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Thermodynamic fluctuations of pressure, density, temperature or entropy {p′, ρ ′, T ′, s′}
in compressible aerodynamic turbulence, although generated by the flow, are
fundamentally related to one another by the thermodynamic equation of state.
Ratios between non-dimensional root-mean-square (r.m.s.) levels (CVp′ := p̄−1 p′rms,
CVρ′ := ρ̄−1 ρ ′rms, CVT ′ := T̄−1 T ′rms), along with all possible 2-moment correlation
coefficients {cρ′T ′, cp′ρ′, cp′T ′, cs′ρ′, cs′T ′, cs′p′}, represent, in the sense of Bradshaw
(Annu. Rev. Fluid Mech., vol. 9, 1977, pp. 33–54), the thermodynamic turbulence
structure of the flow. We use direct numerical simulation (DNS) data, both for plane
channel flow and for sustained homogeneous isotropic turbulence, to determine the
range of validity of the leading-order, formally O(CVρ′), approximations of the exact
relations between thermodynamic turbulence structure parameters. Available DNS
data are mapped on the (CV−1

ρ′ CVT ′, cρ′T ′)-plane and their loci, identified using the
leading-order approximations, highlight specific behaviour for different flows or flow
regions. For the particular case of sustained compressible homogeneous isotropic
turbulence, it is shown that the DNS data collapse onto a single curve corresponding
to cs′T ′ u 0.2 (for air flow), while the approximation cs′p′ u 0 fits reasonably well wall
turbulence DNS data, providing building blocks towards the construction of simple
phenomenological models.

Key words: compressible boundary layers, turbulence theory, turbulent flows

1. Introduction
We study the behaviour of thermodynamic fluctuations in compressible aerodynamic

turbulence. It is well known (Hansen 1958, figure 1, p. 57) that, for temperatures T /
2000 K, the equation of state of air flow can be reasonably approximated by the so-
called perfect-gas equation of state (Liepmann & Roshko 1957, § 1, pp. 1–37)

Z(ρ, T) :=
p

ρRgT
= 1 ⇐⇒ p= ρRgT H⇒


a=

√
γ (T)RgT

γ (T) :=
cp(T)
cv(T)

=
cp(T)

cp(T)− Rg
,

(1.1)

† Email address for correspondence: isabelle.vallet@upmc.fr

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

49
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://orcid.org/0000-0003-3207-5659
http://orcid.org/0000-0003-1286-831X
mailto:isabelle.vallet@upmc.fr
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2018.492&domain=pdf
https://doi.org/10.1017/jfm.2018.492


448 G. A. Gerolymos and I. Vallet

where Rg = const. is the gas constant (Rg = 287.04 m2 s−2 K−1 for air), p is the
pressure, ρ is the density, T is the temperature, Z is the compressibility factor
(Hansen 1958, p. 7), cp(T) and cv(T)= cp(T)− Rg are the specific heats at constant
pressure or volume, with ratio γ (T), and a(T) is the sound speed. At higher
temperatures, dissociation of oxygen is the first phenomenon causing departure
from (1.1), this departure occurring at higher temperatures with increasing pressure
(Hansen 1958, figure 1, p. 57). Throughout the paper, the validity of (1.1) is assumed,
and its implications for thermodynamic fluctuations in compressible turbulent flows
are studied.

Standard decomposition (·) = (·) + (·)′ (Huang, Coleman & Bradshaw 1995, (2.1),
p. 188) in Reynolds (ensemble) averages (·) and fluctuations (·)′ is used in the
paper, for any flow quantity (·). An initial attempt to use Favre (mass-weighted)
decomposition, (·) = (̃·) + (·)′′, for T and s, as is generally the case for transport
equations (Gerolymos & Vallet 2014), was inconclusive, both because it did not
offer any particular conciseness in the relations between thermodynamic fluctuations
and because it presents some mathematical difficulties in defining coefficients of
variation and correlation coefficients in a strict mathematical sense. Furthermore, the
correlation coefficient cρ′T ′ comes out as an important parameter in the present work,
independently of the relative importance of T ′′ =−cρ′T ′ CVρ′ CVT ′ T̄ .

The intensity of the fluctuations of thermodynamic state variables (p, ρ, T)
is quantified by their coefficients of variation (CVρ′ := ρ̄−1ρ ′rms, CVT ′ := T̄−1T ′rms,
CVp′ := p̄−1p′rms) i.e. their relative r.m.s. (root-mean-square) fluctuation levels (§ 2.1).
The perfect-gas equation of state (1.1) implies exact nonlinear relations between
coefficients of variation of the state variables and correlation coefficients between
thermodynamic fluctuations. Such relations are of general validity, independently
of the particular flow that is investigated. Thermodynamic relations based on the
linearized truncation p̄−1 p′u ρ̄−1 ρ ′+ T̄−1 T ′ (Gatski & Bonnet 2009, (3.114), p. 72) of
the exact expansion of (1.1) are widely used (Kovásznay 1953; Taulbee & VanOsdol
1991): this approach studies compressible turbulence in the limiting case of small
relative fluctuation amplitudes, neglecting quadratic or higher-order terms. The point
should be made, nonetheless, that the assumption that the relative r.m.s.-levels, ρ̄−1ρ ′rms
and T̄−1T ′rms, are small, which is used in some parts of the paper, is less stringent
than assuming that the instantaneous levels, ρ̄−1ρ ′ and T̄−1T ′ are invariably small,
as in the standard linearized approximation (Gatski & Bonnet 2009, (3.114), p. 72).
Mahesh, Lele & Moin (1997) use, in the context of the Reynolds analogy assumptions
(Morkovin 1962), the term ‘weak form’ for relations in a r.m.s. sense, as opposed
to ‘strong form’ for instantaneous relations. This point is further is highlighted in
Barre & Bonnet (2015) who distinguish between the SRA (strong Reynolds analogy)
involving relations between variances and covariances and the VSRA (very strong
Reynolds analogy) invoking instantaneous fluctuating relations. The acoustic, vorticity
and entropy modes describing the essential dynamics of compressible turbulence
(Kovásznay 1953) are the mathematical result of linearized analysis. However,
the higher-order (nonlinear) coupling between modes identified from the general
small-perturbation series expansion of the compressible Navier–Stokes equations
(Chu & Kovásznay 1958) is essential in completing this now classic view of gas
dynamic turbulence. Nonetheless, Blaisdell, Mansour & Reynolds (1993) point out
the difficulty of using this approach ‘to study fully nonlinear turbulence for which
the decomposition into such modes cannot be made’.

Often, in studies of compressible turbulence, some representative Mach number
is assumed to quantify compressibility effects (Smits & Dussauge 2006, § 4.5,
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pp. 105–108), e.g. the turbulent Mach number MT (Gatski & Bonnet 2009, (5.1),
p. 118), which is essentially (Blaisdell et al. 1993, p. 454) approximately equal to
M′rms (provided CVT ′ is sufficiently small), or the gradient Mach number Mg (Smits
& Dussauge 2006, p. 107), introduced by Sarkar (1995). The widespread use of
such scalings should be attributed to the deliberate choice of attempting to relate
compressibility effects on turbulence to parameters of the dynamic (velocity ūi + u′i)
field. Correlations based on these local turbulence-representative Mach numbers lack
universality, in the sense that their applicability is flow dependent. On the contrary,
Morkovin’s (1962) ideas on the effects of compressibility on turbulence, directly point
to CVρ′ as the primary indicator, a fact explicitly formulated by Bradshaw (1977).

The idea that thermodynamic turbulence i.e. {p′, ρ ′, T ′, s′} is subordinate to the
dynamic field {ūi, u′i} is central in compressible-turbulence research. There are
numerous examples of this approach, e.g. various parametrizations in terms of MT
(Donzis & Jagannathan 2013) or Mg (Sarkar 1995), but also the various forms of
Reynolds analogy (Huang et al. 1995; Guarini et al. 2000; Zhang et al. 2013) relating
shear-flow temperature transport T ′v′ to momentum transport u′v′. The underlying
assumption of all these approaches is that p′ is essentially a consequence of the
velocity field {ūi, u′i}, through the compressible-flow Poisson equation (Gerolymos,
Sénéchal & Vallet 2013, (A 1e), p. 46). To leading order in CVρ′ (Foysi, Sarkar &
Friedrich 2004), the source terms of this Poisson equation are the basic incompressible
mechanisms (Kim 1989, slow, rapid and Stokes), with variable ρ̄ and T̄ to account
for mean-flow stratification, in the sense of Morkovin’s (1962) hypothesis. Beyond
this regime, when CVρ′ is high, several other source terms in the Poisson equation
for p′, representing compressible-turbulence (ρ ′) mechanisms may become important
(Foysi et al. 2004), including the wave-like term (Pantano & Sarkar 2002): coupling
between p′ and ρ ′ becomes important. Notice also, that the p′-Hessian is governed,
in compressible flow, by a specific transport equation (Suman & Girimaji 2001, (2.9),
p. 292), involving ρ ′-dependent terms.

The particular approach of compressible-turbulence analysis notwithstanding,
thermodynamic fluctuations are interrelated by the equation of state (1.1) and its
basic thermodynamic (Liepmann & Roshko 1957, § 1, pp. 1–37) consequences
(1.1). There are, however, few studies concentrating on these relations. Donzis &
Jagannathan (2013) have investigated in detail the behaviour of thermodynamic
fluctuations {p′, ρ ′, T ′} in sustained compressible homogenous isotropic turbulence
(HIT), including the cρ′T ′ correlation coefficient, skewness, flatness and p.d.f.s
(probability density functions). This study (Donzis & Jagannathan 2013) highlights
the influence of compressibility CVρ′ , p.d.f.s tending to near-Gaussian values for
skewness and flatness with increasing MT implying increasing CVρ′ . Gerolymos &
Vallet (2014) have studied, for compressible plane channel flow, the budgets of the
transport equations for the variances and fluxes of the thermodynamic fluctuations
{p′, ρ ′, T ′, s′}, and provided data for correlation coefficients between thermodynamic
fluctuations (Gerolymos & Vallet 2014, figure 7, p. 723). Wei & Pollard (2011, figure
1, p. 6) suggest that the correlation coefficient cp′ρ′ decreases near the wall with
increasing Mach number, but its level is probably also Re-dependent (Gerolymos
& Vallet 2014). Several authors (Lechner, Sesterhenn & Friedrich 2001; Shadloo,
Hadjadj & Hussain 2015) have used two-dimensional (2-D) scatter plots of relative
amplitudes to gain insight into the correlation between thermodynamic fluctuations.
Duan, Choudhari & Zhang (2016) studied using direct numerical simulation (DNS)
2-point/2-time p′-correlations in a hypersonic M̄e u 5.86 cold-wall boundary layer and
obtained detailed information on the convective velocity of p′ in the boundary layer
and on the acoustic field radiated in the free stream.
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450 G. A. Gerolymos and I. Vallet

In the absence of direct p′ measurements, early shear-flow hot-wire practice
(Kovásznay 1953; Kistler 1959; Morkovin 1962), assumed that in supersonic (M̄e / 5)
boundary layers CVp′�CVρ′ =O(CVT ′), expecting (Morkovin 1962) that CVp′ would
become important only at higher external flow Mach number M̄e. Of course DNS data
(Coleman, Kim & Moser 1995) largely moderate this assumption, since near the wall,
although CVp′ <CVρ′ , they both are still of the same order of magnitude (Gerolymos
& Vallet 2014), while further away from the wall (wake region) CVp′ > CVρ′ .
Laderman & Demetriades (1974) were probably the first to make an approximate
assessment of CVp′ in their analysis of M̄e u 9.4 boundary-layer measurements:
interestingly they assumed that p′ and s′ were uncorrelated (Laderman & Demetriades
1974, cs′p′ = 0; table 2, p. 138). This assumption is approximately verified by
recent wall turbulence DNS data (Gerolymos & Vallet 2014, figure 7, p. 723).
Barre & Bonnet (2015), citing Blaisdell et al. (1993), associate the approximation
cs′p′ = 0 with the decoupling of acoustic and entropy modes in supersonic turbulence
(Kovásznay 1953). On the other hand, Pantano & Sarkar (2002, pp. 351–352) using
the thermodynamic identity Dtp = (∂ρp)s Dtρ + (∂sp)ρ Dts assumed that ps-coupling
becomes dominant as the convective Mach number Mc increases.

