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ABSTRACT

Most computational models of word segmentation are trained and

tested on transcripts of speech, rather than the speech itself, and

assume that speech is converted into a sequence of symbols prior to

word segmentation. We present a way of representing speech corpora

that avoids this assumption, and preserves acoustic variation present

in speech. We use this new representation to re-evaluate a key

computational model of word segmentation. One finding is that high

levels of phonetic variability degrade the model’s performance. While

robustness to phonetic variability may be intrinsically valuable, this

finding needs to be complemented by parallel studies of the actual

abilities of children to segment phonetically variable speech.

INTRODUCTION

One of the fundamental questions in child language acquisition is how

children learn to segment running speech into words. Children’s performance

at segmenting words is a good predictor of later performance at other stages

of language learning, including not only vocabulary building but also
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expressive language and general language ability (cf. Newman, Bernstein

Ratner, Jusczyk, Jusczyk & Dow, 2006).

Most computational models of the word segmentation task treat it as a

series of subtasks along these lines:

1. Break the stream of speech into a sequence of acoustic segments.

2. Convert these acoustic segments into abstract symbols or feature bundles.

3. Find coherent subsequences within this sequence of symbols. Treat

these subsequences as ‘candidate words’.

4. Add these candidate words into a mental lexicon, combining identical

subsequences into the same lexical entry, as instances of the same word.

Most models take steps 1–2 as a given (or as a necessary idealization), and

focus on step 3, using transcriptions produced by adults (or dictionaries) as

the source of the input. An alternative way of conceptualizing the word

learning task involves a slightly different series of subtasks:

1. Break the stream of speech into a sequence of acoustic segments.

2. Represent these segments in a way that preserves the acoustic variation

in each segment, such as probability vectors over possible symbols.

3. Find coherent subsequences within this sequence of probability vectors

(PVs). Treat these subsequences as ‘candidate words’.

4. Add these candidate words into a mental lexicon, clustering very similar

subsequences of PVs into the same lexical entry as likely instances of the

same word.

We have developed and implemented a framework for providing alternative

input to any computational model of word segmentation that can accom-

modate probabilistic input. This alternative input follows steps 1–2 as we

propose them, using techniques from automatic speech recognition as a proxy

for human auditory processing. We argue that this input is more realistic

than the types of transcripts usually used to train and test computational

models of word segmentation. We also demonstrate the use of this new

input on one model of word segmentation (Christiansen, Allen &

Seidenberg, 1998).

The paper is organized as follows. First, we review previous work

modeling subsegmental variation and propose a method of preserving the

phonetic variation found in audio input that is compatible with well-

established evaluation metrics, and hence readily comparable across models.

We then describe how the input data derived from this method is applied to

the Christiansen et al. (1998) model of word segmentation. Two simulations

follow: the first simulation tests the generality of the claims in Christiansen

et al. (1998), by comparing the model’s performance using symbolic,

citation-form input against that using probabilistic, speech-derived input.

To simplify the comparison, a version of the model without suprasegmental
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cues was used. The results of this simulation show that the chosen word

segmentation model performs well given input with little phonetic variation,

but not with the high levels of acoustic variation found in many recorded

utterances in the Brent corpus (Brent & Siskind, 2001).

The second simulation tests the generality of the claims about how best

to combine multiple cues. It compares two variants of the model that

combine segmental information with a novel measure of speech clarity

called SEGMENTAL SALIENCE. This cue is used as a rough approximation

to suprasegmental cues such as lexical stress, which are known to be of

importance in word segmentation for English (Johnson & Jusczyk, 2001).

The second simulation confirms that multiple cues can, under certain

conditions, be combined to improve word segmentation performance. It

also indicates that phonetic variation cannot be ignored when designing

studies of the statistical learning of language. In addition, it suggests that

more refined evaluation measures will be needed if we are to understand the

advantages and disadvantages of particular statistical learning techniques.

Finally, we discuss the implications for other word segmentation models

that rely heavily on segmental information, as well as opportunities for

investigating word segmentation performance in non-ideal circumstances.

Whether children are able to extract word boundaries from the more highly

variable utterances in the Brent corpus is not clear; this warrants further

investigation. As computational models of word segmentation investigate

performance on concrete examples of running speech, more coordination

with experimental measures of infant performance will be necessary to

interpret the results.

RELATED WORK : MODELING SUBSEGMENTAL VARIATION

Computational models of infant language acquisition only rarely represent

the subsegmental variability present in speech. Those models that have

examined the effect of phonetic variation have used two approaches: first,

the use of automatic speech recognition (ASR) technology, and second,

stochastic resetting of phonological features.

Using automatic speech recognition

Carl de Marcken (1996) was perhaps the first to use ASR technology

in modeling the word segmentation task. In order to avoid including

information unavailable to the infant, de Marcken’s model used the output

of an automatic phone recognition (APR) system, explicitly excluding all

higher-level linguistic information that would bias the system towards

phone sequences more frequently found in canonical pronunciations of

words. However, de Marcken’s experiments used Viterbi’s algorithm to
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reduce speech to a single most likely sequence of phones. Thus, de

Marcken’s approach does no more to model uncertainty or ambiguity at the

segmental level than phone-level human-transcribed corpora, such as the

Buckeye corpus (Pitt, Johnson, Hume, Kiesling & Raymond, 2005) used by

Fleck (2008). Both over-commit to the phonemic identity of the segment

before segmentation begins. The difference is that de Marcken replaces

human phone recognition error with APR error.

Roy & Pentland (2002) do handle uncertainty: their CELL model is

similar in many respects to the approach proposed and tested in this paper.

However, since the CELL model focuses primarily on the task of word–

meaning mapping within a multimodal domain, its performance was never

compared to any other word segmentation model, nor was it tested on

comparable corpora. Neither de Marcken (1996) nor Roy & Pentland (2002)

provide evaluation metrics that can be directly compared with other models.

Simulating phonetic variation

Two connectionist approaches, Cairns, Shillcock, Chater & Levy (1997)

and Christiansen & Allen (1997), simulate subsegmental variation in the

input by stochastically inserting non-canonical combinations of phonetic

features. The latter study is described in more detail below.

The Christiansen & Allen (1997) study (henceforth CA97) used the

Carterette & Jones (1974) corpus as input, encoding each phoneme as a

vector of (binary) phonological features. During testing, certain of these

input features were randomly flipped from 0 to 1 or from 1 to 0, in order

to test the effect of subsegmental variation on the connectionist model’s

performance. Those features which distinguished a particular phoneme

from another American English phoneme were considered CORE features

and left unchanged. Of the rest, certain features (on average about two per

phoneme) were dubbed PERIPHERAL features and were randomly and

independently toggled at various probabilities (four conditions: 0, 0.01, 0.05

and 0.1) in order to simulate subsegmental variation in the speech signal.

It was found that this type of variation did not significantly alter the

performance of the neural network, either when starting with citation forms

or the (human) phone-level transcriptions of the corpus.

CA97’s implementation of subsegmental variation, while ingenious, is

somewhat ad hoc. The distinction between core and peripheral features

amounts to an implicit theory about segment confusability. As a theory, this

leaves something to be desired, underestimating the probability of confusions

that seem quite plausible for infants without top-down information. For

example, since English obstruents are arranged in voiced–voiceless minimal

pairs (e.g. /f/y/v/, /t/y/d/, /s/y/z/), the feature [voice] would be a core

feature for all obstruents under CA97’s assumptions. This would mean that
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it is impossible to misclassify any obstruent along the line of voicing (e.g.

a /t/ for a /d/). In reality, voice-onset time is continuous, and the slope of

human categorical perception, while steep, is known not to be absolutely

vertical (cf. McMurray & Aslin, 2005), so two slightly differently tuned

listeners certainly could perceive the value of the [voice] feature differently

for a particular phone, particularly one near the VOT (voice-onset time)

boundary for voicing. By not allowing for this possibility, CA97 effectively

models the [voicing] feature as a perfect step function for obstruents. While

this is a retreat from one kind of idealization, it also introduces unlooked for

and cognitively unmotivated assumptions that should perhaps be eschewed.

