
J. Fluid Mech. (2019), vol. 875, pp. 854–883. c© Cambridge University Press 2019
doi:10.1017/jfm.2019.505

854

Wake behind a three-dimensional dry
transom stern. Part 1. Flow structure

and large-scale air entrainment
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We present high-resolution implicit large eddy simulation (iLES) of the turbulent
air-entraining flow in the wake of three-dimensional rectangular dry transom sterns
with varying speeds and half-beam-to-draft ratios B/D. We employ two-phase
(air/water), time-dependent simulations utilizing conservative volume-of-fluid (cVOF)
and boundary data immersion (BDIM) methods to obtain the flow structure and
large-scale air entrainment in the wake. We confirm that the convergent-corner-wave
region that forms immediately aft of the stern wake is ballistic, thus predictable only
by the speed and (rectangular) geometry of the ship. We show that the flow structure
in the air–water mixed region contains a shear layer with a streamwise jet and
secondary vortex structures due to the presence of the quasi-steady, three-dimensional
breaking waves. We apply a Lagrangian cavity identification technique to quantify the
air entrainment in the wake and show that the strongest entrainment is where wave
breaking occurs. We identify an inverse dependence of the maximum average void
fraction and total volume entrained with B/D. We determine that the average surface
entrainment rate initially peaks at a location that scales with draft Froude number
and that the normalized average air cavity density spectrum has a consistent value
providing there is active air entrainment. A small parametric study of the rectangular
geometry and stern speed establishes and confirms the scaling of the interface
characteristics with draft Froude number and geometry. In Part 2 (Hendrikson & Yue,
J. Fluid Mech., vol. 875, 2019, pp. 884–913) we examine the incompressible highly
variable density turbulence characteristics and turbulence closure modelling.

Key words: wakes, wave breaking, multiphase flow

1. Introduction
Our interest is the complex, three-dimensional wake immediately behind the

dry transom stern of a surface ship. This region contains violent breaking of the
free surface, highly mixed air–water turbulent flow, large-scale air entrainment
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and air cavity breakup. In addition to gaining fundamental scientific understanding,
quantification and prediction of these features are of critical importance to the design
and operation of surface ships. The objective of the present work is to perform
implicit large eddy simulation (iLES) to elucidate and quantify the near wake of a
dry transom, to complement and support the laboratory and field measurements and to
inform bubble source and turbulence closure models used in large-scale (whole-ship)
predictions (Baldy 1993; Jingsen et al. 2011; Ma, Shi & Kirby 2011). Presented
in two parts, Part 1 focuses on the wake surface, the structure of the underlying
wake flow, Lagrangian characteristics of the large-scale air entrainment and surface
entrainment rate and the scaling of these with Froude number and stern geometry.
The objective of this part is to provide a physical understanding of the detailed flow
features in the mixed region and the characteristics of the large-scale air entrainment.
Part 2 (Hendrickson & Yue 2019) focuses on understanding and modelling of the
highly mixed, air–water turbulent near-surface region of the wake by combining
the surface fluctuations, spray and entrainment into a single mixed-phase region
through an Eulerian framework. The objective of this part is to provide a statistical
understanding of the mixed-phase region within the context of incompressible highly
variable density turbulence and address the necessary turbulent mass flux closure
modelling.

While there are many studies of small-scale air entrainment such as for a surface
impinging jet (Cummings & Chanson 1997; Ohl, Oguz & Prosperetti 2000; Zhu,
Oguz & Prosperetti 2000; Chanson & Manasseh 2003; Chanson, Aoki & Hoque
2004; Hoque & Aoki 2008), the ship-wake problem presents special experimental and
computational challenges. In addition to the complexities of the air–water interface
and entraining turbulent flows, the (prototype) problem involves high void fractions
(20 %–30 %) (Terrill & Fu 2008) and flow length scales spanning from the ship
length, beam and draft O(101−2) m down to micron-sized bubbles. Indeed, until
recently, relatively little is understood or predictable about this flow.