Contrary to studies of astrophysical turbulence, where a tentative thermodynamic
model is constructed assuming explicitly isothermal or polytropic behaviour (Banerjee
& Galtier 2014), in aerodynamic (more generally gas dynamic) flows the working
medium thermodynamics is known, and the weakly compressible regime or the quasi-
incompressible limit are the consequences of the characteristic flow Mach number
Mref → 0. In modelling work, Rubesin (1976, (47), p.10) introduces the assumption
of polytropic behaviour of thermodynamic fluctuations, with polytropic exponent nP
which can be considered a modelling parameter (flow dependent). This polytropic
behaviour can also be considered in an r.m.s.-sense (Barre & Bonnet 2015). Notice
that analysis of plane-mixing-layer DNS data at convective Mach number Mc = 1
clearly indicate that free shear turbulence is not polytropic (Barre & Bonnet 2015,
figure 13, p. 331).

The above cited references explicitly study thermodynamic fluctuations and their
correlations. We do not include here many other studies on the dynamic field in
compressible turbulence, which are reviewed elsewhere (Lele 1994; Guarini et al.
2000; Duan & Martín 2011; Lagha et al. 2011; Zhang et al. 2013; Gerolymos
& Vallet 2014; Modesti & Pirozzoli 2016). Phenomenological models such as
eddy-shocklets (Lee, Lele & Moin 1991), pseudo-sound (Ristorcelli 1997) and
compressibility damping of the velocity/pressure-gradient correlation (Sarkar 1995;
Pantano & Sarkar 2002) have evolved to explain the effects of compressibility on
turbulence dynamics.

The paper focuses on the relations between thermodynamic fluctuations {p′, ρ ′,T ′, s′}
implied by (1.1). Compressibility CVρ′ principally controls the level of thermodynamic
fluctuations {CVp′, CVρ′, CVT ′}. On the other hand, the set of ratios of these relative
levels, along with all possible 2-moment correlation coefficients

TTS :=
{

CVT ′

CVρ′
,

CVp′

CVρ′
,

s′rms

Rg CVρ′
, cρ′T ′, cp′ρ′, cp′T ′, cs′ρ′, cs′T ′, cs′p′

}
(1.2)

defines, in the sense of Bradshaw (1977), the thermodynamic turbulence structure
of the flow. The analysis of DNS data will show that, although weakly (slowly)
dependent on the characteristic Mach number of the flow, the set TTS (1.2) is rather
the footprint of the specific type of flow. Furthermore, for weakly compressible
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turbulence (CVρ′ � 1) the knowledge of any couple of elements of TTS suffices to
determine to O(CVρ′) all the other elements. We use the (CV−1

ρ′ CVT ′, cρ′T ′)-plane to
map the behaviour of thermodynamic turbulence of various flows.

In § 2 we introduce notation, summarize exact relations and expansions of various
terms in the set TTS (1.2). In (§ 3) we examine the relative magnitude of the
coefficients of variation of thermodynamic variables (CVρ′ , CVT ′ , CVp′) obtained
from DNS both of sustained solenoidally forced compressible homogeneous isotropic
turbulence (§ 3.1) and of compressible turbulent plane channel flow (§ 3.2). In § 4
we study approximate (leading-order) relations between correlation coefficients and
coefficients of variation, at the limit of weakly compressible turbulence, defined by
the condition CVρ′ � 1. These approximations and their leading error are evaluated
against DNS data (§ 5) to assess their range of validity and robustness. In § 6 we map
compressible turbulence on a plane defined by two structure parameters, revealing
consistent behaviour of DNS data for different types of flow or regions of flow,
which is identified using the leading-order relations (§ 4). In § 7 we use this observed
behaviour of thermodynamic turbulence to develop phenomenological approximations
of the elements of the set TTS (1.2) specific to the flows studied in § 6. Finally,
in § 8 we summarize the main conclusions of the present work and discuss future
perspectives.

2. Thermodynamic fluctuations and correlations
The fluctuating form of the equation of state (§ 2.3) implies exact relations between

the relative r.m.s. magnitudes (§ 2.1) and the correlation coefficients (§ 2.2) of the
thermodynamic fluctuations {p′, ρ ′, T ′}. Entropy can be expanded in a power series
of {p′, ρ ′, T ′} (§ 2.4).

2.1. Coefficients of variation
The coefficient of variation of a flow quantity is (Pham 2006, (48.1), p. 906) the r.m.s.
of the relative fluctuation, i.e.

CV(·)′ :=

√
(·)′2

(·)
=

[
(·)′

(·)

]
rms

(2.1a)

so that, in particular,

CVρ′ :=

√
ρ ′2

ρ̄
=
ρ ′rms

ρ̄
; CVT ′ :=

√
T ′2

T̄
=

T ′rms

T̄
; CVp′ :=

√
p′2

p̄
=

p′rms

p̄
. (2.1b−d)

Although definitions (2.1) are not in general use, their introduction greatly simplifies
notation in the equations developed in the paper. An important observation from
available compressible DNS data (Donzis & Jagannathan 2013; Gerolymos & Vallet
2014; Jagannathan & Donzis 2016) is that, generally,

O
( √

T ′2

T̄︸ ︷︷ ︸
CVT ′

)
=O

( √
ρ ′2

ρ̄︸ ︷︷ ︸
CVρ′

)
=O

( √p′2

p̄︸ ︷︷ ︸
CVp′

)
=O

( √
s′2

Rg︸ ︷︷ ︸
R−1

g s′rms

)
. (2.2)
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The last term in (2.2) represents the non-dimensional level of entropy fluctuations
(§ 2.5), which was shown in Gerolymos & Vallet (2014, figure 5, p. 720) to
be of the same order of magnitude and to follow a similar M̄CL-dependency as
{CVp′,CVρ′,CVT ′}.

Condition (2.2) is central in the asymptotic expansions worked out in the paper. In
weakly compressible turbulence, the defining assumption CVρ′ � 1 (Bradshaw 1977)
is directly extended to the other thermodynamic variables by (2.2).

2.2. Correlation coefficients
The correlation coefficient (CC) between any 2 flow quantities [·] and (·) is defined
by

c(·)′[·]′ :=
(·)′[·]′√
(·)′2
√
[·]′2
∈ [−1, 1]. (2.3a)

These correlation coefficients pertain to the 2-momenta between fluctuating quantities.
Definition (2.3a) can be extended to higher-order correlations as

c(·)′···[·]′ :=
(·)′ · · · [·]′√
(·)′2 · · ·

√
[·]′2

. (2.3b)

However, in the multiple correlation case, the correlation coefficient (nCC, n> 3) is
not limited in a particular interval, unlike the 2-moment case (2.3a). Notice that by
(2.3b) skewness and flatness are

S(·)′ :=
(.)′3[√
(.)′2
]3

(2.3b)
= c(·)′(·)′(·)′; F(·)′ :=

(.)′4[√
(.)′2
]4

(2.3b)
= c(·)′(·)′(·)′(·)′ . (2.3c,d)

2.3. Fluctuating equation of state and correlations
The basic thermodynamic variables (p, ρ, T) are related by the equation of state (1.1),
implying

(1.1) (2.3)
H⇒


p̄= ρ̄RgT̄(1+ cρ′T ′ CVρ′ CVT ′)

(1+ cρ′T ′ CVρ′ CVT ′)
p′

p̄
=
ρ ′

ρ̄
+

T ′

T̄
+
ρ ′T ′

ρ̄T̄
− cρ′T ′ CVρ′ CVT ′ .

(2.4)

Often, approximations for weakly compressible turbulence are constructed directly
from (2.4), by dropping all nonlinear terms (i.e. ρ ′T ′ and CVρ′ CVT ′). It is nonetheless
useful to consider a more systematic approach based on exact relations between
correlation coefficients. Multiplying (2.4) by p′, ρ ′ or T ′, we obtain, upon averaging
the exact relations,

(1+ cρ′T ′ CVρ′ CVT ′)CVp′
(2.4), (2.3)
= cp′ρ′ CVρ′ + cp′T ′ CVT ′ + cp′ρ′T ′ CVρ′ CVT ′ (2.5a)

(1+ cρ′T ′ CVρ′ CVT ′)cp′ρ′CVp′
(2.4), (2.3)
= CVρ′ + cρ′T ′ CVT ′ + cρ′ρ′T ′ CVρ′ CVT ′ (2.5b)

(1+ cρ′T ′ CVρ′ CVT ′)cp′T ′CVp′
(2.4), (2.3)
= cρ′T ′ CVρ′ +CVT ′ + cρ′T ′T ′ CVρ′ CVT ′ . (2.5c)
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2.4. Entropy fluctuations
For any bivariate substance, entropy, as a state variable, is defined (Liepmann &
Roshko 1957, p. 338) by the differential equation

Tds= dh−
dp
ρ

(1.1)
H⇒


ds
Rg
=

cp(T)
Rg

dT
T
−

dp
p

=
cv(T)

Rg

dT
T
−

dρ
ρ
.