Second, the model controls variation in each peripheral feature with a

single number that is constant across time and surrounding context. This has

the effect of spreading the subsegmental variation (or phonetic ambiguity)

in the model evenly throughout each word and each utterance. Again, this is

cognitively implausible: surrounding context, including position in the

syllable (e.g. Redford & Diehl, 1999) and surrounding phones (e.g. Krull,

1990), plays a large role not only in allophonic variation but also in

perception of phonemic distinctions and specific patterns of confusability.

Finally, infants experience subsegmental variation and phonemic

ambiguity (and hence the possibility of phonemic confusion) throughout

the course of acquisition. CA97 treats variation only at test time. This

corresponds to a setting where the learner has access to very clear input

(perhaps from a very cooperative caregiver) during training but must handle

variability (maybe from other speakers) at later points. Unfortunately,

speech science does not support the claim that even the clearest speech is

free of variation. For prediction tasks like the one used in CA97, the use of

subsegmental variation during training should apply to the target layer as

well as to the input layer, since the training cannot presuppose any more

certainty than the original input.

Now that high-quality audio data are available, a more direct and straight-

forward way of modeling phonetic variation is possible. We do not have to

build a theory of phonetic variation, but can simply use the subsegmental

variation already present in speech. We do this while retaining a model and

metrics that are comparable to previous word segmentation models.

MODELING SUBSEGMENTAL VARIATION WITH PROBABILISTIC INPUT

Phone probability vectors

Most models of the word segmentation task make the following assumptions,

or closely related variants :

1. The input provided to the model is represented as a sequence of

symbols – that is, a string drawn from a finite alphabet or phonemic
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inventory, augmented by a symbol for utterance boundaries. In the case

of distributed (connectionist) representations, each combination of

features maps to a symbol.

2. Only one label (or combination of features) is associated with each

position in the input string.

3. The number of positions (or segments) in the input string is fixed: each

utterance has a certain, known number of segments.

4. The word segmentation task is framed either as (a) the task of identifying

which pairs of adjacent segments should have word boundaries placed

between them, or (b) the task of identifying which subsequences

of contiguous segments (substrings) should be grouped together as

words.1

5. Evaluation consists of measuring the accuracy of (a) boundary placement,

(b) substring groupings (or word tokens), and/or (c) the building of a

lexicon of distinct substrings (or word types).2

We propose a different set of assumptions, which we argue are more

realistic representations of the input infants receive. Specifically, we replace

assumptions 1 and 2 with the following:

1k. The input provided to the model is represented as a sequence of prob-

ability vectors over a finite set of symbols (or PHONESET), augmented by

a symbol for utterance boundaries.

2k. Many labels can be associated probabilistically with each segment of the

input string, as long as the total probability over all the labels sums to 1.

The labels and probabilities associated with a segment of the input

string constitute that segment’s PHONE PROBABILITY VECTOR.

For the sake of maintaining the evaluation metrics commonly used in

other models, and facilitating comparison with them, we keep assumptions

3 through 5 constant. Along with assumption 3, we further assume that each

segment in an utterance is associated with a specific temporal region in that

utterance’s audio recording, and that there are no gaps or overlaps between

adjacent segments. Finally, we frame the word segmentation task as a

boundary-detection task (as in 4a, above) and evaluate the resulting

[1] If all boundary or grouping decisions are deterministic, then the results of these two
approaches are interchangeable.

[2] CAS98 and other models propose and use additional evaluations as well; that being said,
the evaluations listed here seem to be more general across the modeling community.
Only a few models (e.g. Roy & Pentland, 2002) address the issue of which acoustic
variants should be clustered into the same lexical entry – a problem which can arguably
be grouped with a later word–meaning mapping task rather than word segmentation per
se.
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segmentation by the three metrics listed in assumption 5, discussed in more

detail below.

Automatic phone classification

Our input representation is sensitive to what Scharenborg, Norris, ten Bosch

& McQueen (2005) refer to as ‘probabilistic acoustic detail ’, but is more

constrained than the phone lattice that they consider. In traditional ASR

lattices, as in Scharenborg et al.’s description, competing phones may be of

different lengths, and the task of the Viterbi algorithm is to choose the best

sequence of phones to cover the acoustic input. The optimization process is

a search that considers all reasonable possibilities for the number of phones,

their identity and the positions of the phone boundaries. In our application,

which needs to achieve comparability with CA97, this degree of generality

cannot easily be accommodated. Instead we treat phone boundaries (hence

also number of phones) as fixed. For each position in the segmented input,

we use the relevant acoustic material to assign a posterior probability for

each of the possible phone labels in the recognizer’s repertoire. Where

CA97 works with a sequence of phone labels that are assumed to be reliably

known, we work with a sequence of probabilistic distributions over phone

labels. If the speech were particularly clear and the phone classifier

especially effective, these distributions might turn out to be sharply focused

on the ‘correct’ single phones, but in the more prevalent cases where the

signal is less helpful or the recognizer less effective the result will be a

distribution that allocates significant posterior probability to several different

phone labels.

One variant of automatic speech recognition (ASR) that is compatible

with these assumptions is automatic phone classification (cf. Halberstadt &

Glass, 1997). Automatic phone classification (APC), like the automatic

phone recognition variant that de Marcken used, differs from standard ASR

in the basic unit of recognition and the types of linguistic knowledge that it

utilizes. In traditional ASR, the basic unit is the word, and the task is to

identify the sequence of words most likely to have given rise to a particular

audio signal. In addition to a phoneset and an ACOUSTIC MODEL describing

the ranges of audio input associated with each phone in the phoneset, an

ASR system has a PRONUNCIATION DICTIONARY (or vocabulary of words and

their usual pronunciations) and a GRAMMAR to describe how those words are

likely to be sequenced together.

In APR and APC, the basic unit is not the word but the phone. Hence,

no pronunciation dictionaries or word-level grammars are used, because

we cannot assume that babies have a vocabulary yet; the goal of word seg-

mentation is to find the words in order to acquire a vocabulary. APC differs

from APR in that the former assumes that the number of phones in an
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utterance and their boundary points are known. Hence, for each phone

position and its associated temporal slice of audio signal, discovering the

phone’s identity may be construed as a classification task. APR does not make

this assumption, which poses problems for evaluation. While ‘hard-decision’

APR as used by de Marcken returns unambiguous phone boundaries that

can then be mapped to word boundaries, in a ‘soft-decision’ APR system,

since it has probabilistic rather than predetermined phone boundaries, the

choice-points for word boundaries are probabilistic rather than a discrete

set, which breaks assumption 3 and makes evaluation and comparison with

transcription-based word segmentation models much less straightforward.

For this reason, APC is adopted for producing the input representations for

this study.3

Obtaining the phone probability vectors

The conversion of the raw audio input into the sequence of phone

probability vectors needed for the connectionist model’s input is conducted

in two stages: find the phone boundaries and then generate the phone

probability vectors within each boundary. Both stages are implemented by

using a previously developed ASR system based on the hidden Markov

model toolkit HTK (Young et al., 2002). The first stage divides each

utterance (using the utterance boundaries marked in the corpus) into discrete,

one-segment time intervals. In the second stage, each time interval between

two phone boundaries is treated as a separate ‘mini-utterance’ for purposes

of phone classification. The HTK system is constrained to treat each mini-

utterance as a single segment. More details concerning the implementation

of both steps are given in Rytting (2007).

This method for calculating the phone probability vectors for each

segment does not utilize all of the typical contextual knowledge of a typical

ASR system (including lexical pronunciations and/or phonotactic grammars)

since each segment is considered in isolation; the only linguistic knowledge

provided is the segment boundaries and the set of acoustic phonetic models.

