P (̃xN |̃x0, τi) (40) (resp. (53)) has been
computed, a nontrivial task to be discussed in the following section.

4. Computing the Control with Kalman Smoothers
In this section we present our approach to compute the control in (42) and (52). Although Monte Carlo
techniques can be used to generate samples of the maximally likely trajectory P (̃x1, . . . , x̃N |̃x0), we
find them to be slow in practice due to the high dimension of this problem (̃xN ∈ R

4NM ). Moreover,
in the case of CUF, when sampling a trajectory x̃N |̃x0, τi , the trajectory must be conditioned to hit
the formation at τi . Finally, it is not necessary to sample the entire distribution P (̃xN |̃x0) since only
the estimate x̂1 ≡ EP (̃xN |̃x0) {̃x1} is needed.

Therefore, in this work we treat the temporal discretization of the optimal trajectory x̃N as the
hidden state of a stochastic process where appropriately chosen measurements of this hidden state
are related to the system goal μ (16). The optimal control can then be computed from the optimal
estimate x̂1, given the process and measurements over a fixed interval t1, . . . , τi for the CUF problem
and t1, . . . , T for the infinite-horizon problem. We define the following nonlinear smoothing problem.

Nonlinear smoothing problem: Given measurements yk = y(tk) for tk = t1, . . . , tN = τi (or T ), where
tk+1 − tk = �t , compute the estimate x̂1:N of the hidden state x̃1:N from the nonlinear hidden state-
space model:

x̃k+1 = x̃k + �tf (̃xk) + εk, (54)

yk = h(̃xk) + ηk, (55)

(4) The reader may examine the form of Bu, taking into account that the components of the final multiplicative
factor in (42) or (52) are zero for uncontrolled states.
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where f (·) and h(·) are as in Section 2, and εk and ηk are independent multivariate Gaussian random
variables with zero mean and with covariances chosen as follows:

CUF:

E
(
εkε

T

k

) = λ�tBR−1BT, (56)

E
(
ηkη

T

k

) =
{

λ
�t

Q−1 k = 1, . . . , N − 1
0 k = N

. (57)

Discounted infinite horizon:

E
(
εkε

T

k

) = λ�tBR−1BTeβtk , (58)

E
(
ηkη

T

k

) = λ

�t
Q−1eβtk . (59)

The smoothing is initialized from x̃0 = x, the current state of the system as viewed by the agent.
Measurements yk are always exactly yk = μ. �

Note that the measurement and process covariances have the same structure for both cost function
types, but the noise intensity increases during the smoothing horizon in the discounted infinite
horizon case. As the covariance becomes large, the measurements and state predictions contain so
little information that the change in the estimated hidden state (the trajectory) is negligible, leading
to a stationary control policy.

To show the relation between the nonlinear smoothing problem and the stochastic optimal control
problem, we write the probability of a hidden state sequence x̃N given measurements yk and the initial
state x̃0, which is48

P (̃xN |̃x0, y1, . . . , yN ) ∝
N∏

k=1

p(yk |̃xk)p(̃xk |̃xk−1), (60)

where, in the case of the discounted infinite-horizon cost function,(5)

p(yk |̃xk) ≡ p(μk |̃xk) = N
(
h(̃xk), ηkη

T

k

)
∝ exp

{
−�t

2λ
(h(̃xk) − μ)TQe−βt (h(̃xk) − μ)

}
, (61)

p(̃xk |̃xk−1) = N (̃xk−1 + �tf (̃xk−1), �t�)

∝ exp

{
−1

2
(̃xk − x̃k−1 − �tf (̃xk−1))T

× (λ�tBR−1BTeβt
)−1

(̃xk − x̃k−1 − �tf (̃xk−1))

}
. (62)

Comparing the right-hand sides of (61) and (62) with (50) and (51) (resp. (36) and (37)), it can be
seen that these are identical to those in the stochastic optimal control problem.