(2.6)

Integrating (2.6) between the reference states ( p̄, T̄) or (ρ̄, T̄) and the corresponding
instantaneous turbulent flow conditions (p,T)= (p̄+p′, T̄+T ′) or (ρ,T)= (ρ̄+ρ ′, T̄+
T ′), respectively, readily yields

s− s( p̄,T̄)

Rg

(2.6)
=

1
Rg

∫ T̄+T ′

T̄

cp(T∗)
T∗

dT∗ − ln
(

1+
p′

p̄

)
, (2.7a)

s− s(ρ̄,T̄)
Rg

(2.6)
=

1
Rg

∫ T̄+T ′

T̄

cv(T∗)
T∗

dT∗ − ln
(

1+
ρ ′

ρ̄

)
, (2.7b)

where we note s( p̄,T̄) and s(ρ̄,T̄) the entropy at the corresponding states, which are to
O(CV2

ρ′) approximately equal to s̄ (Lele 1994, p. 224). Relations (2.7) can be easily
expanded in powers series of relative fluctuation amplitudes, and replacing s= s̄+ s′
we obtain the expansions for the entropy fluctuations, truncated after the quadratic
terms

s′

Rg

(2.7a)
∼

γ̆

γ̆ − 1

(
T ′

T̄
−

1
2

(
T ′

T̄

)2
)
−

(
p′

p̄
−

1
2

(
p′

p̄

)2
)
+

1
2

(
T ′

T̄

)2 T̄
Rg

dcp

dT

∣∣∣∣
T̄

−
s̄− s( p̄,T̄)

Rg
+O

((
p′

p̄

)3

,

(
T ′

T̄

)3 )
(2.8a)

(2.7b)
∼

1
γ̆ − 1

(
T ′

T̄
−

1
2

(
T ′

T̄

)2
)
−

(
ρ ′

ρ̄
−

1
2

(
ρ ′

ρ̄

)2
)
+

1
2

(
T ′

T̄

)2 T̄
Rg

dcp

dT

∣∣∣∣
T̄

−
s̄− s(ρ̄,T̄)

Rg
+O

((
ρ ′

ρ̄

)3

,

(
T ′

T̄

)3 )
, (2.8b)

where we defined for brevity

γ̆ := γ (T̄) (2.8c)

following the convention that ·̆ is a function of averaged quantities which cannot be
identified with a Reynolds or Favre average (Gerolymos & Vallet 1996, 2014). Notice
the presence of the constants s̄− s( p̄,T̄) 6= 0 6= s̄− s(ρ̄,T̄), which are O(CV2

ρ′) (Lele 1994,
p. 224), and are directly related to the nonlinearity of (2.7). The influence of variable
cp(T)=Rg− cv(T) (1.1) also induces a quadratic O(CV2

ρ′) term in the expressions for
s′ (2.8). Therefore, leading-order approximations related to s′ are valid independently
of the variability of cp(T), and depend only on the local value of γ (T̄) (1.1). Notice
that by (1.1) dTcp = dTcv.
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2.5. Entropy variance and correlations
It is straightforward from (2.8) to calculate expansions for the entropy variance s′rms
and for correlation coefficients containing s′. Squaring and averaging (2.8b) and
introducing definitions (2.1), (2.3) yields after simple calculations using (4.4), (A1)(

s′rms

Rg

)2
(2.8b), (4.4), (A 1),(2.2)

∼
γ̆

(γ̆ − 1)2
CV2

T ′ +
γ̆

γ̆ − 1
CV2

ρ′ −
1

γ̆ − 1
CV2

p′

−
γ̆

(γ̆ − 1)2
ST ′ CV3

T ′ −
γ̆

γ̆ − 1
Sρ′ CV3

ρ′ +
1

γ̆ − 1
Sp′ CV3

p′

+ cs′T ′T ′
s′rms

Rg
CV2

T ′
T̄
Rg

dcp

dT

∣∣∣∣
T̄

+O(CV4
ρ′). (2.9)

Notice that (2.9) implies that the correct non-dimensional expression for the
entropy variance is R−1

g s′rms and is of the same order of magnitude as the coefficients
of variation of the basic thermodynamic quantities. The reason why R−1

g s′rms should
be considered in the order-of-magnitude relation (2.2) instead of CVs′ is because, by
definition (2.6), entropy is defined with respect to an arbitrary reference state, so that
the precise value of s̄ that appears in the definition of CVs′ (2.1) has no physical
significance: only entropy differences have physical meaning.

3. DNS data
The expansions and approximations developed in the paper are assessed against

DNS data from two different aerodynamic configurations, viz sustained compressible
HIT (Donzis & Jagannathan 2013, isotropic homogeneous turbulence) and fully
developed compressible turbulent plane channel flow (Gerolymos & Vallet 2014). In
both databases, the coefficient of variation of density CVρ′ (2.1b–d) increases from
very low values (which approach asymptotically the quasi-incompressible limit) to
maximum values as high as 0.16 (figure 1). In both cases CVρ′ varies with the
representative Mach number, viz the turbulent Mach number MT in HIT (3.1a) or the
centreline Mach number M̄CL in channel flow (3.2a).

Donzis & Jagannathan (2013, figure 2, p. 227) have estimated that in HIT CVρ′

increases as M2.2
T , the exponent being a best fit of the data. A slightly lower exponent

of 2.1 also fits well the DNS data (figure 1). The channel DNS data (Gerolymos &
Vallet 2014) indicate that CVρ′ varies as M̄2.1

CL (figure 1). The channel data fit very
closely the M̄2.1

CL variation both at the maximum near-wall peak and at the channel
centreline, but exhibit some scatter at the wall. This is attributed to a Reτ ?-influence,
associated with the strictly isothermal wall boundary condition, which implies
(Gerolymos & Vallet 2014, (3.5), p. 719) [p′rms]w= a2

w[ρ
′

rms]w⇐⇒[CVp′]w= γw[CVρ′]w;
therefore, [CVρ′]w follows the well known from incompressible channel flow (Tsuji
et al. 2007) Reτ ?-dependence of [p′rms]

+

w .
As a conclusion, aerodynamic (γ = 1.4) DNS data indicate that CVρ′ values for

a given configuration, vary, at constant Re-number, proportionally to a power of the
representative Mach number, with exponent ∈ [2.1, 2.2], i.e. slightly higher than 2.

3.1. Sustained compressible HIT
Donzis & Jagannathan (2013) and Jagannathan & Donzis (2016) have performed DNS
of sustained compressible HIT with solenoidal forcing at the large scales (Eswaran
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FIGURE 1. (Colour online) Log scale plots of DNS data, for the evolution of CVρ′

versus MT ∈ [0.1, 0.6] in sustained homogeneous isotropic turbulence (HIT) simulations
(Donzis & Jagannathan 2013; D. A. Donzis, 2016 Compressible HIT DNS data, Private
communication, donzis@tamu.edu; Jagannathan & Donzis 2016), and for the evolution
of CVρ′ versus M̄CL ∈ [0.3, 2.5] in fully developed compressible turbulent plane channel
(TPC) flow (Gerolymos & Vallet 2014) at three different locations across the channel (wall,
centreline and maximum value).

& Pope 1988). The flow is modelled by the compressible Navier–Stokes equations
(Jagannathan & Donzis 2016, (3.1–3.5), p. 673), without bulk viscosity µb = 0
(Gerolymos & Vallet 2014, (2.1e), p. 706), a power law for the dynamic viscosity
µ(T) ∝

√
T and constant Prandtl number Pr = 0.72 (Donzis & Jagannathan 2013, p.

224). The working medium follows the equation of state (1.1) with a constant ratio
of specific heats (1.1) γ = 1.4 (Donzis & Jagannathan 2013, figure 7, p. 234). The
representative parameters in this configuration are the turbulent Mach number MT
(Jagannathan & Donzis 2016, p. 670) and the Taylor-microscale Reynolds number
Reλ (Jagannathan & Donzis 2016, p. 671)

MT :=

√
u′iu′i
ā
=

u′rms

√
3

ā
, (3.1a)

Reλ :=
ρ̄
√

u′rms λ‖

µ̄
; λ‖ :=

√√√√√√ u′2(
∂u′

∂x

)2
. (3.1b,c)

These data were made available with a precision of 4 significant digits (D. A. Donzis,
2016, Private communication, lower precision was found inadequate for use in the
approximate relations developed in the paper), and cover the range Reλ ∈ [35, 430]
and MT ∈ [0.1, 0.6], with a corresponding range of CVρ′ ∈ [0.004, 0.157] (Donzis
& Jagannathan 2013, table 1, p. 225). The ratios CV−1

ρ′ CVp′ and CV−1
ρ′ CVT ′ vary

slightly with MT and Reλ (figure 2). This dependency notwithstanding, in this flow,
relative variations of temperature are weaker than relative variations of density
(0.35 CVρ′ / CVT ′ / 0.4 CVρ′ ; figure 2) whereas relative variations of pressure are
stronger (1.3 CVρ′ / CVp′ / 1.4 CVρ′ ; figure 2).
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FIGURE 2. (Colour online) Sustained homogeneous isotropic turbulence (HIT) DNS data
(Donzis & Jagannathan 2013; D. A. Donzis, 2016, Private communication; Jagannathan &
Donzis 2016) for the magnitude of the ratios of the coefficients of variation of temperature
CVT ′ and pressure CVp′ to the coefficient of variation of density CVρ′ , as a function of
the turbulent Mach number MT ∈ [0.1, 0.6], for different values of Reλ ∈ [35, 430].

3.2. Compressible turbulent plane channel flow
The DNS data for compressible turbulent plane channel flow were obtained
(Gerolymos & Vallet 2014) using a high-order solver (Gerolymos, Sénéchal &
Vallet 2010). The flow is modelled by the compressible Navier–Stokes equations
(Gerolymos & Vallet 2014, (2.1), p. 706), without bulk viscosity µb = 0 (Gerolymos
& Vallet 2014, (2.1e), p. 706). The working medium is air, following the equation of
state (1.1) with a constant ratio of specific heats (1.1) γ = 1.4, and Sutherland-like
laws for the dynamic viscosity µ(T) and heat conductivity λ(T) (Gerolymos & Vallet
2014, p. 706). The data used in the paper include both data from these computations
(Gerolymos & Vallet 2014) and new unpublished data (table 1). The relevant Mach
number is the mean centreline Mach number (Gerolymos & Vallet 2014, figure 1, p.
713)

M̄CL :=

(
uCL

aCL

)
, (3.2a)

where u is the streamwise velocity, a is the sound speed and (·)CL denotes values at
the centreline y= δ. Following Huang et al. (1995) we use mixed wall-local scaling
(HCB-scaling), based on skin friction τ̄w along with the local mean density ρ̄(y)
and mean viscosity µ̄(y), for the non-dimensional wall distance and corresponding
Reynolds number

y? :=
ρ̄(y)

√
τ̄w

ρ̄(y)
(y− yw)

µ̄(y)
=

√
ρ̄+(y)
µ̄+(y)

y+; Reτ ? := δ? =

√
ρ̄+CL

µ̄+CL
δ+, (3.2b,c)

where (·)w denotes wall values and

y+ :=
ρ̄w

√
τ̄w

ρ̄w
(y− yw)

µ̄w
; Reτw := δ

+
; ρ̄+ :=

ρ̄

ρ̄w
; µ̄+ :=

µ̄

µ̄w
(3.2d−g)

are the usual incompressible-flow inner-scaled variables (Gerolymos & Vallet 2014,
(3.2), p. 714).
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Medium box (MB) Lx × Ly × Lz = 8πδ× 2δ× 4πδ