Recent full-scale experiments of a transom stern vessel (Fu et al. 2006; Terrill &
Fu 2008; Terrill & Taylor 2015) and laboratory-scale experiments of a transom hull
form (Drazen et al. 2010) and breaking waves (Lamarre & Melville 1991) provided
significant insight into wake interface characteristics and statistics as well as initial
information regarding the wake air entrainment. Based on images from experiments
(Fu et al. 2010a), the three-dimensional flow behind the transom stern is visually
similar to the supercritical flow behind chute piers in spillways due to the presence of
the characteristic rooster tail (Pagliara, Kurdistani & Roshni 2011). Laboratory-scale
experiments reported void fractions within 10 %–15 % and field-scale experiments
at 20 %–30 %. Experiments at both scales reported the location of the bulk of the
entrained air to be immediately aft of the stern in the rooster-tail region and confined
within the depth of the wetted transom. Due to the complexity of full-scale at-sea
measurements and measurements with high void fractions, there are currently no
published data on the detailed flow structure or air entrainment in the mixed region
of the wake of a ship at either scale.

State-of-the-art multiphase viscous flow simulations have advanced numerical
capabilities for modelling the complex gas–liquid flows of hydraulic jumps, breaking
waves, large-scale ships and planing hulls (Adams et al. 2010; Drazen et al. 2010; Fu
et al. 2010b; Fullerton et al. 2010; Deike, Melville & Popinet 2016; Mortazavi et al.
2016). Relevant to our effort is the simulation of the transom stern experiments at full
and laboratory scale using both iLES and unsteady Reynolds-averaged Navier–Stokes
(uRANS) flow solvers to compare to measured interface characteristics and statistics
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(Wyatt et al. 2008; Drazen et al. 2010). In this work, the authors simulated both
a wet and dry transom configuration and quantified the spectrum of the interface
fluctuations. However, the work did not provide information on the flow structure or
detailed void fraction information.

The only available information that may provide insight regarding the flow field in
the mixed region is that of two-dimensional transom experiments (modelled as flow
beneath a backward facing step Maki, Troesch & Beck 2008; Rodriguez-Rodriguez
et al. 2011) and two-dimensional supercritical hydraulic jumps (Hoyt & Sellin 1989;
Chanson 1995; Mossa & Tolve 1998; Chanson & Brattberg 2000; Chanson 2009;
Chachereau & Chanson 2011; Lin et al. 2012; Mortazavi et al. 2016). Collectively,
they report that the velocity field contains a mixing shear layer with coherent
structures and a peak in the average void fraction in regions of large turbulent shear.
Recent non-intrusive measurements of the velocity field in the mixed region (Lin et al.
2012) find that the presence of the large recirculation region in supercritical hydraulic
jumps significantly alters the turbulent statistics. Direct numerical simulations (DNS)
(Mortazavi et al. 2016) identify the average interface near the turbulent toe of the
jump as a near-stagnant condition below which exists a recirculation region and above
which is a jet-like profile. However, the similarity between these two-dimensional
flows (both hydraulic jumps and transom sterns) and a three-dimensional wake behind
a finite beam transom stern are yet to be understood.

The length scales of interest for this work (laboratory or prototype) are typically
many orders of magnitude greater than the Hinze scale aH , above which cavity
breakup is primarily due to shear and turbulent fluctuations, and below which surface
tension and other small-scale effects become important in the bubble dynamics (Hinze
1955). For breaking waves, Deane & Stokes (2002) report aH ∼ O(1) mm, while
features in the stern wake could involve length scales O(10) m or more. Numerically
resolving this range would require >O(1012) grid points, which is computationally
prohibitive. Thus, in our iLES, we focus on features greater than O(aH) and ignore
surface tension. The limitation of our results is the grid size ∆ � aH and not
neglection of sub-Hinze-scale surface tension effects. Strictly speaking, we resolve
the air entrainment and cavity formation and breakup associated with the large-scale
flow, but not the details of the air cavities/bubbles below O(∆).