Since the optimal control (42) is based on the probability of a full trajectory of fixed length and
values μ are available in advance, the expected value of the trajectory originating from state x̂0

conditioned to hit the formation at time τi or T , that is, the hidden states x̂k , k = 1, . . . , N , can
be found by filtering and then smoothing the process, given the values μk using a nonlinear fixed-
interval Kalman smoother. Such an algorithm assumes that the increments given by (61) and (62) are

(5) Set β = 0 for the CUF case.
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Gaussian(6) to some extent, but the algorithm is sufficiently fast to be applied in real-time by each
unicycle in a potentially large group with an even larger state space, motivating its use in this work.

In the case of the first-hitting time problem, the estimated trajectory is first computed for each τi ,
the point at which the expectation over τi may be computed. This results in an average of the controls
uL(̃x|̃x0, τi) to be applied. In other words, each agent estimates both the optimal system trajectory
(from its perspective) given the time the formation will hit and the hitting time of the formation. Hitting
the target sooner would save on state costs, but may cause an increase in control costs and vice versa.

When the smoothing is complete and agents have applied their computed control, each agent must
then observe the actual states of its neighbors so that the next iteration begins with the correct initial
condition. We provide a pseudo code for our computations in Algorithm 1 for the CUF case and in
Algorithm 2 for the infinite horizon case. For clarification, we also provide a flowchart in Fig. 2.

Algorithm 1 Formation control algorithm applied by each agent: control to formation case
x(t) ← measured state of system from agent’s viewpoint
μ ← nominal distances
while x(t) �∈ F do

for i = 1, . . . , Nτ do
E {̃x1} , . . . , E {̃xN } ← KalmanSmoother (initial state = x0 = x,

horizon = [0, τi] ,

predictions from (28) or (49),
measurements = μ)

E
{
uL(̃xN |x0, τi)

}← (E (̃x1) − x) /�t − f (x) � from (41)
end for
u(x) = 1

Nτ

∑Nτ

i=1 E
{
uL(̃xN |x0, τi)

}
Apply computed corrective control u(x) � using (12)
x(t) ← measured state of system from agent’s viewpoint

end while

Algorithm 2 Formation control algorithm applied by each agent: infinite horizon case
x(t) ← measured state of system from agent’s viewpoint
μ ← nominal distances
loop

E {̃x1} , . . . , E {̃xN } ← KalmanSmoother (initial state = x0 = x,

horizon = [0, T ] ,

predictions from (28) or (49),
measurements = μ)

u(x) = E
{
uL(̃xN |x0)

}← (E (̃x1) − x) /�t − f (x) � from (52)
Apply computed corrective control u(x) � using (12)
x(t) ← measured state of system from agent’s viewpoint

end loop

In practice, the controller/smoother must be capable of efficiently smoothing over the horizon
[t0, τi] (or [t0, T ]). The computational complexity (see Särkkä50 for Matlab toolbox) of the smoother
used in this work49 roughly scales with the number of neighbors as M3. As such, for implementation
on mobile robotic controllers, the computational requirements may prescribe a two-level approach –
a high-level nonlinear fixed-interval Kalman smoothing algorithm that computes reference inputs for
lower-level robot control loops. However, various implementations of the smoothing algorithm can
streamline the computation. For instance, a sigma point-based approximation to the two-filter smooth-
ing equations51 could produce reference control values using only twice the computing power of an un-
scented filtering algorithm. Moreover, through linearization of the measurement model (55) or of both
the process and the measurement models (54) and (55), the control could be computed using extended
Kalman smoother or the linear unscented Kalman smoother, respectively. However, through full lin-
earization, we would effectively only be solving an LQG control problem, as mentioned in Section 1.

(6) See Long et al.16 for a discussion on the Gaussianity of these increments.
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Fig. 2. Flowchart for formation control algorithm.