Reτ ? M̄CL Reτw Nx ×Ny ×Nz 1x+ 1y+w Ny+610 1y+CL 1z+ 1t+ =1t+s t+OBS

78 1.48 115 201× 121× 321 14.5 0.18 23 3.4 4.5 0.009217 801
106 0.79 117 257× 129× 385 11.5 0.19 22 3.0 3.8 0.013862 2492
113 1.51 169 257× 129× 385 16.6 0.22 21 4.7 5.5 0.015085 1463

98 2.00 219 401× 169× 557 13.8 0.18 24 4.4 4.9 0.010975 1231
112 2.48 493 801× 241× 1201 15.5 0.19 21 5.4 5.2 0.007226 380
177 0.35 180 257× 129× 385 17.6 0.23 20 5.0 5.9 0.006564 869
169 0.79 187 421× 149× 801 11.2 0.19 22 4.1 2.9 0.012942 1058
151 1.50 227 345× 137× 529 16.6 0.23 19 5.6 5.4 0.016696 1010
341 1.52 521 801× 241× 1201 16.4 0.20 21 5.7 5.5 0.014355 894

TABLE 1. Parameters of the DNS computations (Lx, Ly, Lz (Nx, Ny, Nz) are the dimensions
(number of grid points) of the computational domain (x= homogeneous streamwise, y=
wall-normal, z = homogeneous spanwise direction); δ is the channel half-height; (·)+
denotes wall units; 1x+, 1y+w , 1y+CL, 1z+ are the mesh sizes; (·)w denotes wall and (·)CL

centreline values; Ny+610 is the number of grid points between the wall and y+=10; M̄CL is
the centreline Mach number (3.2a); Reτ ? :=

√
ρ̄CL τ̄wδµ̄

−1
CL is the friction Reynolds number

in HCB-scaling (3.2b,c); Reτw :=
√
ρ̄w τ̄wδµ̄

−1
w is the friction Reynolds number (3.2d–g);

1t+ is the computational time step; t+OBS is the observation period over which single-point
statistics were computed; 1t+s is the sampling time step for the single-point statistics).

The coefficients of variation {CVp′,CVρ′,CVT ′} are of the same order of magnitude
everywhere in the channel (figure 3), and for all (Reτ ?, M̄CL) that were investigated,
even at the low Mach number limit. Notice that previously published results
(Gerolymos & Vallet 2014, figure 6, p. 721) indicate that the correlation coefficients
between thermodynamic variables plotted against y? (3.2b,c) show little dependence on
M̄CL, except perhaps very near the wall (y? < 10). Nonetheless, in the neighbourhood
of the near-wall CVρ′ peak (Gerolymos & Vallet 2014, 7 / y∗ / 20, figure 5, p.
720), CVρ′ u 5CVp′ (figure 3), so that the assumption O(CVρ′) = O(CVp′) (2.2) is
stretched to the limit. On the contrary, O(CVρ′) = O(CVT ′) is satisfied practically
everywhere, except very near the wall (y? / 1; figure 3) where the strictly isothermal
wall boundary condition enforces [CVT ′]w = 0 at the wall (y∗ = 0). The question is
naturally raised, how a less stringent isothermal-in-the-mean wall boundary condition,
where T ′w 6= 0 but instead only T̄w= const. in the mean is enforced, would modify the
viscous sublayer thermodynamic turbulence, and this will be the subject of a future
study. Nonetheless, DNS data (Gerolymos & Vallet 2014, figure 5, p. 720) suggest
that the boundary condition effect is confined very near the wall (y∗ / 1), and this is
further confirmed in § 6.

3.3. Shear turbulence is not polytropic
Near the centreline, where the wall influence is weak, channel DNS data (figure 3)
indicate that the relative magnitudes of the coefficients of variation {CVρ′,CVT ′,CVp′}

approach those observed in the HIT DNS data (figure 2), the more so as Reτ ? = δ?
(3.2b,c) increases. On the other hand, close to the wall (y?/ 100) there are substantial
differences. Whereas in HIT (figure 2) and near the centreline in channel flow
(figure 3), CVp′ >CVρ′ >CVT ′ , near the solid wall CVρ′ u CVT ′ >CVp′ (5 / y? / 50;
figure 3). This difference is easily explained by the approximate leading-order relation
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FIGURE 3. (Colour online) Compressible fully developed turbulent plane channel (TPC)
flow DNS data (Gerolymos & Vallet 2014) for the magnitude of the ratios of the
coefficients of variation of temperature CVT ′ and pressure CVp′ to the coefficient of
variation of density CVρ′ , as a function of the HCB-scaled wall distance y? (3.2b,c), for
different values of Reτ ? ∈ [78, 341] and M̄CL ∈ [0.3, 2.5] (Gerolymos & Vallet 2014, the
shaded region corresponds to values CVρ′ > 2CVp′ observed in the neighbourhood of the
CVρ′-peak; figure 5, p. 720).

(Donzis & Jagannathan 2013, (3.4), p. 226) CV2
p′ u CV2

ρ′ + CV2
T ′ + 2 cρ′T ′ CVρ′ CVT ′

(4.4). In HIT (Donzis & Jagannathan 2013, table 1, p. 225) and in channel flow near
the centreline (Gerolymos & Vallet 2014, figure 6, p. 721), the correlation coefficient
(2.3a) cρ′T ′ > 0 H⇒ CV2

p′ > CV2
ρ′ + CV2

T ′ , whereas near the solid wall (Gerolymos &
Vallet 2014, y? / 100, figure 6, p. 721) cρ′T ′ < 0 H⇒ CV2

p′ <CV2
ρ′ +CV2

T ′ .
The difference in behaviour between HIT and near-wall turbulence is further

highlighted by considering polytropic exponents, in line with Donzis & Jagannathan
(2013, figure 7, p. 234). If turbulence were polytropic (p ∝ ρnP), then, to leading
order, specific relations should hold between CVs (Barre & Bonnet 2015, p. 331)

p∝ ρnP (1.1)
H⇒ nP u

CVp′

CVρ′︸ ︷︷ ︸
nPp′ρ′

u 1+
CVT ′

CVρ′︸ ︷︷ ︸
nPρ′T′ > 1

. (3.3)

Notice that expression (3.3) which is used in compressible turbulence, both for
instantaneous fluctuations (Rubesin 1976) or on the average (Blaisdell et al. 1993) is
a leading-order approximation of a polytropic process. In practice, nPp′ρ′

and nPρ′T′ are
never equal (3.3). Gatski & Bonnet (2009, p. 74) suggest considering nPp′ρ′

and nPρ′T′
(3.3) as independent parameters, but still nPp′ρ′

6= nPρ′T′ implies that turbulence does
not follow a polytropic behaviour.

In HIT both expressions (3.3) are reasonably consistent one with another (figure 4),
and although the process is not isentropic the departure from the isentropic value
γ = 1.4 is not very large. On the contrary, wall turbulence is very far from
isentropic (figure 4). Furthermore, for y? / 100, the polytropic exponent estimate
nP(CVρ′,CVT ′)u nPρ′T′ > 1 is substantially higher than the isentropic value (figure 4),
whereas the polytropic exponent estimate nP(CVp′, CVρ′) u nPp′ρ′

is substantially
lower than the isentropic value (figure 4). Therefore, not only is wall turbulence
not isentropic, but it cannot be approximated by a polytropic process, which would
require the two estimates of nP (3.3) to be approximately the same. It is not always
recognized that the equality nPp′ρ′

u nPρ′T′ can only be achieved under very specific
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FIGURE 4. (Colour online) Estimates nP(CVp′, CVρ′)u nPp′ρ′
and nP(CVρ′, CVT ′)u nPρ′T′

by (3.3) of an eventual representative polytropic exponent, from DNS data of sustained
homogeneous isotropic turbulence (HIT) simulations (Donzis & Jagannathan 2013; D. A.
Donzis, 2016, Private communication; Jagannathan & Donzis 2016) versus the turbulent
Mach number MT ∈ [0.1, 0.6] and for compressible fully developed turbulent plane channel
(TPC) flow (Gerolymos & Vallet 2014) versus the HCB-scaled wall distance y? (3.2b,c)
(for different values of Reτ ? ∈ [78, 341] and M̄CL ∈ [0.3, 2.5]).

conditions. To leading order, straightforward calculation of the difference n2
Pρ′T′
− n2

Pp′ρ′

(3.3), readily yields, using (4.4),

(3.3), (4.4) H⇒ n2
Pρ′T′
− n2

Pp′ρ′
u 2(1− cρ′T ′)

CVT ′

CVρ′

(2.3b)
> 0. (3.4)

Therefore, turbulence can only be approximated by a polytropic process iff cρ′T ′ u
+1, since the alternative condition CVT ′�CVρ′ contradicts conjecture (2.2) and DNS
data (figures 2 and 3). Consistent with (3.4), the observed non-polytropic behaviour of
thermodynamic fluctuations (figure 4) is explained by the cρ′T ′-data. In HIT (Donzis
& Jagannathan 2013, table 1, p. 225) 0.6 / cρ′T ′ / 1 (approaching 1 with increasing
MT): the 2 polytropic exponent estimates are close one to another, and their difference
decreases with increasing MT (figure 4). In channel flow (Gerolymos & Vallet 2014,
figure 6, p. 721) cρ′T ′ <0∀y?/100 (it might approach 1 at high Reτ ? at the centreline):
the 2 polytropic exponent estimates are largely different, except when approaching the
centreline for the higher Reτ ? (figure 4). This discussion highlights the importance of
the correlation coefficient cρ′T ′ on thermodynamic turbulence structure, and is further
investigated in § 6.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

49
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.492


460 G. A. Gerolymos and I. Vallet

4. Leading-order approximations of correlation coefficients

To obtain estimates of approximation errors, we built approximations by asymp-
totically expanding the exact relations (2.5), (2.9).