We perform incompressible, two-phase (air–water) iLES on a three-dimensional
Cartesian grid using a conservative volume-of-fluid (cVOF) method (Weymouth &
Yue 2010). The cVOF method conserves mass to machine precision, which is a critical
component for quantitative prediction of air entrainment. The efficacious boundary
data immersion (BDIM) method provides the body representation in the Cartesian
grid. Motivated by work such as Drazen et al. (2010), we consider the problem of a
canonical transom stern of rectangular cross-section (beam 2B, draft D) in deep water
idealized as a partially submerged rectangular prism to remove upstream kinematic
and geometric influences. To further simplify the problem, we assume uniform and
constant-in-time inflow velocity U outside the stern cross-section on the inflow plane.
Thus, the parameters that characterize the problem are the half-beam-to-draft ratio
B/D and draft Froude number Fr = U/

√
gD. We perform iLES for different B/D

ratios and dry transom values of Fr.
Our simulations capture the characteristic features of the wake: the converging

corner waves originating from the transom; the colliding of these waves aft of
the near stern (an event that is geometry dependent) to form the ‘rooster tail’ and
the development of a significant three-dimensional, mixed region near the surface;
and subsequent formation of the V-shaped diverging wave wake as the rooster tail
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widens downstream. We elucidate the mean interface characteristics and define their
scaling with ship-scale parameters B/D and Fr. We explore the mean flow field
of the complex turbulent mixed-phase region and identify the presence of a jet and
secondary vortex structure below the average interface. We show that the mixed region
flow contains a shear region similar to that of two-dimensional hydraulic jumps and
two-dimensional stern flows but there is no appreciable evidence that a recirculating
region typical of those flows exists immediately aft of the three-dimensional geometry.
The breaking waves further downstream in the diverging wave wake, reintroduce
a three-dimensional flow structure that might resemble a roller bore with strong
cross-stream advection on an oblique plane that directly influences the turbulent
statistics and air entrainment in this region.

To identify the entrained air cavities, we develop an algorithm based on the
connected component algorithm (CCA) (Samet & Tamminen 1988) from computer
graphics that enables quantification of the air entrainment and cavity size characteri-
stics. We obtain the spatial distribution of the surface entrainment rate, which initially
peaks in the converging-corner-wave region and has a second peak at the end of
the rooster-tail region with the development of the V-shaped diverging-wave region.
We observe void fractions of 13 % in the diverging-wave region, consistent with
laboratory-scale experiments. When we consider the density spectra of cavity sizes
N(r) in different regions of the wake, we obtain a power-law spectrum N(r) ∼ rβ
with slope rβ that is weakly dependent on B/D with β > −4 when there is active
wave breaking.

The outline of this paper is as follows. Section 2 details the numerical procedure
used to obtain the iLES datasets and outlines the Lagrangian cavity identification
algorithm used to determine the entrained air cavity volumes. Section 3 defines the
canonical ship-wake problem used in this study. Section 4 presents the analysis of
the wake interface characteristics and the detailed description of the flow structure in
the mixed region, including the average velocity and vorticity fields. Section 5 details
the air entrainment results. Section 6 discusses the overall impact of the findings of
this paper in the context of large-scale, three-dimensional ship wakes. The appendices
contain verification information as well as the parameter study.

2. Method
2.1. Numerical procedure

We employ iLES of the two (assumed) incompressible fluids, air and water, using
cVOF and BDIM on a Cartesian grid. The three-dimensional velocity field u(x) in
a domain x obeys the continuity equation ∇ · u= 0 and the momentum equation in
the absence of surface tension,

∂u
∂t
+∇ · (uu)=−

1
ρ
∇p+

g
Fr2

, (2.1)

where p is the total pressure field and g/Fr2 the gravitational vector scaled by Froude
number Fr. The volume fraction f provides the density ρ using the two fluid densities
ρwater and ρair as

ρ(x)= f (x)ρwater + [1− f (x)]ρair. (2.2)

We capture the two-fluid interface using a fully conservative three-dimensional
volume-of-fluid method, cVOF (Weymouth & Yue 2010). As in standard VOF
methods, f derives from integrating the so-called fluid ‘colour function’, c(x) defined
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as 1 or 0 in the water or air, respectively. The volume fraction f within each
computational volume Ω represents the fraction of c within each cell. A simple
explicit operator-split update equation ensures conservative transport of the interface
via n sweeps over

1f =
1t
1Ω

n∑
d=1

(
∆dFd + cc

∂ud

∂xd
1Ω

)
, (2.3)

where n is the number of spatial dimensions, ud the velocity components, ∆dFd the
net fluxes of liquid fluid through the d-face of the volume and cc is the cell centre
value of the colour function given for linear interfaces by

cc =

{
1 if f > 1/2,
0 else. (2.4)

As shown in Weymouth & Yue (2010) the updates of (2.3) along with the Courant
restriction on the time step 1t of the form