5. Results
In this section we compare the control computed by our Kalman smoothing algorithm with that
computed by a numerical stochastic optimal control method,52 and then provide simulations in which
five agents achieve formations with equal and aligned velocities. The system and algorithm parameters
were chosen as λ = 100, σθ = σθ,m = 0.1 (see (24) for R), Q = 100I , and �t = 0.1, with all units
relative to meters and seconds. In the case of CUF, Nτ = 10, τ = 1, . . . , 10, εr = εv = 0.1, εθ = 10◦.
For the infinite-horizon case, β = 0.5 and T = 10. With these parameters, exp(−βT ) ≈ 0.007, and so
the cost function (43) used for the algorithm is a good approximation to a discounted infinite-horizon
cost function (17). In each case, the control was computed using a Discrete-time Unscented Kalman
Rauch–Tung–Striebel Smoother50 (see Särkkä49 for Matlab toolbox).
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Fig. 3. (Colour online) Optimal feedback control u(�x1,�y1, θ1, θ2) based on a discounted infinite horizon for
two agents with fixed speed v = 1, evaluated at θ1 = θ2 = 0. The top row is the control ω and the bottom is ω1
(i.e., the control assumed for a neighbor m = 1). (Left column) Control based on Markov chain approximation
with �x step size = �y step size = 1.05, θ1 step size = θ2 step size = 0.078, and control u step size 0.85 for
both ω and ω1. (Right column) Control evaluated using a Kalman smoother on the same grid, but without control
discretization. (Center column) To compare, Kalman smoother control down-sampled to the same control step
sizes 0.85 for ω and ω1 that are used in the left column’s control computation.

We first apply the Markov chain approximation method52 to compute the feedback control from
the HJB equation for cost function (17) so that we may compare the computation time and computed
controls with our proposed method. In order to reduce the dimension of the state space for the
Markov chain approximation method, which requires discretization of the state space, we consider the
problem of just two agents, fix v1 = v2 = 1 m/s, and aim for a nominal distance between agents of δ1 =
5 m. Then the controls ω(�x1, �y1, θ, θ1) and ω1(�x1, �y1, θ, θ1) may be computed, although this is
computationally intensive due to the discretization of the state space (x ∈ R

4) and the control variable
u ∈ R

2, leading to 25,600 grid cells and 225 control possibilities for the chosen discretization. The
left column of Fig. 3 shows the optimal controls as computed by the Markov chain approximation
method, which, for the chosen parameters, required 3.7 h of computation time in Matlab R© on an
Intel i7 at 2.7 GHz with 8-GB RAM (0.51 s per grid cell visible in Fig. 3). To compare, the Kalman
smoother algorithm described in the previous section was applied to the same grid locations in state
space, but without the control discretization. The Kalman smoother-based method required only
37.26 s of computation time, an average of 0.09 s per grid cell, although it is not actually necessary
to compute the control for the entire state space grid.

Figure 3 serves two purposes. First, it is seen that the controls computed by our method are similar to
those from the Markov chain approximation method, although with such an aggressive discretization
required by the latter, there are no guarantee that the control solutions should be identical. Moreover,
recalling that the displayed controls are additive corrections to the non-optimal feedback controls,
this figure allows us to examine the regions in state space where the non-optimal feedback control
is most deficient in terms of optimality and robustness to uncertainty. For example, Fig. 3 shows
that little correction control is needed in regions r � 5 (i.e., u ≈ 0). However, as agents become
further separated, the reference feedback controls are not sufficiently strong. Of course, the described
corrections are only for the case θ1 = θ2 = 0 and with fixed speed, and we do not attempt in this paper
to analytically improve the reference control nor its underlying artificial potential function. However,
we envision our method being useful for control designers to analyze a “slice” or marginalization
of their feedback control function without having to solve the HJB PDE in the entire state
space.