Because of the lack of contextual knowledge, the ASR acoustic models will

be less accurate than those of a state-of-the-art system, but will also

preserve subsegmental variation in the signal, which is crucial to model the

sorts of uncertainty that an infant listener might experience. By utilizing

[3] This assumption excludes from consideration one type of phonetic variation: namely,
insertion and deletion of segments relative to the canonical standard. In this regard,
phone-based transcriptions, whether human based like the Buckeye corpus or automatic
like de Marcken’s APR-generated corpus, model a type of variation missed by this input
representation. While such variation could be included by using a phone lattice
representation of the input as in Scharenborg et al. (2005), this would significantly
complicate evaluation of the input for many word segmentation models.
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ASR models which possibly overestimate, rather than underestimate, the

amount of variation seen by an infant, we do provide a significant challenge

to the model; however, if a model is successful with this type of input then

clearly it can handle smaller amounts of variation.

OVERVIEW OF SIMULATIONS

An overview of the Christiansen, Allen and Seidenberg model

In order to investigate the effects of realistic, speech-derived subsegmental

variation on word segmentation, we have compared the performance of one

influential model of word segmentation using both symbolic and probabilistic

input. We focus here specifically on the multiple-cue connectionist model

described in Christiansen, Allen & Seidenberg (1998; henceforth CAS98),

which we will refer to generically as the ‘Christiansen model’. While a

number of other models could in principle have been adapted to allow for

probabilistic input (see, e.g., Batchelder (2002) for a review, and Fleck (2008),

Frank, Goldwater, Mansinghka, Griffiths & Tenenbaum (2007) and

Goldwater, Griffiths & Johnson (2009) for more recent models and empirical

evaluations), the simple recurrent network at the basis of the Christiansen

model is relatively easy to implement with widely available neural network

toolkits and straightforwardly accepts probabilistic input.

CAS98 examines the interaction of multiple cues in finding ‘hidden

structure’ in a sequence of observations. It hypothesizes that infants, while

performing their primary task of learning the meaning of the language input

they hear (or see), also engage in the IMMEDIATE TASK of learning to predict

observable linguistic events, such as the identity of the next phone, the level

of emphasis given to next phone, and whether or not the current phone

precedes an utterance boundary. The finding of hidden structure such

as word boundaries is a DERIVED TASK that emerges as infants attend to

immediate tasks with directly observable feedback. This view of the infant’s

task is similar to that assumed by Aslin, Woodward, LaMendola & Bever

(1996), where it is hypothesized that infants could find word endings by

trying to predict utterance endings, and extrapolating from those phones (or

features) that predict upcoming ends of utterances.

The innovation that the Christiansen model makes is how multiple cues

are combined. Building on Aslin et al.’s immediate-task paradigm, CAS98

adds additional immediate tasks as CATALYST tasks, and trains an Elman

network on these other tasks simultaneously. As multiple prediction tasks

are learned simultaneously by the same network, the combined training will

constrain the network to find a better joint solution for derived task of

detecting hidden structure such as word boundaries. Specifically, CAS98

demonstrates that combining segmental and suprasegmental cues allows for

greater performance at the word segmentation task than either cue alone.
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Figure 1 shows a schematic view of the Christiansen network. The

catalyst output units for phonemic identity and stress constrain the model

during training, but have no direct effect on the model’s placement of word

boundaries. Only the utterance boundary marker (shown by the # symbol,

upper right) determines whether or not a word boundary is posited.

Goals of the simulations

In this paper we present two simulations illustrating the effect of

probabilistic input on the Christiansen model. Simulation 1 examines the

effects of probabilistic segmental input (i.e. phone probability vectors) on a

version of the Christiansen network without lexical stress. Simulation 2

examines the impact of an additional cue (segmental salience). This additional

cue is loosely analogous to suprasegmental cues such as lexical stress. Unlike

Christensen’s lexical stress cues, it is directly derivable from the phone

probability vectors with no additional processing of the speech signal.

Implementation and evaluation of the Christiansen model

Model design, training and testing. In both simulations the Christiansen

model was re-implemented using the Conx module of the Pyro toolkit

(Blank, Kumar, Meeden & Yanco, 2003). Elman networks (a type of simple

recurrent network or SRN) were used, following CAS98. Each network was

trained on one pass through the training corpus, using the same settings

as CAS98 (learning rate of 0.1, momentum of 0.95, and initial weight

randomization ranging from x0.25 to 0.25), then tested with the network

Hidden Layer

Phoneme predicted for position t

Context Layer

Phonological Features 
observed at position t–1

S  S

S  S   #

Utterance Boundary (UBM) 
predicted for position t

Catalyst output nodes

Observed 
stress

UB observed at position t–1

/a/  /b/  … … /z/

Predicted 
Stress

# Decision Rule: 

Posit word boundary 
if output activation of 
utterance boundary  
is higher than mean

Fig. 1. A schematic representation of the original CAS98 phon-ubm-stress network. Dark
circles represent activated input units.
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weights ‘frozen’. In order to account for the natural variability in the

networks, nine separate runs of training and testing were performed for

each variant of each network, each run differing only in the randomized

starting weights.

Input representations. One point of difference between the original CAS98

study and the simulations described here is in the feature representation of

the input to the connectionist model. Like Aslin et al. (1996) and Cairns

et al. (1997), CAS98 represents each segment in the input corpus as a bundle

of phonological features rather than as a discrete symbol. However, it is also

possible to use symbolic input representations within a connectionist

framework, by using a LOCALIST (or ‘one-hot’) representation, such that

each symbol in the relevant phone set has one input unit uniquely

associated with it. The original CAS98 study uses localist representations

for their models’ segmental output and target layers ‘to facilitate performance

assessments and analyses of segmentation errors’ (p. 236).

We have conducted studies (not reported here) that examine the effect of

input representation on the Christiansen model. For strict replication, we

examined the original feature set in CAS98. This feature set contains some

flaws (as pointed out in e.g. Fleck, 2008), so we also examined an arguably

more realistic feature set, found in Christiansen, Conway & Curtin (2005).

Finally, we examined a localist input representation matching CAS98’s

output and target layers. In general, the localist input representation

performed as well as or better than either of the two distributed

representations, so we report only the results of the localist representation

here. The patterns observed from the distributed representations are not

sufficiently dissimilar to affect the overall findings.

Evaluation procedures. Since the network is supposed to generalize from

utterance boundaries to all word boundaries, the activation of the output

unit corresponding to the utterance boundary marker (UBM) is used

to determine the model’s level of belief in a word boundary after a given

segment. To calculate precision and recall (defined below), CAS98 posits

a word boundary whenever the UBM output unit registers a greater-

than-threshold activation. Following Aslin et al. (1996), the threshold used

for determining a posited word boundary is the average activation for the

UBM output unit over all positions. While this method of evaluation is not

the only one provided by CAS98, it is the method most closely comparable

to evaluations of other models in the literature, so we adopt it here in

reporting the results of the Christensen model and its variants on new input.4

[4] Note that the boundary placement as calculated here considers both utterance-internal
word boundaries and the final boundary at the end of the utterance, but not utterance-
initial boundaries. A more conservative boundary measure, using only utterance-internal
word boundaries, may be obtained by subtracting the number of utterances in the test
corpus from the number of true positives (Ntp).
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Results are reported in terms of PRECISION and RECALL (referred to as

ACCURACY and COMPLETENESS in CAS98) for boundaries, word tokens and

word types, where precision equals the proportion of true positives to the

sum of true and false positives, and recall is the proportion of true positives

to the sum of true positives and false negatives. Unlike CAS98, which only

reports one run of the neural network, all simulations reported here take the

mean values of true positives, false positives, and false negatives (i.e. hNtp,

Nfpi and hNtp,Nfni) over nine separate runs with different (randomized)

initial weights, as shown in Equations 1 and 2.