4.1. Approximation of correlation coefficients {cp′ρ′, cp′T ′, cρ′T ′}

Using again the order-of-magnitude relation (2.2), the system (2.5) is readily expanded
as

CVp′ − cp′ρ′ CVρ′ − cp′T ′ CVT ′
(2.5a)
∼ cp′ρ′T ′ CVρ′ CVT ′ +O(CVρ′CVT ′CVp′), (4.1a)

cp′ρ′ CVp′ −CVρ′ − cρ′T ′ CVT ′
(2.5b)
∼ cρ′ρ′T ′ CVρ′ CVT ′ +O(CVρ′CVT ′CVp′), (4.1b)

cp′T ′ CVp′ − cρ′T ′ CVρ′ −CVT ′
(2.5c)
∼ cρ′T ′T ′ CVρ′ CVT ′ +O(CVρ′CVT ′CVp′), (4.1c)

where the right-hand side terms represent the leading error of the approximation with
the higher-order terms being by (2.2) O(CVρ′CVT ′CVp′)=O(CV3

ρ′). The linear system
(4.1) for the 2-moment correlation coefficients, can be readily solved to obtain

cp′ρ′
(4.1), (A 1a)
∼ +

1
2

CVp′

CVρ′
+

1
2

CVρ′

CVp′
−

1
2

CVT ′

CVp′

CVT ′

CVρ′
− cρ′T ′T ′

CV2
T ′

CVp′
+O

(
CV2

ρ′

)
, (4.2a)

cp′T ′
(4.1), (A 1a)
∼ +

1
2

CVT ′

CVp′
+

1
2

CVp′

CVT ′
−

1
2

CVρ′

CVp′

CVρ′

CVT ′
− cρ′ρ′T ′

CV2
ρ′

CVp′
+O

(
CV2

ρ′

)
, (4.2b)

cρ′T ′
(4.1), (A 1a)
∼ −

1
2

CVρ′

CVT ′
−

1
2

CVT ′

CVρ′
+

1
2

CVp′

CVρ′

CVp′

CVT ′
− cp′ρ′T ′ CVp′ +O

(
CV2

ρ′

)
, (4.2c)

where (A 1a) was used to simplify the expression of the leading terms of the
approximation error. The nonlinear higher-order terms are formally identified as
O(CV3

ρ′) in (4.1) and O
(
CV2

ρ′

)
in (4.2), using (2.2).

Retaining only O(1) terms in (4.2) yields the approximations

cp′ρ′
(4.2a)
u +

1
2

CVp′

CVρ′
+

1
2

CVρ′

CVp′
−

1
2

CVT ′

CVp′

CVT ′

CVρ′
+O

(
CV2

T ′

CVp′

)
, (4.3a)

cp′T ′
(4.2b)
u +

1
2

CVT ′

CVp′
+

1
2

CVp′

CVT ′
−

1
2

CVρ′

CVp′

CVρ′

CVT ′
+O

(
CV2

ρ′

CVp′

)
, (4.3b)

cρ′T ′
(4.2c)
u −

1
2

CVρ′

CVT ′
−

1
2

CVT ′

CVρ′
+

1
2

CVp′

CVρ′

CVp′

CVT ′
+O

(
CVp′

)
. (4.3c)

Notice that (4.3c) is equivalent to the approximate leading-order relation (Donzis &
Jagannathan 2013, (3.4), p. 226)

CV2
p′ u CV2

ρ′ +CV2
T ′ + 2 cρ′T ′ CVρ′ CVT ′ +O(CVp′ CVρ′ CVT ′). (4.4)
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4.2. Approximation of entropy variance and correlations

Expansion (2.9) can be readily truncated to yield the approximations

s′rms

Rg

(2.9), (2.2)
u

√
γ̆

(γ̆ − 1)2
CV2

T ′ +
γ̆

γ̆ − 1
CV2

ρ′ −
1

γ̆ − 1
CV2

p′

+O

(
CV2

T ′,
max

(
CV3

ρ′,CV3
T ′,CV3

p′
)

R−1
g s′rms

)
(4.5a)

(4.4), (2.2)
u

√
1

(γ̆ − 1)2
CV2

T ′ +CV2
ρ′ −

2
γ̆ − 1

cρ′T ′ CVρ′ CVT ′

+O

(
CV2

T ′,
max

(
CV3

ρ′,CV3
T ′,CVρ′ CVT ′ CVp′

)
R−1

g s′rms

)
. (4.5b)

The expression inside the radical in (4.5b) is always >0 because
∣∣cρ′T ′∣∣ 6 1 (2.3a).

The leading terms O(CV3
ρ′, CV3

T ′, CV3
p′, CV2

T ′ R
−1
g s′rms) of the approximation error

of R−2
g s′2rms (2.9), do not contain ratios but only positive powers of coefficients of

variation, in the same way as the cρ′T ′ approximation (4.2c), and therefore (2.9), is
expected to be quite reliable. This remark obviously applies to the approximation
(4.5), where the appearance of s′rms at the denominator of the error is formal, by the
expansion of

√
· of (2.9).

Multiplying (2.8b) by ρ ′ or T ′ yields, upon averaging, using definitions (2.1), (2.3)
and truncating to leading order

cs′ρ′
s′rms

Rg

(2.8b)
∼

1
γ̆ − 1

cρ′T ′ CVT ′ −CVρ′ +O
(
CV2

ρ′,CV2
T ′
)
, (4.6a)

cs′T ′
s′rms

Rg

(2.8b)
∼

1
γ̆ − 1

CVT ′ − cρ′T ′ CVρ′ +O
(
CV2

ρ′,CV2
T ′
)
. (4.6b)

Multiplying (2.4) by s′ yields, upon averaging, using definitions (2.1), (2.3) and
truncating to leading order

cs′p′ CVp′
(2.4)
∼ cs′ρ′ CVρ′ + cs′T ′ CVT ′ +O

(
CVρ′ CVT ′

)
(4.6c)

(4.6a), (4.6b)
∼

1
R−1

g s′rms

(
−CV2

ρ′ +
2− γ̆
γ̆ − 1

cρ′T ′ CVρ′ CVT ′ +
1

γ̆ − 1
CV2

T ′

)
+O

(
CVρ′ CVT ′,

max
(
CV3

ρ′,CV3
T ′
)

R−1
g s′rms

)
. (4.6d)

Using the leading-order approximations (4.3c) for cρ′T ′ and (4.5b) in (4.6) yields the
leading-order approximations
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cs′ρ′
(4.6a), (4.5), (4.2c)

u
1
2

−
2γ̆ − 1
γ̆ − 1

CV2
ρ′ −

1
γ̆ − 1

CV2
T ′ +

1
γ̆ − 1

CV2
p′

CVρ′

√
γ̆

(γ̆ − 1)2
CV2

T ′ +
γ̆

γ̆ − 1
CV2

ρ′ −
1

γ̆ − 1
CV2

p′

+O

(
max

(
CV2

ρ′,CV2
T ′,CVT ′ CVp′

)
R−1

g s′rms

)
, (4.7a)

cs′T ′
(4.6b), (4.5), (4.2c)

u
1
2

CV2
ρ′ +

γ̆ + 1
γ̆ − 1

CV2
T ′ −CV2

p′

CVT ′

√
γ̆

(γ̆ − 1)2
CV2

T ′ +
γ̆

γ̆ − 1
CV2

ρ′ −
1

γ̆ − 1
CV2

p′

+O

(
max

(
CV2

ρ′,CV2
T ′,CVρ′ CVp′

)
R−1

g s′rms

)
, (4.7b)

cs′p′
(4.6c), (4.7a), (4.7b)

u
1
2

−
γ̆

γ̆ − 1
CV2

ρ′ +
γ̆

γ̆ − 1
CV2

T ′ +
2− γ̆
γ̆ − 1

CV2
p′

CVp′

√
γ̆

(γ̆ − 1)2
CV2

T ′ +
γ̆

γ̆ − 1
CV2

ρ′ −
1

γ̆ − 1
CV2

p′

+O

(
CVρ′ CVT ′

CVp′
,

max
(
CV3

ρ′,CV3
T ′
)

CVp′ R−1
g s′rms

)
(4.7c)

for {cs′ρ′, cs′T ′, cs′p′} in terms of the coefficients of variation {CVρ′,CVT ′,CVp′}, which
of course include γ̆ .

5. Assessment of leading-order approximations against DNS data
DNS data determine the range of validity and robustness of the approximations

(4.3), (4.5a), (4.7).

5.1. Approximation accuracy in compressible turbulent plane channel flow
The leading-order approximations (4.3) are assessed by comparison with DNS data
(Gerolymos & Vallet 2014) for channel flow (figures 5–7), but also by comparison
with the higher-order expansions (4.2), to analyse the eventual importance of the
leading error terms and when necessary to identify the origin of the nonlinearities.

Regarding cρ′T ′ (figure 5), the leading-order approximation (4.3c) is in excellent
agreement with DNS data ∀ y? and for the entire available range of (Reτ ?, M̄CL). The
higher O(CV2

ρ′) expansion of cρ′T ′ (4.2c) is practically identical to the leading O(CVρ′)
approximation (4.3c) and to the DNS data (figure 5), implying that the leading error
−cp′ρ′T ′CVp′ is indeed negligible, even for the highest M̄CL u 2.5.

Regarding the correlation coefficients involving p′, cp′ρ′ (figure 6) and cp′T ′ (figure 7),
the leading O(CVρ′) approximations (4.3a), (4.3b) are excellent for the subsonic
M̄CL u 0.8 case, and remain quite satisfactory at M̄CL u 1.5, the more so with
increasing Reτ ? (figures 6, 7). For the higher M̄CL ∈ {2, 2.5} cases, the leading O(CVρ′)
approximations (4.3a), (4.3b) are satisfactory near the wall and in the outer part of the
flow, but discrepancies with DNS data appear in the region 10/ y?/ 40 (figures 6, 7).
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FIGURE 5. (Colour online) Comparison of the leading O(CVρ′) approximation (4.3c) of
cρ′T ′(CVρ′, CVT ′, CVp′) with DNS data for compressible fully developed turbulent plane
channel (TPC) flow (Gerolymos & Vallet 2014), plotted against the HCB-scaled wall
distance y? (3.2b,c), for different values of Reτ ? ∈ [98, 341] and M̄CL ∈ [0.8, 2.5], and with
the higher O(CV2

ρ′) expansion (4.2c) which uses DNS data for cp′ρ′T ′ .
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FIGURE 6. (Colour online) Comparison of the leading O(CVρ′) approximation (4.3a) of
cp′ρ′(CVρ′, CVT ′, CVp′) with DNS data for compressible fully developed turbulent plane
channel (TPC) flow (Gerolymos & Vallet 2014), plotted against the HCB-scaled wall
distance y? (3.2b,c), for different values of Reτ ? ∈ [98, 341] and M̄CL ∈ [0.8, 2.5], and with
the higher O(CV2

ρ′) expansion (4.2a) which uses DNS data for cρ′T ′T ′ .

Both the magnitude of the error and the y?-range where discrepancies are observed
increase with increasing M̄CL ' 2. These discrepancies are fully accounted for by
the leading error of the approximations (4.3a), (4.3b), because the corresponding by
(2.2) O(CV2

ρ′) expansions (4.2a), (4.2b), which use DNS data for the 3CCs cρ′T ′T ′
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FIGURE 7. (Colour online) Comparison of the leading O(CVρ′) approximation (4.3b) of
cp′T ′(CVρ′, CVT ′, CVp′) with DNS data for compressible fully developed turbulent plane
channel (TPC) flow (Gerolymos & Vallet 2014), plotted against the HCB-scaled wall
distance y? (3.2b,c), for different values of Reτ ? ∈ [98, 341] and M̄CL ∈ [0.8, 2.5], and with
the higher O(CV2

ρ′) expansion (4.2b) which uses DNS data for cρ′ρ′T ′ .

and cρ′ρ′T ′ , are in excellent agreement with DNS data (figures 6, 7) ∀ y? and for the
entire (Reτ ?, M̄CL)-range studied, a very slight discrepancy observed at M̄CL u 2.5
notwithstanding. The leading error in the approximations (4.3a) for cp′ρ′ and (4.3b)
for cp′T ′ is more important than that for the approximation (4.2c) for cρ′T ′ because
of the presence of the ratios CV−1

p′ CVT ′ and CV−1
p′ CVρ′ which become >2 around

5 6 y? 6 25 (figure 3), whereas the leading error in (4.2c) for cρ′T ′ does not contain
ratios between relative amplitudes.