Next, the Kalman smoothing method is employed so that five agents achieve the formation of a
regular pentagon, where each agent is individually estimating the hidden optimal trajectory based
on the relative kinematics of all its neighbors. The agents observe all others, but, as described in
Section 2, only the inter-agent connections known by an agent are used when computing the control.
The instantaneous state cost (14) penalizes the mean squared distance from the unicycle to all of its
M = 4 neighbors in excess of the side length of the pentagon (5 m) or the diagonal of the pentagon,
depending on the relative configuration of the pentagon encoded in δm, m = 1, . . . , 4. The system

https://doi.org/10.1017/S0263574714000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714000022


Stochastic enhancement of distributed formation control with Kalman smoothers 319

−4 −2 0 2 4 6 8 10
−6

−4

−2

0

2

4

6

8

10

(a)

y
[m

]

−4 −2 0 2 4 6 8 10
−6

−4

−2

0

2

4

6

8

10

(c)

x [m]

y
[m

]

−4 −2 0 2 4 6 8 10
−6

−4

−2

0

2

4

6

8

10

(b)

−4 −2 0 2 4 6 8 10
−6

−4

−2

0

2

4

6

8

10

(d)

x [m]

−4 −2 0 2 4 6 8 10 12 14 16
−8

−6

−4

−2

0

2

4

6

8

10
(e)

x [m]

y
[m

]

Fig. 4. (Colour online) Five agents, starting from random initial positions and a common speed v = 2.5 m/s,
achieve a regular pentagon formation by an individually optimal choice of acceleration and turning rate, without
any active communication. Frames (a) through (e) correspond to the times, t = 0 s, 2 s, 4 s, 6 s, and 16.4 s. An
example of collision avoidance between the two upper-left agents is seen in frames (b) and (c).

parameters are the same as the previous example, with the addition of σv = σv,m = 0.1 (see (24) for
R).

For the case of CUF, we define the formation, i.e., stopping condition, as

F ={x : |rm − δm| ≤ εr,

|θ − θm| ≤ εθ ,

|v − vm| ≤ εv, m = 1, . . . , M
}

(63)

based on tolerances εr , εθ , and εv . Figure 4 shows the trajectories of all the agents, while the inter-
agent distances and agents’ angles and speeds can be seen in Fig. 5. The actual stopping time was
τ = 16.1 s, and the agents did not collide. In the last second of the simulation, a minor deviation in
the agents’ heading angles and speeds was seen. This was due to a final correction in agents’ relative
distances that was needed after having converged in heading angle and speed. Without the addition
of the optimal controls, the collision-avoiding controls acting alone did not lead to a formation (63)
within the first 60 s of the simulation (Fig. 5). Although the non-optimal control aligned heading
angles and, to some extent, speeds, they led to oscillatory trajectories, which is not uncommon in the
artificial potential function approach.

The infinite-horizon case may be seen in Fig. 6, and its corresponding cost is in Fig. 7. The agents
achieve and maintain a pentagon using the computed optimal controls, while a simulation using only
the reference feedback controls again leads to oscillations, as seen in Fig. 7.

As discussed in Section 1, the implementation of the Kalman smoothing algorithm is in some ways
similar to receding horizon control/MPC. To compare our results with this strategy, we next consider
an Euler discretization of system (12) with noise intensity � = 0. At each time step, each agent
must compute the controls (u0, u1, . . . , uN−1) that minimize the total accumulated cost (43) over the
horizon, at which point the first control u0 is executed, and then the process repeats. Using the same
time step (0.1 s) that was employed with the Kalman smoothers was computationally prohibitive,
and so we chose �t = 0.5 s, resulting in 200 decision variables. We computed the control using
IPOPT,53 which required approximately 30 min for each time step. Figure 8(a) shows that the agents
under MPC control converge to a pentagon that moves in a different direction than the Kalman
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Fig. 5. (Colour online) Inter-agent distances rmn, agent heading angles θ , and agent speeds v as a function of
time using the (left) stochastic optimal control (CUF) and the (right) deterministic feedback control.
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Fig. 6. (Colour online) Five agents, starting from random initial positions and a common speed v = 1 m/s,
achieve a regular pentagon formation by an individually optimal choice of acceleration and turning rate, without
any active communication. Frames from (a) to (h) are 2.5 s to 20 s, incrementing by 2.5 s. Frame (i) shows the
end of the simulated trajectories at 60.6 s.