Mean Precision=
Ntp

Ntp+Nfp

(1)

Mean Recall=
Ntp

Ntp+Nfn

(2)

Following CAS98, significance in precision and recall between two conditions

is measured comparing the mean number of true and false positives hNtp,

Nfpi for precision, and true positives with false negatives hNtp,Nfni for

recall, for each of the two conditions in a 2r2 x2 test.
The number of boundaries correctly found is of less interest than the

number of words (tokens and types) correctly segmented. In order for a

word token to count as correctly segmented, three conditions must apply:

1. The word’s beginning must be correctly identified.

2. The word’s end must be correctly identified.

3. There must be no false-positive boundaries posited in between the be-

ginning and end of the word.

The precision and recall over word types is calculated in the same manner

as word tokens, except that each word type (or distinct string of canonical

phones) is only counted once over the entire corpus. Type recall refers to

the proportion of distinct words in the corpus found by the model (averaged

over nine runs). Type precision refers to the proportion of distinct strings

segmented and proposed by the model that correspond to actual words in

the corpus, and corresponds to the ‘lexicon precision’ measure in Brent

(1999). Since the Christiansen model does not compile a lexicon explicitly

as part of its execution, the term ‘type’ precision is adopted here.

As with most computational models of word segmentation, no distinction

is made in these metrics between different classes of words, such as function

words vs. content words, nouns vs. verbs, or words that children show

evidence of knowing vs. other words. Perfect recall means correctly

segmenting ALL the words.5

[5] A more nuanced metric would undoubtedly be of interest for matching the performance
of particular models with children’s experimental performance at particular stages of
word segmentation; however, no such metric has yet emerged as a community standard.
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SIMULATION 1

Although CA97 gives us some indication of the Christiansen model’s

performance in the face of certain types of variation in its input, the flaws

discussed above in the section ‘Simulating phonetic variation’ limit the

conclusions that can be drawn from it. Simulation 1 seeks to overcome these

limitations by comparing the performance of the Christiansen model on

citation-form input with its performance using phone probability vectors

(derived from audio-recordings as described in the sections ‘Modeling

subsegmental variation with probabilistic input’ above and ‘Input data’

below) as input for both training and testing. CAS98 used the Korman

(1984) corpus, freely available as part of the CHILDES collection of

child-directed language corpora (MacWhinney, 2000). Since the sound

recordings for the Korman corpus are too faint to be utilized by ASR, the

audio-recordings for a subsection of the Brent corpus (Brent & Siskind,

2001), also available through CHILDES/TalkBank (MacWhinney, 2000),

were used for Simulation 1.

METHOD

Input data

The input corpus for Simulation 1 was based on recordings of four mothers

from the Brent corpus, identified by the codes c1, f1, f2 and q1, directed at

infants age 0;9 to 0;10.26. Since a large proportion of the experimental

literature examining word segmentation focuses on infants between 0;7 and

0;11, it has here been assumed that the Christiansen model is best applied

to input directed to infants within this time period. Recordings directed at

infants older than 0;11 were excluded from this study as being beyond the

age most appropriate for the model. Recordings earlier than 0;9 are rare in

the Brent corpus and usually record the mother’s first recording session.

They were excluded to avoid self-conscious speech and other effects of

first-time recordings.

Using the transcriptions’ CHAT codes, we removed utterances containing

any type of input that might cause trouble for the forced-alignment step,

including: whispered or sung speech; unintelligible, untranscribed or partial

words; word play or pet names; and mentions of the family’s last name (left

untranscribed to preserve anonymity). This left 13,443 utterances for the

four mothers. Using HMM-based acoustic models trained on the TIMIT

corpus (Garofolo, Lamel, Fisher, Fiscus, Pallett & Dahlgren, 1993) of read

speech, we phonetically aligned this subset of the Brent corpus, performing

a forced alignment on the canonical pronunciations found in the CMU

dictionary (1993). We utilized the resulting phonetic boundaries to segment

each utterance into individual phones. We then calculated the average frame
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likelihood of the twenty best monophones for each segment and converted

these likelihoods into posteriors by normalization.

While in typical ASR tasks it is unusual to first train the models on the

same material that will be evaluated, it should be noted that what we are

trying to derive is an approximation of the phonetic confusability in the

acoustics. Thus, if the models are trained on one phone but during testing

they prefer another, this is a clear indication of acoustic confusability, and

we can have more confidence that misrecognitions are not due to training/

test mismatch.

In order to further increase the confidence in these phonetic materials,

utterances that did not have good performance in phone classification

across the entire utterance were discarded. The performance of the phone

classification across an utterance was calculated using a measure called

APPROXIMATE ACCURACY, defined as the number of phones correctly detected

within the top two guesses for each phone. Using this definition rather than

exact accuracy allows for more of the desired variation while ensuring that

the correct phone was a good candidate, suggesting that the automatic

phonetic alignment process was valid.

Two subsets of the Brent corpus were created: one that has utterances

of approximate accuracy of at least 33.3% and that had more than one

phone classified correctly (hereafter called ‘Large Brent’), and a second,

higher-confidence corpus that had an approximate accuracy of at least 60%

per utterance (hereafter called ‘Small Brent’). The 60% cut-off point was

chosen to represent a subset of utterances with levels of acoustic variation

roughly comparable to that found in low-noise speech corpora such as

TIMIT: the rate of canonical pronunciations is on the order of 60–80% in

TIMIT, depending on stress and syllabic position (Fosler-Lussier,

Greenberg & Morgan, 1999). The 33.3% cut-off, on the other hand, allows

a more representative sample of the utterances in the Brent corpus,

including a number of longer, more complex utterances. Each of these two

subsets were further divided 90%x10% into training and test corpora, as

shown in Table 1.

Model design

The training procedure was the same as for CAS98, with the exception that

the input and target vectors for the PROBABILITY VECTOR condition used are

not binary, but continuous (rounded to four decimal places) in the range

[0, 1]. While training on probabilistic targets may be unusual, and is a

departure from the way uncertainty is handled in CA97, this method of

training is consistent with the assumption made here that infants at this

stage of development do not have access to the phonemic identity of the

target segment, except through the probabilistic cues encoded in the input.
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In order to keep the phoneset the same as that used in CAS98, the phone

probability vectors produced by the APC system were converted from the

61-phone TIMIT phoneset to the 36-phone MRC phoneset that CAS98

used. The twenty best monophones’ posterior probabilities were normalized

to sum to 1, and used as input activations for the corresponding input

units.6 A schematic representation of the network used is given in Figure 2.

For comparison purposes, we also provide a CANONICAL (or citation-form)

version of both Brent subsets, trained with fully symbolic input taken from

the canonical pronunciations of each word as listed in the CMU diction-

ary, converted to the MRC phoneset (without stress information). This

TABLE 1. Size of the training and test corpora for the two Brent corpus subsets

Corpus Utterances Word tokens Word types

The 60%-accuracy subset (Small Brent)
Training 2861 6443 782
Testing 316 740 258
Total 3177 7183 819

The 33%-accuracy subset (Large Brent)
Training 7030 22,193 1493
Testing 781 2486 552
Total 7811 24679 2592

#

Hidden Layer

Phone probability vectors 
predicted for position t

Context Layer

Phone probability vectors at 
position t –1

#

Decision Rule: 

Posit word boundary 
if output activation of 
utterance boundary  
is higher than mean

UB observed at position t –1

Utterance Boundary (UBM) 
predicted for position t

[a]  [b] … … [z]

[a]  [b] … … [z]

Fig. 2. The phone-probability-vector network used in the probability-vector conditions of
Simulation 1. Shades of grey in input units indicate graded activation.

[6] An anonymous reviewer notes that the normalization of the output and target layers such
that the phone probability vectors summed to 1 may have made training more difficult
for the SRN, and adversely affected performance for reasons unrelated to the model’s
ability to handle subsegmental variation. This possibility will need to be evaluated in
future work.
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corresponds to the PHON-UBM condition in CAS98. Since there is no exact

correspondence to stress in the probability vector condition, the PHON-UBM-

STRESS condition is not reported for the Brent corpus. In addition, two

baselines were used, following CAS98. The first one (the UTTERANCE-

AS-WORD baseline) posits word boundaries only at utterance boundaries,

treating each utterance as a single word. The other (the LENGTH-BASED

baseline) learns from the training corpus the distribution of word lengths

(in segments) but gathers no information relating to the identity of the

segments. It then chooses word lengths randomly from the distribution of

lengths learned.