The approximations (4.5a), (4.7) are assessed (figures 8–11) against DNS data for
compressible channel flow (Gerolymos & Vallet 2014). These data were obtained by
computing the instantaneous entropy field s(x, t) exactly (Gerolymos & Vallet 2014,
(2.5), p. 710) and sampling (Gerolymos et al. 2010, § 4.4, p. 791) the appropriate
moments: they involve no approximation or truncation.

The leading-order approximations (4.5a) of R−1
g s′rms (figure 8), (4.7a) of cs′ρ′

(figure 9), and (4.7b) of cs′T ′ (figure 10) are in excellent agreement with DNS
data ∀ y? and for every available (Reτ ?, M̄CL). On the contrary the leading-order
approximation (4.7c) of cs′p′ (figure 11) behaves in a manner similar to the
leading-order approximations (4.3a), (4.3b) of cp′ρ′ (figure 6) and of cp′T ′ (figure 7).
It is excellent for M̄CL u 0.8 and satisfactory for M̄CL u 1.5, but presents discrepancies
for the higher M̄CL ∈ {2, 2.5} (figure 11), in the range 10 / y? / 40. Again, the
leading error in (4.7c) involves division by CVp′ and suffers from the high values of
CV−1

p′ CVρ′ and CV−1
p′ CVT ′ (figure 3).

As a conclusion, nonlinear effects of compressibility seem to influence some
features of the thermodynamic correlations containing p′ when M̄CL ' 2 (figures 5–7):
in this range, the quadratic terms in the exact relations (2.5) cannot be neglected.
Nonetheless, the region where these nonlinear compressibility effects are important
remains confined in the buffer zone of the wall layer (Smits & Dussauge 2006,
p. 203).
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FIGURE 8. (Colour online) Comparison of the leading O(CVρ′2) approximation (4.5a) of
s′rms(CVρ′, CVT ′, CVp′) with DNS data for compressible fully developed turbulent plane
channel (TPC) flow (Gerolymos & Vallet 2014), plotted against the HCB-scaled wall
distance y? (3.2b,c), for different values of Reτ ? ∈ [98, 341] and M̄CL ∈ [0.8, 2.5], and with
the higher O(CV3

ρ′) expansion (2.9) which uses DNS data for the skewnesses {Sp′, Sρ′, ST ′}.
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FIGURE 9. (Colour online) Comparison of the leading O(CVρ′) approximation (4.7a) of
cs′ρ′(CVρ′, CVT ′, CVp′) with DNS data for compressible fully developed turbulent plane
channel (TPC) flow (Gerolymos & Vallet 2014), plotted against the HCB-scaled wall
distance y? (3.2b,c), for different values of Reτ ? ∈ [98, 341] and M̄CL ∈ [0.8, 2.5].

5.2. Approximation accuracy in sustained compressible HIT

Only cρ′T ′ was available in the HIT DNS database (Donzis & Jagannathan 2013;
D. A. Donzis, 2016, Private communication; Jagannathan & Donzis 2016). The
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FIGURE 10. (Colour online) Comparison of the leading O(CVρ′) approximation (4.7b) of
cs′T ′(CVρ′, CVT ′, CVp′) with DNS data for compressible fully developed turbulent plane
channel (TPC) flow (Gerolymos & Vallet 2014), plotted against the HCB-scaled wall
distance y? (3.2b,c), for different values of Reτ ? ∈ [98, 341] and M̄CL ∈ [0.8, 2.5].
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FIGURE 11. (Colour online) Comparison of the leading O(CVρ′) approximation (4.7c) of
cs′p′(CVρ′, CVT ′, CVp′) with DNS data for compressible fully developed turbulent plane
channel (TPC) flow (Gerolymos & Vallet 2014), plotted against the HCB-scaled wall
distance y? (3.2b,c), for different values of Reτ ? ∈ [98, 341] and M̄CL ∈ [0.8, 2.5].

leading-order approximation (4.3c) compares very well with the DNS data (figure 12),
corroborating the conclusion (§ 5.1) that (4.3c) is a very robust approximation. Notice
also that the ratios CV−1

p′ CVT ′ and CV−1
p′ CVρ′ which multiply the leading error of the

approximations (4.3a) for cp′ρ′ and (4.3b) for cp′T ′ are invariably <1 in HIT (figure 2).
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FIGURE 12. (Colour online) Comparison of the leading O(CVρ′) approximation (4.3c) of
cρ′T ′(CVρ′,CVT ′,CVp′) with sustained homogeneous isotropic turbulence (HIT) DNS data
(Donzis & Jagannathan 2013; D. A. Donzis, 2016, Private communication; Jagannathan
& Donzis 2016), plotted against the turbulent Mach number MT ∈ [0.1, 0.6], for different
values of Reλ ∈ [35, 430] (solid symbols: DNS, open symbols: approximation).

Therefore, we expect that the approximations (4.3a), (4.3b) of cp′ρ′ and cp′T ′ should
be quite accurate for the HIT case. Of course data for these correlations are needed
to fully substantiate this conjecture.

The leading-order approximations (4.3), (4.5a), (4.7) can be used to discuss the
behaviour of compressible HIT, in terms of correlations that were not available in the
database (Donzis & Jagannathan 2013; D. A. Donzis, 2016, Private communication;
Jagannathan & Donzis 2016). At the highest MT u 0.6 sustained compressible HIT
data (Donzis & Jagannathan 2013, table 1, p. 225), CVρ′ u 0.16, CVp′ u 0.22
and CVT ′ u 0.06. Based on the assessment of the leading-order approximations
(4.3), (4.5a), (4.7) for compressible channel flow (figures 5–11) we expect these
approximations to be reasonably accurate, and use them to investigate the behaviour
of compressible HIT with increasing MT (figure 13). The non-dimensional ratio of
entropy and density fluctuations R−1

g CV−1
ρ′ s′rms decreases with increasing MT and shows

significant Reλ-dependency (figure 13), which is not surprising since s′rms is largely the
result of dissipative phenomena. The various correlation coefficients depend mainly
on MT , with a weaker Reλ-dependency (figure 13). We observe in particular that
cs′T ′ u 0.2 ∀ (MT, Reλ) remains practically constant with little scatter (figure 13). This
observation is further confirmed in § 6 and will be used in § 7.1 to suggest a simple
model for the thermodynamic turbulence structure of subsonic sustained compressible
HIT.

6. Compressible aerodynamic turbulence map
The different approximate expressions developed above (4.3), (4.4), (4.5), (4.7) can

be used to map the behaviour of compressible turbulence. We will assume in the
following the validity of these leading-order approximations. The important and robust
relation (4.4) suggests working in the (CV−1

ρ′ CVT ′, cρ′T ′)-plane (figure 14), limited by
(2.3a) to −1 6 cρ′T ′ 6+1.

The abscissa CV−1
ρ′ CVT ′ separates (figure 14) the region CVρ′ > CVT ′ from

the region CVρ′ < CVT ′ . Most of the DNS data considered in the paper (§ 3)
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FIGURE 13. (Colour online) Leading-order estimates (4.5a), (4.3), (4.7) for
{R−1

g CV−1
ρ′ s′rms, cp′ρ′, cp′T ′, cρ′T ′, cs′ρ′, cs′T ′, cs′p′} with input DNS data for {CVρ′,CVT ′,CVp′}

from sustained compressible HIT computations (Donzis & Jagannathan 2013; D. A.
Donzis, 2016, Private communication; Jagannathan & Donzis 2016), for different values
of Reλ ∈ [35, 430], plotted against the turbulent Mach number MT ∈ [0.1, 0.6].

satisfy CVT ′ < CVρ′ , except for a few near-wall channel data (figure 14), roughly
corresponding to the peaks of CVρ′ and CVT ′ (Gerolymos & Vallet 2014, figure
5, p. 720) around y? u 7 where values CVρ′ u CVT ′ are observed (figure 14).
Simple calculations define zones on the (CV−1

ρ′ CVT ′, cρ′T ′)-plane (figure 14) with
specific orderings of the non-dimensional r.m.s. levels of thermodynamic fluctuations
{CVp′, CVρ′, CVT ′, R−1

g s′rms}. For simplicity we study the case γ̆ = 1.4. Zone I at
the bottom (figure 14), is characterized by low CVp′ compared to CVρ′ and CVT ′ ,
contrary to the four other zones, which are essentially distinguished with respect to
the relative importance of the non-dimensional entropy fluctuations. In zone I, R−1

g s′rms
is higher than {CVρ′,CVT ′,CVp′}, progressively diminishing through zones I–V. Zone
V, where R−1

g s′rms / CVT ′ / CVρ′ / CVp′ (figure 14), also contains the isolated point
of isentropic turbulence, where

[
s′rms = 0 (2.1a)

⇐⇒ s′ = 0∀ t
]

(4.5b), (4.4)
⇐⇒

cρ′T ′ u+1
CVT ′ u (γ̆ − 1)CVρ′

CVp′ u γ̆ CVρ′ .
(6.1)

Of course this is an inaccessible limit point, since it is highly improbable (impossible)
for a turbulent flow to have s′ = 0∀ t. Available DNS data for {CV−1

ρ′ CVT ′, cρ′T ′}
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FIGURE 14. (Colour online) Map for γ̆ = 1.4 on the (CV−1
ρ′ CVT ′, cρ′T ′)-plane of DNS

data for compressible solenoidally forced sustained HIT (Donzis & Jagannathan 2013; D.
A. Donzis, 2016, Private communication; Jagannathan & Donzis 2016, 0.1 / MT / 0.6,
35 / Reλ / 430) and for fully developed compressible turbulent plane channel (TPC)
flow (Gerolymos & Vallet 2014, 0.35 / M̄CL / 2.48, 78 / Reτ ? / 341), approximate (to
leading order) loci of [cs′p′ = 0] (6.4), of [cs′T ′ = 0.2] (6.2) and of [cp′T ′ = 0.1] (6.3),
describing turbulence structure of specific flow regions, various zones (I to V; γ̆ = 1.4)
corresponding to different orderings of the non-dimensional r.m.s. levels of thermodynamic
fluctuations, and isolated point (within the leading-order approximate framework) of
isentropic turbulence (6.1).

(Donzis & Jagannathan 2013; Gerolymos & Vallet 2014; D. A. Donzis, 2016, Private
communication; Jagannathan & Donzis 2016) show that different flows or flow regions
have specific thermodynamic turbulence structure (figure 14).