1t
n∑

d=1

∣∣∣∣ ud

1xd

∣∣∣∣< 1
2

(2.5)

guarantee that the transport method is fully conservative for general flows.
We immerse the ship geometry in the Cartesian background grid with BDIM

(Weymouth & Yue 2011), which includes the effect of the solid body on the fluid
by convolving the governing equations and interfacial conditions of any solid/fluid
system with smooth, finite-width integration kernels. This results in a single governing
equation for the complete domain. BDIM’s analytic formulation ensures proper
treatment of general boundary conditions (Weymouth & Yue 2011; Weymouth &
Triantafyllou 2013). This work focuses on simulation of stationary bodies immersed
in a high Reynolds number flow with free-slip tangential velocity boundary conditions.
As such our governing equations are velocity matching for the normal component of
velocity un on the interface

un(xb)− U(xb)= 0, (2.6)

where U is the interface flux, which is zero for solid boundaries. A homogeneous
Neumann condition for the tangential velocity components (uσ , uτ ) normal to the
interface enforces a free-slip boundary condition on the body

∂uσ
∂n
= 0 and

∂uτ
∂n
= 0. (2.7a,b)

Combining (2.1), (2.6) and (2.7) using the BDIM formulation gives the global meta
equation

u+L(u)= δB
e U+ [1− δB

e ]

(
u(t0)+

∫ t0+1t

t0

[
r−

1
ρ
∇p
]

dt
)
. (2.8)

Here, r represents the convection and gravity terms and δB
e is the zeroth moment of

the integration kernel over the body (approximated by a smoothed Heaviside function
based on the distance to the body geometry). The left-hand side operator L is

L(u)≡ δS
e
∂uτ
∂n
τ̂ + δS

e
∂uσ
∂n

σ̂ , (2.9)
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where δS
e is the zeroth moment of the integration kernel centred at the nearest point

on the interface.
We discretize the governing equations using a staggered-grid finite volume method.

The implicit modelling of iLES derives from a flux-limited QUICK (quadratic
upstream interpolation for convective kinematics) treatment of the convective terms.
An explicit second-order predictor–corrector method estimates the time integral in
(2.8). Hereafter, we normalize all fluid constitutive properties to those of water:
ρ = ρ∗/ρwater and µ = µ∗/µwater, where ∗ denotes respectively the dimensional
density and viscosity of the fluid at a given point. Finally, we determine the pressure
via the projection method using the continuity equation. A multi-grid solver using
conjugate-gradient smoothing inverts the pressure Poisson matrix. Verification of the
method appears in appendix B as well as Weymouth & Yue (2010, 2011), Weymouth
et al. (2010) and Hendrickson et al. (2013).

2.2. Air cavity identification
The air–water interface of high-energy flows possesses non-trivial topological
complexity. The forthcoming analysis requires us to identify air entrainment (defined
as a cavity of air not connected to the bulk air volume), the bulk water volume
(defined as the water volume with spray droplets removed and air cavities filled) and
the mixed-phase volume (defined as the original f field). To identify spray droplets
and air cavities, we develop a method of identifying contiguously connected regions
of the three-dimensional, time-varying air volume fraction field fa ≡ 1 − f (x, t).
The method is a modified version of a two-pass standard CCA algorithm (Samet
& Tamminen 1988). The algorithm enables the calculation of the individual air
cavities vi

e =
∫

f̂ai(x) dx and effective spherical radius ri
eff = [(3/4π)vi

e]
1/3. The unique

identifiers that result in the CCA algorithm identify the air cavities in f and spray
droplets in fa that are either filled or removed to calculate the water bulk region in
§ 4.2. Appendix A further discusses the details of this Lagrangian analysis technique.

3. Simulation of a canonical three-dimensional dry transom stern
The canonical problem we consider is the flow behind a rectangular transom stern

of half-beam B and still water draft D. We scale by the draft D and the uniform
steady inflow velocity U. The draft Froude number Fr = U/

√
gD characterizes this

problem. The cases considered are at sufficiently high Fr to correspond to dry transom
conditions. Recent experiments of Drazen et al. (2010) using a Model 5674 geometry
with draft of D= 0.305 m showed that transition to dry transom conditions occurred
between 7 and 8 kts or Fr= 2.38 at laboratory scale. Performing many iLES over a
range of Fr2.386Fr63 and half-beam-to-draft B/D ratios 16B/D62.1, we find that
the results are qualitatively similar, and can be described with a set of representative
cases A, B and C (details in table 1).