RESULTS AND DISCUSSION

Simulation 1a: the Small Brent subset

Results are reported first for the smaller, more restrictive subset of the

Brent corpus, shown in Table 2. This corpus subset (the Small Brent corpus)

has a much shorter mean utterance length than the Korman corpus used in

CAS98 or the Large Brent subset used in Simulation 1b and Simulation 2

(2.3 words per utterance, as opposed to 3.2 for Large Brent and 3.1 for

Korman), and a much higher incidence of single-word utterances (46% for

Small Brent, versus 28% for Large Brent and 26% for Korman). It follows

that the single-word baseline will have substantially better recall on the

Small Brent subset than on other corpora.

Simulation 1a.i: the canonical condition. The SRN using the canonical

transcription performs above the length-based baselines for all measures

except type recall (x2(1)=10.0, p=0.0016 for boundary precision; p<0.001

for all other comparisons). As expected, the SRN’s performance on

boundary precision is trivially worse than the utterance-as-word baseline’s

perfect precision, and the boundary recall is (trivially) better. However, due

TABLE 2. Results from Simulation 1a: precision and recall for the 37-70-37

phon-ubm SRN trained and tested with canonical, citation-form input and with

automatically phone-classified probabilistic input from the Small Brent corpus

subset, compared with two baselines (Prec.=Precision ; Rec.=Recall)

Input or baseline type

Boundary Word Lexicon

Prec. Rec. Prec. Rec. Prec. Rec.

Canonical 0.589 0.772 0.291 0.381 0.250 0.176
Probability vector 0.577 0.773 0.258 0.345 0.218 0.196

Baselines
Length-based 0.515 0.613 0.204 0.243 0.133 0.155
Utterance-as-word 1.000 0.427 0.462 0.197 0.250 0.108

RYTTING ET AL.

528

https://doi.org/10.1017/S0305000910000085 Published online by Cambridge University Press

https://doi.org/10.1017/S0305000910000085


to the large number of one-word utterances in the Small Brent subset, the

utterance-as-word baseline outperforms the SRN on word precision as well

(x2(1)=30.6, p<0.001), and matches it on type precision (x2(1)=0.0075,

p>0.9). Therefore, the performance of the SRN is not as clearly superior to

the baselines as it is for CAS98’s simulations using the Korman corpus.7

Simulation 1a.ii: the probability vector condition. The SRN trained and

tested on the probability vector input performs fairly similarly to those

using the canonical transcription. Just like the canonical-input SRN, the

SRN using the probability vector input also outperforms the length-based

baseline for all measures except type recall (x2(1)=6.8, p=0.009 for

boundary precision; x2(1)=7.0, p=0.008 for word token precision;

p<0.001 for all other comparisons). The two SRNs do not differ significantly

on any of the six measures. Although the performance on word precision and

recall appears to be lower for the probability vector condition, the differences

are not statistically significant (x2(1)=2.7, p=0.10 for word token precision;

x2(1)=1.9, p=0.16 for word token recall).8

Simulation 1b: the Large Brent subset

Because the relatively small size and short average utterance length of the

Small Brent subset made it difficult to distinguish the performance of the

SRNs in the canonical and probability vector conditions from the baseline,

it is necessary to examine a larger subset of the Brent corpus to obtain

reliable figures. It is also useful to see how the Christiansen model (with the

types of input examined here) fare with a greater degree of subsegmental

variation than that provided in the Small Brent subset. The Large Brent

subset, more than double the size of the Small Brent subset, makes this

closer look possible. Results for this corpus subset are shown in Table 3.

Simulation 1b.i: the canonical condition. The canonical SRN outperforms

the length-based baseline on all measures (p<0.001 on all comparisons)

except type recall (x2(1)=0.26, p>0.6). As seen in Simulation 1a.i with the

Small Brent corpus, the SRN performs worse than the single-word baseline

on word precision (x2(1)=11.0, p<0.001), but better than baseline on

boundary, word and type recall (p<0.001 on all comparisons). Unlike

[7] It should be noted that the performance of the canonical model as replicated here is
considerably below that reported by Christiansen et al. (1998) on the Korman corpus.
The CAS98 study reported lexical boundary precision and recall at 0.659 and 0.713 and
word (token) segmentation precision and recall at 0.373 and 0.404. The reason for this
discrepancy is not known.

[8] The same result is obtained using the distributed input based on the phonological
features described in CAS98. When the features from Christiansen et al. (2005) are used,
the probabilistic-input SRN is significantly worse than the canonical-input SRN in word
token precision and recall (x2(1)=10.6, p=0.0011 for word token precision; x2(1)=9.8,
p=0.0017 for word token recall). Other measures are not significantly different.
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Simulation 1a.i, the SRN outperformed the single-word baseline on type

precision (x2(1)=22.1, p<0.001).

Simulation 1b.ii: the probability vector condition. Unlike Simulation 1a,

for the Large Brent corpus the subsegmental variation affects performance

significantly. The SRN trained and tested on the probability vector input

performs significantly worse in all measures compared to the SRN trained

and tested on the canonical input (p<0.001 for all comparisons), except

type recall (x2(1)=0.25, p>0.6). This drop in performance is sufficient to

bring boundary and word precision down to the level of the length-based

baseline (x2(1)=1.99, p>0.1 for boundary precision; x2(1)=0.03, p>0.8 for

word precision). Still, boundary recall (x2(1)=184.9, p<0.001) and word

recall (x2(1)=18.6, p<0.001) are significantly better than the length-based

baseline, as is type precision (x2(1)=8.71, p=0.0031).

DISCUSSION

Simulation 1a suggests that the Christiansen model, even without the stress

cue, is robust to data with subsegmental variation when this variation is

carefully controlled. This finding is consistent with previous tests of the

Christiansen model in CA97. Because the near-continuous vector output of

a phone recognition classifier is a more accurate representation of human

perception than the feature byte-swapping done in CA97, this study provides

added support for the model’s basic robustness. The corpus used in this

simulation is small and the language used very simple, so the claim of success

has to be qualified.

Simulation 1b, performed on a larger subset of the Brent corpus, including

utterances that are considerably more difficult both for the phone classifier

and for the Christiansen word segmenter, shows that there is a point where

the variation does cause significant degradation to the model’s performance.

TABLE 3. Results from Simulation 1b: precision and recall for the 37-70-37

phon-ubm SRN trained and tested with canonical, citation-form input and with

automatically phone-classified probabilistic input from the Large Brent corpus

subset, compared with two baselines (Prec.=Precision ; Rec.=Recall)

Input or baseline type

Boundary Word Lexicon

Prec. Rec. Prec. Rec. Prec. Rec.

Canonical 0.531 0.861 0.233 0.377 0.226 0.261
Probability vector 0.482 0.720 0.148 0.222 0.131 0.276

Baselines
Length-based 0.464 0.533 0.150 0.173 0.095 0.276
Utterance-as-word 1.000 0.314 0.288 0.091 0.122 0.129
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The best interpretation for this degradation is not immediately clear. One

possible explanation is that large-scale variation compromises the reliability

of the segmental cues, such that it is no longer possible to findword boundaries

using these cues alone.9 Christiansen’s network was explicitly designed to

combine multiple cues in a plausible way, without direct supervision of the

word segmentation task itself. Therefore, when moving to spoken language,

it is worth looking for a set ofmore robust cueswhich can, in combinationwith

the segmental cues, improve the model’s word segmentation performance.

This would be a direct validation of Christiansen’s idea, and all the more

compelling because of the use of more naturalistic input.

SIMULATION 2

To further study the degradation of performance observed in Simulation

1b, we introduce other cues. We do this while continuing to require that the

cues that are used are plausibly available to an infant aged 0;8.