https://doi.org/10.1017/S0263574714000022 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714000022


Stochastic enhancement of distributed formation control with Kalman smoothers 321

0 10 20 30 40 50 60 70

10

20

0 10 20 30 40 50 60 70
−200

0

200

0 10 20 30 40 50 60 70

2

4

t [s]

r m
n

[m
]

θ
[d

eg
]

v
[m

/s
]

0 10 20 30 40 50 60 70

10

20

0 10 20 30 40 50 60 70
−150

−100

−50

0

0 10 20 30 40 50 60 70

0

2

4

t [s]

r m
n

[m
]

θ
[d

eg
]

v
[m

/s
]

Fig. 7. (Colour online) Inter-agent distances rmn, agent heading angles θ , and agent speeds v as functions of
time using (left) the stochastic optimal control (infinite-horizon), and (right) the deterministic feedback control.
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Fig. 8. (Colour online) Comparison with MPC-computed control for the same problem. (a) The dashed
trajectories are those from Fig. 6 computed using Kalman smoothing algorithms, while the solid trajectories were
computed using IPOPT.53 (b) The total error between the instantaneous formation distances and the nominal
distances for the MPC control (red) and the Kalman smoother control (blue).

smoothing-based pentagon, but the direction of the agents’ motion was not part of the optimization
problem. The difference between the actual inter-agent distances and the nominal distances for the
MPC-based trajectories are close to that from our Kalman smoothing methods (Fig. 8(b)), but the
latter approach requires considerably less computational time (approximately 1.7 s to compute five
agents’ controls).

Finally, we show how the choice of measurements μ supplied to the smoothing algorithm can
allow for dynamic morphing between formations. At the end of the simulation in Fig. 6, we update
the nominal inter-agent distances so that agents form a line, as seen in Fig. 9.

6. Discussion
This work considers the problem of unicycle formation control in a distributed optimal feedback
control setting. Since this gives rise to a system with huge state space, we exploit the stochasticity
inherent in distributed multi-agent control problems in order to apply a PI method. By relating the
resulting estimation problem to Kalman smoothing algorithms, each agent can compute its optimal
control using a nonlinear Kalman smoother, greatly reducing the computational complexity associated
with multi-robot optimal control problems. The measurement and process noise of the smoothing
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Fig. 9. (Colour online) Following the simulation in Fig. 6, the set of nominal distances between agents m and n
was modified to δmn = 5|m − n|, and the reference control was dropped. The agents are seen forming a line.

problem are created using the structure of the cost function and stochastic kinematics. Since agents
share a common prior probability distribution describing the future trajectories of their neighbors,
the formation can be attained without any communication among agents aside from instantaneous
observations of neighbors.

The typical Lyapunov function approach to problems of this type offers several benefits, including
transparency and analyticity, that are often lost in the numerical solution of the HJB equation,
but the latter is also advantageous or in some instances preferable. Our approach aims to balance
the attractiveness of an analytic feedback control for deterministic systems with the robustness to
stochasticity and optimality provided by the HJB equation. Therefore, the optimal turning rate and
acceleration controls affect the system alongside a non-optimal reference feedback control law based
on an artificial potential function.

Not only do the optimal correction terms improve the performance of the reference control,
leading the agents into formation faster and optimally, but the existence of an underlying non-
optimal control complements the optimal enhancement controls. For instance, since the reference
controls help to move the agents toward a formation, a Kalman smoother measurement (recall that a
measurement in our work is the nominal distance) does not constitute a rare event in the measurement
probability model, and, consequently, the reference controls reduce numerical issues involved in
Kalman smoothing algorithms. Moreover, without the reference controls, collision avoidance would
require complex state constraints to be added to the Kalman smoothing algorithm.

Since the Kalman smoothing-based control is the additional input required alongside the non-
optimal control in order to achieve optimality and robustness, we can envision in a future line of
research using these algorithms to test feedback control laws for multi-robot systems against various
scenarios in order to derive analytical improvements.
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