As already observed (figure 13) the HIT data follow (for the available γ = 1.4
computations) the [cs′T ′ u 0.2]-line, which is easily calculated as

cρ′T ′
(4.5b), (4.6b)

u

1− c2
s′T ′

γ̆ − 1
CVT ′

CVρ′
± cs′T ′

√
1−

1− c2
s′T ′

(γ̆ − 1)2

(
CVT ′

CVρ′

)2

(cs′T′=0.2,γ̆=1.4)

. (6.2)

There is little scatter in the HIT DNS data (figure 14) except for one outlier
corresponding to the (Reλ, MT) u (60, 0.1) simulation (Donzis & Jagannathan
2013, table 1, p. 225). Mapping on the (CV−1

ρ′ CVT ′, cρ′T ′)-plane explains why the
alternative observation (figure 13) that the HIT data are also quite close to cp′ρ′ u 1
cannot be used, as it would erroneously imply by (4.3a), (4.4) cρ′T ′ u 1: in general
approximations based on ±1 values of correlation coefficients are singular as they
invariably map by (4.3), (4.5), (4.6) to

∣∣cρ′T ′∣∣u 1.
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The locus of the channel data depends on the non-dimensional wall distance y?
(3.2b,c). The near-wall points y?/ 7 seem to collapse onto a single curve. Observation
of the correlation coefficients plotted against y? suggests (figure 7) that in this region
cp′T ′ u 0.1 (for the available γ = 1.4 computations) ∀ (Reτ ?, M̄CL). The appropriate
branch of the [cp′T ′ u 0.1]-line is determined by

cρ′T ′
(4.3b), (4.4)

u

−(1− c2
p′T ′)

CVT ′

CVρ′
+ cp′T ′

√
1− (1− c2

p′T ′)

(
CVT ′

CVρ′

)2

(cp′T′=0.1,γ̆=1.4)

. (6.3)

Although the mapping relation (6.3) does not involve γ̆ , it should be kept in mind
that the observed value (cp′T ′ u 0.1) was obtained from [γ = 1.4]-computations, and
also that the wall is isothermal and cold with respect to the flow (Gerolymos & Vallet
2014, figure 1, p. 713). All available near-wall (y?/7) data follow the [cp′T ′ u0.1]-line
with little scatter (figure 14).

In the region 7 / y? / 30, roughly the lower buffer layer (Smits & Dussauge 2006,
p. 203), suggests (figure 11) that cs′p′ u 0 (for the available γ = 1.4 computations),
∀ (Reτ ?, M̄CL). Plotting the [cs′p′ u 0]-line, which is determined by

cρ′T ′
(A2b), (4.5b)

u
[
γ̆ − 1
2− γ̆

CVρ′

CVT ′
−

1
2− γ̆

CVT ′

CVρ′

]
(cs′p′=0,γ̆=1.4)

(6.4)

indicates good correlation of the data (figure 14). Notice that the data around
y? u 7 correspond to a region around the point [CVρ′ = CVT ′, cρ′T ′ = −1] where
the [cp′T ′ u 0.1]-line (6.3) crosses the [cs′p′ u 0]-line (6.4), both fitting the DNS data
there (figure 14). DNS data for y?' 30 stay close (but not on) the [cs′p′ u 0]-line, and
return to this locus near the centreline (figure 14), in line with the detailed plots of
cs′p′ versus y? (figure 11).

The (CV−1
ρ′ CVT ′, cρ′T ′)-plane, essentially inspired by (4.4) is not the only possible

choice. The observation e.g. that sustained subsonic compressible HIT evolves with
varying (MT,Reλ) along a [cs′T ′ u const.]-line, and the corresponding model developed
in § 7.1, suggest that mapping on the (R−1

g CV−1
ρ′ s′rms, cs′T) is an alternative choice. In

general, any couple of parameters in the set TTS (1.2) can potentially be used to
define the mapping plane: by (4.3), (4.4), (4.5), (4.7) the set TTS (1.2) has, to leading
order, 2 degrees-of-freedom.

7. Applications

The representations of compressible turbulence in the (CV−1
ρ′ CVT ′, cρ′T ′)-plane

(CT-map) were found very useful in identifying the behaviour of the thermodynamic
fluctuations and of their correlations for different flows or different flow regions
(figure 14). Examples of applications are the development of a simple model for
thermodynamic turbulence structure of sustained compressible HIT (§ 7.1) and the
[cs′p′ u 0]-approximation in the lower buffer region (7/ y?/ 40) in compressible wall
turbulence (§ 7.2).

7.1. Thermodynamic turbulence structure in sustained subsonic HIT
It appears from DNS data (Donzis & Jagannathan 2013; D. A. Donzis, 2016, Private
communication; Jagannathan & Donzis 2016) that, as MT increases, compressible
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FIGURE 15. (Colour online) Zoom on the (CV−1
ρ′ CVT ′, cρ′T ′)-plane of DNS data for

compressible solenoidally forced sustained HIT (Donzis & Jagannathan 2013; D. A.
Donzis, 2016, Private communication; Jagannathan & Donzis 2016, 0.1 u MT u 0.6, 35 u
Reλ u 430) following the approximation (to leading order) of the [cs′T ′ = 0.2]-locus (6.2),
which intersects the [cs′T ′ = 0]-locus (6.4) at point Q1 and the [cs′ρ′ = 0]-locus at point Q2,
and finally passes through the isolated limit point (within the leading-order approximate
framework) of isentropic turbulence (6.1).

subsonic HIT thermodynamic turbulence structure parameters (1.2) tend to a slowly
varying state (figures 2, 12, 8, 13) with a Reλ-dependency, which is clearly visible
e.g. in the evolution of cρ′T ′ versus MT (figure 12) and even more so for R−1

g CV−1
ρ′ s′rms

versus MT (figure 13). However, when considering relations between elements of the
set TTS (1.2) only, such as mapping on the (CV−1

ρ′ CVT ′, cρ′T ′)-plane (figure 14), the
DNS data collapse with little scatter on a single curve, following the [cs′T ′ = 0.2]-locus
(6.2), this value corresponding to the available γ = 1.4 DNS data (Donzis &
Jagannathan 2013; D. A. Donzis, 2016, Private communication; Jagannathan & Donzis
2016). Zoom on the HIT data in the (CV−1

ρ′ CVT ′, cρ′T ′)-plane (figure 15) confirms that
there is little scatter. The DNS data follow the -branch of the [cs′T ′ = 0.2]-line (6.2)
up to, approximately, its intersection with the [R−1

g s′rms = CVT ′]-locus which defines
the boundary between zones IV and V. The -branch of the [cs′T ′ = 0.2]-line (6.2)
terminates (figure 15) at point Q2 where cs′ρ′ = 0. It is then continued (figure 15) by
the -branch of the [cs′T ′ = 0.2]-line (6.2), which passes through the [s′rms = 0]-point
(6.1). Increasing MT corresponds to decreasing R−1

g s′rms (figure 13), i.e. increasing cρ′T ′
along the [cs′T ′ = 0.2]-line. Before reaching point Q2, the [cs′T ′ = 0.2]-line intersects
(figure 15) the [cs′p′ = 0]-line (6.4) at point Q1. It is unclear how the evolution
of HIT continues with increasing MT , since we expect that shocklets and shocks
for supersonic MT > 1 (Wang et al. 2011) will increase entropy production and
substantially modify the thermodynamic turbulence structure (1.2). DNS data for
higher MT are required to resolve this issue. We concentrate here on subsonic MT < 1
HIT (Donzis & Jagannathan 2013; D. A. Donzis, 2016, Private communication;
Jagannathan & Donzis 2016).

We defer for the moment the quest of a (Reλ, MT)-correlation of the data and
concentrate instead on thermodynamic fluctuations. The data on the (CV−1

ρ′ CVT ′, cρ′T ′)-
plane, along the [cs′T ′ = 0.2]-line (figures 14, 15) show that CV−1

ρ′ CVT ′ varies
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little with MT , contrary to R−1
g CV−1

ρ′ s′rms (figure 13). Therefore, R−1
g CV−1

ρ′ s′rms is
an appropriate structure parameter to be used as independent variable in describing
thermodynamic turbulence (1.2), along with the constraint that cs′T ′ = const. (u 0.2
for γ = 1.4), which is tantamount to mapping the elements of the set TTS (1.2) on
the (R−1

g CV−1
ρ′ s′rms, cs′T ′)-plane. Straightforward calculations yield the following model

γ̆ = 1.4 H⇒ cs′T ′ u 0.2, (7.1a)

CVT ′

CVρ′

(4.6b), (4.5b)
u

(γ̆−1)

cs′T ′
s′rms

Rg CVρ′
+

√
1− (1−c2

s′T ′)

(
s′rms

Rg CVρ′

)2


(7.1a)

, (7.1b)

cρ′T ′
(4.6b)
u

√1− (1− c2
s′T ′)

(
s′rms

Rg CVρ′

)2


(7.1a)

. (7.1c)

Actually (7.1) maps the (R−1
g CV−1

ρ′ s′rms, cs′T ′)-plane onto the (CV−1
ρ′ CVT ′, cρ′T ′)-plane.

We can therefore readily compute CV−1
ρ′ CVp′ by (4.4), and complete the model by the

previously worked out leading O(CVρ′) approximations, e.g.

CVp′

CVρ′
u (4.4)

∣∣
(7.1), (7.2a)

cp′ρ′ u (4.3a)
∣∣

(7.1), (7.2a), (7.2b)

cp′T ′ u (4.3b)
∣∣

(7.1), (7.2a), (7.2c)

cs′ρ′ u (4.7a)
∣∣

(7.1), (7.2a), (7.2d)

cs′p′ u (4.7c)
∣∣

(7.1), (7.2a). (7.2e)

The proposed correlations (7.1), (7.2), represent the elements of the set TTS (1.2) for
subsonic sustained HIT as a function of the structure parameter R−1

g CV−1
ρ′ s′rms. DNS

data follow closely the proposed [cs′T ′ = 0.2]-model (figure 16), with very little scatter,
removing the strong Reλ-dependency observed when using MT as independent variable
(figure 13). Even the minute variation of cp′ρ′ is captured by the model with very little
scatter (figure 16). The model is inherently parametrized by γ̆ through the constant
cs′T ′(γ̆ ). DNS computations with different values of γ are necessary to determine the
functional dependence cs′T ′(γ̆ ). Further work is also necessary to correlate the single
relevant thermodynamic structure parameter R−1

g CV−1
ρ′ s′rms with (Reλ,MT).