The lexical stress cue used by CAS98 was derived from a dictionary, so it

cannot be assumed to be available directly. However, there is ample evidence

that infants of the appropriate age use many of the acoustic cues associated

with lexical stress, such as pitch, duration and spectral tilt (Thiessen &

Saffran, 2004). It is also likely that they are able to distinguish between

degrees of care in the articulation of a syllable or segment.

We measure correlates of articulatory care, estimating them from the

phone probability vectors already available in the APC system. Our use of

these cues is motivated in part by an assumption that babies benefit most

from stretches of speech that they can readily interpret. This is an

extrapolation of findings that infants prefer speech over non-speech, and

CDS over adult-directed speech (e.g. Fernald, 1985). This cue may also be

interpreted as a proxy measure of ‘ local hyperarticulation’ (Cho & Keating,

2007), associated in English both with lexical stress (e.g. de Jong, 1995) and

the beginnings of words (e.g. Fougeron & Keating, 1997).

Finding the start of these salient, more easily interpretable stretches may

facilitate word learning. Simulation 2 therefore incorporates an additional

cue to signal the onset of an acoustically distinct stretch of speech, or region

of local hyperarticulation.

We assume here that the confusion matrix of the automatic phone

classifier approximates the perceptual confusions of an infant learner of the

language. If the APC assigns a high posterior probability to just one phone,

and much lower probabilities to all the others, we assume that this reflects

[9] Another possibility is that the normalization of the output and target layers caused
difficulties in training (as noted in footnote 6). However, if that is the case, it is not clear
why it affected the network only in the Large Brent corpus and not the Small Brent
corpus subset.
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a careful and clear pronunciation of that phone. Conversely, if the phone

classifier’s activation is spread nearly equally between a large number of

possible phones, we treat this as evidence that the phone is unclear and/or

sloppily articulated. Our ideal measure, which is a measure of posterior

entropy, will be referred to as SEGMENTAL CONFIDENCE; it is approximated

here by the maximum activation value output by the phone classifier,

regardless of the identity associated with that value.

METHOD

Input data

The input data used in Simulation 2 is the same as that used in the

probability vector condition of Simulation 1 (i.e. Simulations 1a.ii and 1b.ii),

using the same two corpus subsets (Small Brent and Large Brent) as above.

As the patterns observed in the two corpus subsets are similar, and the

Large Brent corpus allows differences between the two conditions to be seen

more clearly, only the results for the Large Brent corpus are reported here.

Model design

In Simulation 1, the activation of each input unit is determined by the

posterior probability of each phone given the acoustic signal for a particular

time interval of the speech signal (corresponding to the duration of a single

phone in the forced alignment). In Simulation 2, we use these same input

units, but augment them by adding input units corresponding to the degree

of perceived clarity of the input. We operationalize the model’s confidence

in the input by taking the maximum probability value in the segment’s

phone probability vector, including it as an additional cue. The segmental

confidence for segment position t (SCt) may be written as in Equation 3,

where A is the phoneset, Xt is the acoustic information at position t, and

Pr[Qt=q | Xt] is the probability of the phone q occurring at timestep t.

SCt=max
q2A

Pr [Qt=qjXt] (3)

Just as stretches of phonemically distinct speech are found by measuring

areas of high segmental confidence, the beginnings of such stretches can be

found by noting segments where the segmental confidence is larger than

that of the preceding segment. The delta segmental confidence for segment

position t (DSCt) is approximated here with the following function:

DSCt=
SCtxSCtx1: SCt>SCtx1

0: SCtjSCtx1

�
(4)

For this simulation, we assume that both absolute segmental confidence

for a given segment and the amount of increase in segmental confidence
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from the previous segment are equally important for detecting the starting

points of potential islands of reliability. Accordingly, we add two additional

input and output units corresponding to SCt and DSCt, and remove

sufficient hidden and context units to keep the number of weighted

connections as close to constant as possible.

In this simulation, as in Simulation 1, two distributed, feature-based

representations of the input were tested, corresponding to the representations

used in CAS98 and Christiansen et al. (2005), in addition to a localist

representation. As in Simulation 1, the two feature-based input

representations show the same trends as the localist representation, and

do not perform significantly better; hence, nothing of interest is gained in

reporting them.Therefore, only the performance of the localist representation

is reported here.

Evaluation procedure

Simulation 2 seeks to answer two questions: first, whether an automatically

derived non-segmental cue, such as segmental confidence as defined above,

can serve as a useful ‘catalyst task’ analogous to the way the original

Christiansen model used lexical stress; and second, whether the information

contained in the segmental confidence cue is helpful for finding word

beginnings when combined directly with the Christiansen model’s utterance

boundary prediction task. Accordingly, the evaluation for Simulation 2 is

conducted twice, as two separate sub-experiments.

The first evaluation procedure (Simulation 2a) treats segmental confidence

and DSC simply as additional catalyst features in the input and output levels

of the Christiansen network, just as lexical stress was treated in CAS98.

The method for positing word boundaries is the same as the original

Christiansen model and Simulation 1, depending only on the UBM output

unit’s activation at the previous segment – that is, a boundary is posited

between segments (tx1) and t only if actv(UBM)tx1 is greater than the

mean activation for the UBM output unit. This evaluation procedure

intuitively measures the effect of the segmental confidence cues in the

network’s ability to generalize from ends of utterances to ends of words.

The other evaluation (Simulation 2b) uses a new method of combining

the network’s prediction of an utterance boundary at segment position t (i.e.

actv(UBM)tx1) with the network’s judgment of whether or not the segment

at position t begins a region of clear speech. We name this second criterion

SEGMENTAL SALIENCE (SS) and define it as the sum of absolute and delta

segmental confidence: SSt=SCt+DSCt. The full decision rule compares

the product of the UBM activation at the previous segment and segmental

salience at the current segment to a threshold. Analogous to Simulation 1,

the threshold is set equal to the mean value for this product at each point
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over the entire corpus, as shown in Equation 5. This evaluation method

examines the effect of the segmental confidence cues (combined as single

segmental salience cue) on predicting word boundaries directly, without

presupposing their effect on generalizations from utterance boundaries.

A schematic illustration of the modified Christiansen network with this

decision rule is given in Figure 3.

Boundary(tx1, t)= 1: actv(UBM)tx1 *SSt> actv(UBM)tx1 *SSt

0: otherwise

�
(5)

RESULTS AND DISCUSSION

Simulation 2a: segmental confidence as an additional catalyst task

Simulation 2a examines the performance of the SRN trained and tested on

the probability vector input of the Large Brent corpus subset with the two

segmental confidence cues (absolute and delta) used only as additional

immediate tasks for the network to solve. This scenario is directly analogous

with the phon-ubm-stress condition in CAS98. However, unlike CAS98,

the extra cue yields no improvement in performance. The SRN using the

extra cues performs no better than the SRN trained without segmental

confidence, shown in Simulation 1b.ii. Although it shows a slight improve-

ment in terms of boundary recall, it performs worse in terms of boundary

precision (x2(1)=4.41, p=0.0358) and word token precision (x2(1)=4.52,

p=0.0335), and no better in word token recall, type precision or type recall.

Simulation 2b: segmental salience as an additional criterion

When the segmental salience cue is used as an additional CRITERION for

placing word boundaries, it does improve performance. The performance of

the ‘segmental salience as criterion’ condition outperforms the ‘segmental

confidence as catalyst ’ condition tested in Simulation 2a. While performance

in boundary recall is worse than in Simulation 2a, the segmental salience

cue improves performance in boundary precision (x2(1)=46.43, p<0.001)

and word token precision (x2(1)=78.09, p<0.001), and in word token recall

(x2(1)=10.68, p=0.0011) and type recall (x2(1)=10.64, p=0.0011).