The boundary conditions for the Cartesian grid iLES (figure 1) are as follows:
(i) uniform inflow velocity U on the inlet plane except its intersection with the
rectangular body geometry where the body boundary conditions are enforced as
described in § 2.1; (ii) zero-gradient extrapolations on the lateral boundaries; (iii)
symmetry planes for the top and bottom boundaries; and (iv) mass conserving
exit condition far downstream. We subdivide the computational domain into a
high-resolution inner interrogation domain of constant grid volume δΩ = ∆3 that
encompasses the near region behind the stern. Our interest is the large-scale features
of the air-entraining turbulent wake extending horizontally O(10D) behind the stern.
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2B

D

U

Lz

Lx

Ly

x
y(0, B, 0)

z

FIGURE 1. (Colour online) Schematic of the canonical stern geometry. Blue area: the high-
resolution interrogation domain Lx × Ly × Lz = 13D× 10D× 3D.

Case Fr B/D (νm
e )
−1 (ν3rd

e )−1

A 2.53 1.0 3760 5290
B 2.53 1.25 3681 5290
C 2.53 1.77 4142 5064

TABLE 1. Parameters for representative cases A, B and C measured within the
interrogation domain. νm

e and ν3rd
e are the median and third-quartile values of the iLES

effective viscosity (defined in appendix B). The time step 1t= 1.875× 10−3.

Thus, we size the interrogation domain to be Lx × Ly × Lz = 13D × 10D × 3D
where x, y, z are respectively the longitudinal, transverse and vertical dimensions. The
interrogation grid resolution is ∆=D/64. This is sufficient to resolve features an order
of magnitude smaller than D, but the numerical Hinze scale aN = ∆ ∼ 1 cm is still
substantially greater than the physical Hinze scale aH for realistic laboratory-scale
(and certainly full-scale) stern experiments (Fu et al. 2006; Terrill & Fu 2008;
Drazen et al. 2010). A buffer domain that employs algebraic grid stretching
surrounds the interrogation domain, extending the outer boundaries and increasing the
numerical damping in the transverse and far-stream regions. The entire Cartesian grid
(interrogation and buffer domain) is Nx × Ny × Nz = 1024 × 896 × 256 = 2.35 × 108

spatial grid cells.
We initiate the simulation by linearly increasing the inflow velocity over a period

of t= TU/D= 10. Once at a quasi-steady state, we sample the interrogation domain
to obtain time-averaged statistics over 80 6 t 6 120 with a sampling rate at dt= 0.01.
All averages reported herein are temporal averages over this period of time with this
sample rate. Table 1 reports the median νm

e and third-quartile ν3rd
e value of the iLES

effective viscosity (defined in appendix B).
We utilize three different analysis techniques throughout Part 1 and Part 2. In § 4.2,

we use the modified CCA of § 2.2 and appendix A to isolate the connected isosurface
that represents the unbroken air–water interface and water bulk region by removing
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1

0
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-5 -4 -3 -2 -1 0 1
y

z

2 3 4 5

FIGURE 2. (Colour online) Comparison of entrainment envelope, surface region and
the mixed region for a transverse cut at x = 11.5. Green lines f and red lines fb =

(0.01, 0.5, 0.99) from top to bottom within each figure, respectively. Blue region is ve >
0.01. Data are case B.

both air bubbles and spray droplets. We use a temporal average of the resulting bulk
fraction fb to identify the surface region, where 0 < fb < 1 incorporates only surface
fluctuations and fb = 0.5 represents the mean interface. In § 4.3, we use a purely
Eulerian framework with unconditioned time averages where 0 < ρ < 1 represents
the mixed-phase region (or mixed region) which incorporates surface fluctuations,
entrainment and spray. Part 2 uses this framework exclusively and uses the turbulent
mass flux ρu′i to represent all of these physical processes as a single vector quantity.
In § 5, we adopt a Lagrangian framework to focus solely on the air entrainment.
Using the modified CCA to identify air bubbles, we calculate the bubble statistics
and define the entrainment envelope from a temporal average of ve on the Cartesian
grid. Figure 2 shows the conceptual difference between the entrainment envelope,
mixed region and surface region using a transverse cut in the far wake (looking
upstream). Note that the lines for f = fb = 0.5 coincide, as expected.