7.2. The [cs′p′ u 0]-approximation in compressible wall turbulence
Comparison (figures 6, 7, 11) with compressible channel DNS data (Gerolymos &
Vallet 2014) indicates that the leading O(CVρ′) approximations (4.3a), (4.3b), (4.7c)
for the correlation coefficients involving p′, {cp′ρ′, cp′T ′, cs′p′}, become, progressively
with increasing M̄CL ' 2, inaccurate in the region 10 / y? / 40. Furthermore, it was
shown that higher O(CV2

ρ′) expansions for the correlation coefficients cp′ρ′ (4.2a)
and cp′T ′ (4.2b), which require DNS data for the 3CCs cρ′T ′T ′ and cρ′ρ′T ′ , are in
excellent agreement with DNS data (figures 6, 7), identifying the O(CV2

ρ′) terms to
be responsible for the observed discrepancies. Therefore, if we need to approximate
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FIGURE 16. (Colour online) Predictions of the [cs′T ′ = 0.2]-model (7.1), (7.2) representing
thermodynamic turbulence structure (1.2) of sustained solenoidally forced subsonic
aerodynamic (γ = 1.4) HIT as a unique function of the structure parameter R−1

g CV−1
ρ′ s′rms,

compared with leading-order estimates (4.5a), (4.3), (4.7) with input DNS data for
{CVρ′, CVT ′, CVp′} (Donzis & Jagannathan 2013; D. A. Donzis, 2016, Private
communication; Jagannathan & Donzis 2016, 0.1 / MT / 0.6, 35 / Reλ / 430).

{cp′ρ′, cp′T ′, cs′p′} with inputs only {CVρ′, CVT ′, CVp′}, improvement of the O(CVρ′)
approximations (4.3a), (4.3b), (4.7c) in the region of discrepancy (10 / y? / 40) and
at high M̄CL, is desirable. The mapping on the (CV−1

ρ′ CVT ′, cρ′T ′)-plane (figure 14)
revealed (§ 6) that precisely in that region DNS data follow the [cs′p′ = 0]-line, and this
is confirmed by the plots (figures 6, 7, (1.2)) of cs′p′ versus y? ∀ (Reτ ?, M̄CL). Further
away from the wall, the DNS data show that cs′p′ slightly increases and then returns
to 0 near the centreline (figures 6, 7, (1.2), 14). It seemed therefore worthwhile to
check whether a [cs′p′ = 0]-approximation (with unique inputs {CVρ′,CVT ′,CVp′}) can
reduce the aforementioned discrepancies. Simple leading-order calculations yield

cs′p′ = 0 (A2a), (4.2a)
H⇒


cp′ρ′ u

1
γ̆

CVp′

CVρ′

cp′T ′ u
γ̆ − 1
γ̆

CVp′

CVT ′

cs′p′ u 0.

(7.3)

Comparison of the [cs′p′ = 0]-approximation (7.3) with the leading O(CVρ′) approxi-
mations (4.3a), (4.3b), (4.7c) and DNS data for supersonic channel flows (figure 17),
show that (7.3) is a good approximation ∀ y?'7, particularly in the region 10/ y?/40
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FIGURE 17. (Colour online) Comparison of the leading O(CVρ′) approximations
(4.3a), (4.3b) (4.7c) of cp′ρ′(CVρ′, CVT ′, CVp′), of cp′T ′(CVρ′, CVT ′, CVp′) and of
cs′p′(CVρ′, CVT ′, CVp′), with the [cs′p′ = 0]-approximations (7.3) and with DNS data for
supersonic compressible fully developed turbulent plane channel (TPC) flow (Gerolymos
& Vallet 2014, 1.50/ M̄CL / 2.48, 98/ Reτ ? / 341), plotted against the HCB-scaled wall
distance y? (3.2b,c).

where the leading O(CVρ′) approximations are not satisfactory when M̄CL ' 2. We
may therefore construct a composite C0-continuous approximation using for supersonic
M̄CL > 1, the [cs′p′ = 0]-approximation (7.3) in the interval between the two 0-crossing
points around the global negative minimum of the leading O(CVρ′) approximation
of cs′p′ (figure 17), and the O(CVρ′) approximations (4.3a), (4.3b), (4.7c) elsewhere.
For subsonic M̄CL < 1 flows the O(CVρ′) approximations are excellent and require no
modification.

8. Conclusions
In turbulent flows of a working medium following the perfect-gas equation of state,

the coefficients of variation of the basic thermodynamic variables {CVρ′, CVT ′, CVp′}
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strongly increase with the characteristic flow Mach number, and so do the non-
dimensional entropy fluctuations R−1

g s′rms. These non-dimensional gauges of the
thermodynamic fluctuations level {CVρ′, CVT ′, CVp′, R−1

g s′rms} are invariably of the
same order of magnitude at a given point of the flow. Therefore the notion of
strongly or mildly compressible turbulence defined in terms of the level of CVρ′

actually concerns all of these quantities simultaneously.
As a consequence of the equation of state, exact relations can be worked out

between correlation coefficients involving {ρ ′, T ′, p′} for moments of any order. These
exact relations can be expanded in power series of the coefficients of variation
(assumed <1). Regarding entropy, fluctuations s′ can be expressed as power series
of {ρ ′, T ′, p′}. In particular the influence of variable cp(T) thermodynamics on s′ is
quadratic (∝ T ′2), and therefore does not appear in leading-order approximations.

Leading-order approximations, O(CV2
ρ′) for the entropy variance R−1

g s′rms and
O(CVρ′) for the correlation coefficients between thermodynamic variables {s′, ρ ′,T ′,p′},
with inputs {CVp′, CVρ′, CVT ′}, are developed and compare with excellent accuracy
with DNS data for HIT (MT / 0.6) and channel flow (M̄CL / 2.5), except for those
involving p′ at high M̄CL ' 2 which show discrepancies in the lower buffer layer
(10 / y? / 40). The O(CV2

ρ′) terms of the asymptotic expansions of cp′ρ′ and cp′T ′

were evaluated using DNS data and shown to correct for these discrepancies.
The contradictory values of the polytropic exponent estimates nP(CVp′, CVρ′) and

nP(CVρ′,CVT ′) in channel flow demonstrate that near-wall turbulence is strongly non-
isentropic and, furthermore, that it cannot be approximated as a polytropic process.
Indeed we show the more general result that, to leading order, turbulence cannot be
approximated as a polytropic process unless cρ′T ′ u+1, whereas near the wall cρ′T ′ < 0.

The thermodynamic turbulence structure (ratios of non-dimensional variances and
correlation coefficients), TTS := {R−1

g CV−1
ρ′ s′rms,CV−1

ρ′ CVT ′,CV−1
ρ′ CVp′, cp′ρ′, cp′T ′, cρ′T ′ ,

cs′ρ′, cs′T ′, cs′p′}, within the range of validity of the leading O(CVρ′) approximations,
has only 2 independent parameters and can therefore be represented e.g. on the
(CV−1

ρ′ CVT ′, cρ′T ′)-plane. Plotting on this plane DNS data and mapping isolines of
the other thermodynamic turbulence structure parameters is useful in identifying
and analysing different flows or flow regions. We show in particular that subsonic
sustained HIT is characterized by cs′T ′ u const., and that channel flow follows
cp′T ′ u const. very near the wall (y? / 7) then switching to cs′p′ u 0 further away from
the wall (y? ' 7). These observations were used to correlate subsonic HIT data as a
function of the single structure parameter R−1

g CV−1
ρ′ s′rms and to develop for channel

flow a composite approximation which corrects the aforementioned discrepancies for
the p′ correlations at high M̄CL ' 2.

DNS data clearly show that thermodynamic turbulence structure for a given flow is
only weakly dependent on the relevant Mach number, and that no particular structure
modification is observed as the quasi-incompressible limit is approached. This is also
the case of cρ′T ′ which, therefore, is in not an indicator of compressibility: it controls
instead the relative importance of CV2

p′ compared to CV2
ρ′ +CV2

T ′ .
There are several perspectives for future work:

(i) study of the thermodynamic turbulence signature of various other basic flows on
the (CV−1

ρ′ CVT ′, cρ′T ′)-plane;
(ii) determination by new DNS computations of the cs′T ′(γ̆ )-dependency in subsonic

HIT and correlation of the structure parameter R−1
g CV−1

ρ′ s′rms with (Reλ, MT) as
well as study of higher M′rms;

(iii) application of the relations and approximations developed in the present work to
analogies between transport correlation coefficients c(·)′u′i .
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Appendix A. Three-moment correlation coefficients
We use in the paper three approximate relations involving 3-moment correlation

coefficients. Multiplying (2.4) by ρ ′T ′ yields upon averaging and using definitions
(2.1), (2.3)

cp′ρ′T ′ ∼ cρ′ρ′T ′
CVρ′

CVp′
+ cρ′T ′T ′

CVT ′

CVp′︸ ︷︷ ︸
(2.2)
= O(1)

+ (cρ′ρ′T ′T ′ − c2
ρ′T ′)

CVρ′ CVT ′

CVp′︸ ︷︷ ︸
(2.2)
= O(CVρ′)

+O(CVρ′ CVT ′)︸ ︷︷ ︸
(2.2)
= O(CV2

ρ′)

,

(A 1a)

where (2.2) is used to formally identify the order of magnitude of different terms
in (A 1a) with some power of CVρ′ . Multiplying (2.4) by T ′p′, p′ρ ′, ρ ′ρ ′, T ′T ′
or p′p′, yields in the same way five other relations between 3-moment correlation
coefficients. Combining these relations with (A 1a) yields after some algebra the
alternative approximate relation for cp′ρ′T ′

cp′ρ′T ′ u−
1
3

ST ′
CV2

T ′

CVp′CVρ′
−

1
3

Sρ′
CV2

ρ′

CVp′CVT ′
+

1
3

Sp′
CV2

p′

CVρ′CVT ′
+O(CVρ′). (A 1b)

Multiplying (2.8b) by T ′T ′ yields upon averaging and using definitions (2.1), (2.3).

cs′T ′T ′
s′rms

Rg
∼

1
γ̆ − 1

ST ′ CVT ′ − cρ′T ′T ′ CVρ′ +O
(
CV2

ρ′,CV2
T ′
)
. (A 1c)

Multiplying (2.8) by p′, averaging and introducing definitions (2.1), (2.3) readily yields

cs′p′
s′rms

Rg
∼

γ̆

γ̆ − 1

(
cp′T ′ CVT ′ −

1
2

cp′T ′T ′ CV2
T ′

)
−

(
CVp′ −

1
2

Sp′ CV2
p′

)
+

1
2

cp′T ′T ′CV2
T ′

T̄
Rg

dcp

dT

∣∣∣∣
T̄

+O(CV3
p′,CV3

T ′) (A 2a)

∼
1

γ̆ − 1

(
cp′T ′ CVT ′ −

1
2

cp′T ′T ′ CV2
T ′

)
−

(
cp′ρ′ CVρ′ −

1
2

cp′ρ′ρ′ CV2
ρ′

)
+

1
2

cp′T ′T ′CV2
T ′

T̄
Rg

dcp

dT

∣∣∣∣
T̄

+O(CV3
ρ′,CV3

T ′) (A 2b)

used in the development of the [cs′p′ u 0]-approximation § 7.2.
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