Analogous differences are observed when comparing the results of

Simulation 2b to the recognized input without any additional cues (in

Simulation 1b.ii). While performance in boundary recall for the ‘segmental

salience as criterion’ condition is worse than the probability vector condition

in Simulation 1b.ii, performance in boundary and word token precision is

better (p<0.001 for all comparisons). Word token recall also improves

(x2(1)=6.55, p=0.0105), as does type recall (x2(1)=5.53, p=0.0187).
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Performance is in some measures comparable to the canonical phon-ubm

condition in Simulation 1b.i. While performance in boundary and word

recall is worse than in Simulation 1b.i, performance is better in type recall

(x2(1)=8.49, p=0.0036). Indeed, the ‘segmental salience as criterion’ con-

dition shows a stronger performance in type recall than any other variant of

the Christiansen model tested on the Brent corpus. Results for Simulation 2

(both 2a and 2b) are given in Table 4.

DISCUSSION

Simulation 2 seeks to test two claims of CAS98. First, and more generally,

it tests the claim that an algorithm that combines multiple cues to word

segmentation performs better than any one cue alone. Second, and more

specifically, it tests whether a single Elman network can effectively combine

multiple cues via simultaneous training on multiple prediction tasks (or

‘catalyst ’ tasks), without direct supervision on the target task (word seg-

mentation).

[a]  [b] …

SC  SC

… [z] SC  SC

actv(UBM)t–1

SC  SC

Hidden Layer at position t–1

Context Layer

SS at t–1

Decision Rule: 

Posit word boundary 
if SSt*actv(UBM)t–1
is higher than mean.  
(See Equation 5.)

Utterance boundary 
(UBM) at t–1

SC  SC

Hidden Layer at position t

Context Layer

… [z]

… [z][a]  [b] …

[a]  [b] …

SS at t (SSt )

#

#

#

#

[a]  [b] … … [z]
Phone probability vectors at t–1

Phone probability vectors at t

Fig. 3. The 39-68-39 phon-ubm-SC network for two subsequent time-steps, tx1 (bottom)
and t (top), for the ‘segmental salience as criterion’ condition tested in Simulation 2b.
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A replication of CAS98 (not presented here) found evidence for both

of these claims, when the training and testing corpora used symbolic

transcriptions without subsegmental variation, and dictionary-derived stress

cues rather than hyperarticulation cues. Simulation 2, which incorporates

larger amounts of variation than Christiansen reports testing, also finds

evidence for the first, more general claim. When Christiansen’s word

segmentation model is faced with highly variable, potentially ambiguous

input, multiple probabilistic cues still outperform each cue separately – when

the evaluation procedures consider all the cues. When segmental salience is

combined with the activation of the utterance boundary marker as part of

the final decision rule for positing word boundaries (as in Simulation 2b),

performance improves over the use of the recognized segmental information

alone.

However, when segmental confidence and delta segmental confidence are

used as catalyst features for predicting utterance boundaries only, and

utterance boundary prediction alone is used to posit word boundaries,

performance is no better than when using recognized segmental information

alone. This was a surprising result, and not fully understood. Possible

implications of this finding will be discussed further in the next section.

One interesting finding in Simulation 2b is the exceptionally high type

recall – the fraction of distinct word types in the corpus that were correctly

segmented – in the ‘segmental salience as criterion’ condition, compared

with other conditions tested on the Large Brent corpus subset. This is

appropriately analogous to the high performance of the phon-ubm-stress

condition in the original CAS98 study, suggesting that the segmental salience

cue may make similar contributions in this condition as the stress cue did in

CAS98. While space does not allow for a detailed study of this finding, it

TABLE 4. Results from Simulation 2: precision and recall for the 39-68-39

phon-ubm-SC SRN trained and tested with automatically phone-classified

probabilistic input from the Large Brent corpus subset, aided by segmental

confidence information added and evaluated (i) as an extra catalyst task and

(ii) as an extra word boundary placement criterion, compared with two baselines

(Prec.=Precision ; Rec.=Recall)

Input or baseline type

Boundary Word Lexicon

Prec. Rec. Prec. Rec. Prec. Rec.

Segmental confidence as catalyst 0.458 0.744 0.132 0.213 0.123 0.252
Segmental salience as criterion 0.541 0.648 0.211 0.253 0.137 0.343

Baselines
Length-based 0.464 0.533 0.150 0.173 0.095 0.276
Utterance-as-word 1.000 0.314 0.288 0.091 0.122 0.129
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appears that the segmental salience cue is acting similarly to lexical stress, in

that it correctly segments stressed, word-initial syllables from the preceding

word, as in ‘what#cha#doing’ and ‘are#you#fish(ing)’, where other variants

of the model miss the underlined word boundary. The SS cue likewise

prevents the placement of word boundaries before non-word-initial syllables

without primary stress, as in ‘fish(ing)’ and ‘peeka(boo)’, where other

model variants split these up. It also helps within syllable boundaries,

keeping together complex codas such as ‘than(k) ’, ‘plan(t) ’, ‘blin(d)’ and

‘tir(ed)’, where other variants split off the final stop. Since these stops are

known to have different allophones word-initially vs. word-finally, it seems

plausible that the ‘segmental salience as criterion’ variant, aided by the

probabilistic input, is learning and using this allophonic information to

place the word boundary correctly in these examples.

GENERAL DISCUSSION AND CONCLUSIONS

Despite the growing number of high-quality audio corpora available, such

as the Brent corpus, most models of the word segmentation task represent

an utterance as a sequence of symbols. For older models, this idealization

was no doubt necessary given the available resources at the time.

Nonetheless, it is problematic. It is doubtful that babies perceive phonemes

with complete reliability and accuracy – or even that adults are completely

reliable and accurate at perceiving phonemes independently of ‘top-down’

information from higher levels. Certainly, infants can distinguish between

phonemes in their soon-to-be-native language in certain conditions, while

successfully ignoring or disregarding distinctions that are non-phonemic in

their language (Werker & Tees, 1984) as early as 0;10. Still, it does not

follow that babies are able to apply this ability to all tasks or situations.

Even if infants are able to apply their phonemic knowledge to the word

segmentation task, it does not follow that they do so with 100% accuracy, as

mentioned above. Polka & Rvachew (2005) report a discrimination accuracy

of 80% for healthy infants between 0;6 and 0;9 on a simple, two-alternative

choice between /bu/ and /gu/. In running speech, infants’ accuracy is probably

lower still, at least until the infants learn enough contextual information to

begin applying top-down processing. Indeed, some phonemic pairs are in-

distinguishable until relatively late: babies natively learning Tagalog do not

even perform above chance in distinguishing /n/ from /n/ in syllable onsets

until 0;10, even though in Tagalog /n/ and /n/ are phonemically distinct in

syllable onsets (Narayan, Werker & Beddor, in press).10

[10] The Christiansen model, like most of the computational models of word segmentation
reviewed, does not commit explicitly to a precise age range of infants being modeled.
Christiansen et al. (1998: 253) suggest that they are focusing on initial stages of word
segmentation, and note that their speech data was directed at infants at 6–16 weeks of
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Even for phonetically trained adults, 100% accuracy of phone identification

without the benefit of higher-level cues seems unrealistic. The Buckeye

corpus, which contains spontaneous adult-directed speech, reports 80.3%

overall agreement (kappa=0.797) with unanimous agreement on only 62%

of the segments (Pitt et al., 2005). In contrast, models that use phonemic

transcriptions of words implicitly assume that infants are receiving, with

100% accuracy and confidence, exactly what the majority of transcribers

heard – or (in the case of word-level transcriptions) what the pronunciation

dictionary dictates.

If the assumption of 100% accuracy on phonemic discrimination

or identification is unrealistic, then it follows that one cannot tell with

confidence which computational approaches to word segmentation are

most promising based solely on their performance on idealized, symbolic

input. The simulations reported here, particularly Simulation 1b, demon-

strate that the Christiansen model can perform quite differently on

canonical transcription-derived input than on probabilistic, audio-derived

input. Since most recent word segmentation models have not been extended

to model the latter type of input, the effects of the acoustic variation and

ambiguity found in natural speech on the performance of these models are

still unknown.

One way to move beyond a reliance on transcriptions alone is to use

automatic speech recognition. While this is not a novel idea, previous work

has used corpora that either were not widely available (e.g. Roy & Pentland,

2002) or not child-directed speech (e.g. de Marcken, 1996). With the Brent

speech corpus, it is now possible for the community to compare on a

common corpus with speech input. It is hoped that many models will be

re-examined with these or similar data as the Christiansen model has been

here.11

Testing the Christiansen model with ASR-based input

Two basic claims of CAS98 are (1) that hidden structure can be learned

implicitly by training a model on an immediate task (such as segmental

prediction) on observable cues, and (2) that the combination of several such

cues allows for better learning of hidden structure (such as word boundaries)

than any single cue. Simulation 1 re-examines the first of these claims,

age – much younger than the age noted here. Even if a considerably later timeframe of
0;7–0;11 were adopted as relevant for models of word segmentation, corresponding to
the stages of word segmentation examined in Christiansen et al. (1998), abilities shown
at age 0;10 can be assumed to be in place and available only for the final stages of an
infant’s development of word segmentation abilities.

[11] The authors are happy to make the input used in these studies available to other
researchers upon request.
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taking into account the fact that even so-called ‘observable’ cues are also

probabilistic and potentially ambiguous. It re-evaluates the Christiansen

model as described in CAS98 with input data derived from the Brent audio

corpus via ‘soft-decision’ automatic phone classification. Simulation 1a

suggests that, when the degree of variability in the audio signal is kept

within certain bounds, the CAS98 model is robust to this subsegmental

variation.However, in Simulation 1b, using a larger andmore variable corpus,

performance was significantly worse in the recognized condition than the

canonical (or citation-form) condition.

These results cast some doubt on the robustness of the Christensen

model’s ability to segment ambiguous input on the basis of segmental cues

alone. Several alternative interpretations of this result are possible. Perhaps

the most obvious is that segmental information is inherently less reliable

than previous word segmentation models (based largely on segmental

information) have suggested, and hence the need to make greater use of other

(e.g. suprasegmental and/or subsegmental) cues is greater than supposed.

This is consistent with research that suggests that non-segmental cues

trump segmental cues for infants aged 0;8 when they conflict (Johnson &

Jusczyk, 2001). It is also consistent with recent findings in the context of a

closely related problem, sentence boundary detection in speech. Liu (2004)

finds that lexical methods of sentence boundary detection are less robust in

highly variable speech than prosodic methods, because the high word error

rate in the ASR obscures the necessary lexical cues. By analogy, if errorful

phone recognition (whether by infant or machine) obscures the cues most

needed for word segmentation, then cues unaffected by the phones (such as

prosodic cues) will naturally be more robust. If this is the case, then it follows

that other word segmentation models that rely exclusively or primarily on

segmental cues should perform significantly worse on the Large Brent

phone probability vectors than on the canonical data with which they have

been tested heretofore. We leave it as an open challenge to the computational

modeling community to test this hypothesis with their favorite segment-

based word segmentation models.

It follows from this hypothesis that combining other, non-segmental cues

should help ameliorate performance. This is CAS98’s second major claim,

and like the first claim, itwas tested onlywith idealized, symbolic input – word

stress as abstracted from dictionary pronunciation guides, not as observed

in the actual speech signal. Simulation 2 re-examines this claim, testing

the contribution of a non-segmental cue loosely analogous to word stress,

but derivable from the audio signal – segmental salience. In a condition

analogous to CAS98’s phon-ubm-stress condition, this simulation combines

probabilistic segmental information together with a measure of confidence

in that information, corresponding to the local hyperarticulation found in

word-initial positions in English. It also shows that multiple cues outperform
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single cues, even when those cues are probabilistic – and derived from the

same source.

However, it must be noted that Simulation 2 only shows that multiple

cues improve performance when they are combined directly as separate

criteria in the decision rule, not when merely combined as multiple catalyst

tasks in an SRN. This could mean that that there are limits to CAS98’s

method of combining cues, or that the evaluation measures that CAS98

happened to use are less appropriate in this case. More specifically, using

‘catalyst ’ tasks or features may be limited by the effectiveness of those

catalyst features in improving the performance of the task measured during

the evaluation – in the case of CAS98, the extrapolation from utterance

boundaries to word boundaries. It appears from Simulation 2a that

the segmental confidence catalyst features, while possibly helpful in

identifying word boundaries in some other way, were not learned effectively

by the network and/or did not contribute to a better generalization

from utterance boundaries to word boundaries. This does not disprove

the usefulness of these cues to the word segmentation task nor invalidate

the Christiansen model per se, but it does suggest the limitation of

evaluating its performance based on a single variable such as the UBM unit

output.

In this case, a more direct combination of heuristics seems more

appropriate and effective than treating all cues as prediction tasks for a

single heuristic. The results of Simulation 2b suggest that it makes more

sense to treat the segmental salience feature as a direct cue to word

BEGINNINGS, rather than as an additional feature for predicting which

utterance endings extrapolate well to word endings.12

Implications and limitations of the findings

The ‘segmental salience as criterion’ condition in Simulation 2b outperforms

the corresponding ‘segmental confidence as catalyst ’ condition in

Simulation 2a. This suggests a segmentation strategy that infants might be

using. Perhaps they are able to detect regions of clear speech, and treat the

beginnings of such regions as likely word boundaries. This possibility will

need to be tested experimentally in humans.

We also need to know more about the corpus used. The types of variation

found in the Small Brent subset clearly correspond to those expected from

normal variation speech such as reduced or casual pronunciations of words,

allophony and dialect differences. By contrast, the Large Brent subset

[12] The same is probably true of lexical stress as well – had CAS98 evaluated lexical stress
as a separate contributor to their method for positing word boundaries during their
evaluation, they likely would have had even larger precision and recall scores.
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includes a much higher proportion of ASR errors, and many of these have

no easily recognizable linguistic explanation. In ASR, such patterns of error

are often due to extraneous factors such as background noise. It would be

worth checking whether these utterances are sufficiently messy and noisy to

give human listeners trouble. It is not obvious how best to do this. This is

an issue which is always likely to arise with simulations of development: the

models inevitably have properties that go beyond what is known about the

target behavior, and, absent further study of the actual process of human

development, it is unclear whether these properties are desirable. We cannot

safely commit to the Large Brent corpus until we know to what extent it

represents the challenges that a learner faces, and we can only know that if

we know enough about these challenges in the first place. It is known that

adult humans are excellent at tolerating noise levels that would leave current

ASR systems floundering, but unknown whether infants also share this

capacity, or, if they do not initially have it, how they acquire it, and with

what timecourse.

Future directions

The simulations described here confirm the general claims of CAS98. They

also point out areas for further investigation and refinement of the model.

Cue integration is an especially rich opportunity. Because each cue will

be error prone to a different degree and in a different way, Christiansen

and Allen’s account needs to be augmented with details of how this happens

and how the cognitive system manages this systematic uncertainty.

This problem is a qualitatively different extension of the original. We have

argued above that other approaches to word segmentation should be

evaluated primarily by testing their performance on input that preserves

the variation naturally present in speech. Based on our results there is no

strong reason to suppose that strategies and learning biases that work

for idealized symbolic input will have the same properties in noisier and

messier environments.

There is great need for deeper understanding of language acquisition

in adverse contexts, including noisy environments (cf. Newman, 2005),

temporary hearing loss (cf., e.g., Polka & Rvachew, 2005), and profound

hearing loss and/or cochlear implants. Using ASR models with different

types of added noise, or even with input derived from a cochlear implant’s

output, could provide models for how children might segment and acquire

language in adverse conditions. A beneficial side effect of this enterprise is

to motivate a more varied set of evaluation techniques for automatic methods

of processing speech. Not only can psychology benefit from ASR technology,

it can also give back suggestions for how to do evaluations that are better

focused on the task than traditional measures of word error rate.
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