4. Wake characteristics and flow features
4.1. General wake features

Figures 3, 4 and 5 shows the isosurface of the instantaneous volume fraction f = 0.5
for respectively cases A, B and C. All cases have three distinct characteristic regions
in the surface of the wake, which we refer to hereafter as the converging-corner-wave
(CCW), the rooster-tail (RT) and the diverging-wave (DW) regions. The first region
contains a large depression behind the dry stern with ridges that rise from the lower
corner. These ridges, or CCW, angle in towards the centreline of the ship. After the
CCW region is the RT, the length of which decreases with B/D. The surface of the
RT is rough with many small ligaments and spray. The RT region widens to form
the beginning of the DW train behind the stern. Here, the centre of the wake surface
becomes smoother and the edges contain very fine structures and quasi-steady breakers.
Scars on the interface (indicated by the dark features angling away from the centreline)
indicate regions of wave overturning and air entrainment similar to those observed by
(for example) Dong, Katz & Huang (1997) and Olivieri et al. (2007) for overturning
bow waves.

While each wake contains these distinct characteristic regions, there are overall
differences in the wake between cases A/B and case C. For cases A and B, the CCW
collide on the ship centreline before overturning and entraining a fully formed air
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(a) (b)

FIGURE 3. (Colour online) Instantaneous isosurface of volume fraction f = 0.5 for case A
within the interrogation domain. Flow is from left to right (+x). (a) Viewed from above;
(b) viewed from the side. Surface is rendered partially transparent. Dark regions indicate
multi-valued surface, spray or entrainment. See also the corresponding supplementary
movies 1 and 2 available at https://doi.org/10.1017/jfm.2019.505.

(a) (b)

FIGURE 4. (Colour online) As in figure 3 for case B. See also corresponding
supplementary movies 3 and 4.

cavity. The physics at this collision point represent two impacting jets and serve as
a source of significant spray. For case C, the CCW have ample time to break and
entrain air before the formation of the RT. Because of this, the RT in case C is
smoother with less spray and ligaments than cases A and B.

4.2. Wake characteristics and scaling
We obtain a cleaner depiction of the instantaneous surface by utilizing the cavity
identification algorithm of § 2.2 to identify the air cavities and spray droplets and
either filling them (if air) or removing them (if water). The resulting instantaneous
bulk volume fraction fb is the result. Figure 6 shows the time-averaged isosurface of fb
corresponding to fb= 0.5 for case A (case B is similar). The location where the CCW
collide on the centreline xc appears different when viewed from above (figure 6a) and
below (figure 6b) due to the multi-valued nature of the interface. The RT is present
for x> xc. At a point further downstream, the waves radiate away from the centreline
and form a divergent wave pattern.
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(a) (b)

FIGURE 5. (Colour online) As in figure 3 for case C. See also corresponding
supplementary movies 5 and 6.
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FIGURE 6. Average interface fb = 0.5 case A. (a) Viewed from above and (b) below.
Contours represent elevation z (light to dark, negative to positive). - - - xc. Note that the
‘ripples’ on the interface near the inlet are an artefact of the visualization of the isosurface
and not present in the simulation.

The experiments of Martínez-Legazpi et al. (2013) established that the trajectory of
the wavefront emanating from the corner of a partially submerged vertical plate is
ballistic by considering the impact point of the corner wave on the surface downstream
of the plate. A similar potential energy argument for the stern geometry provides the
scaling of xc. Consider the flow leaving the bottom corner of the stern at x= 0 with
speed (U, v0, w0). Assuming the velocity in the y–z plane is gravity driven, the y–z
plane velocity (v0,w0)=

√
2gD (cos φc, sin φc) where φc is the angle of the projectile

motion in the y–z plane (see figure 7a). The time for a particle to travel the distance B
to the centreline, assuming v0 and U constant, provides the location where the corner
waves meet and the angle of the waves in the x–y plane θc as,

xc = FrBα−1 and tan θc = αFr−1, (4.1a,b)

where α =
√

2 cos φc. Thus for a dry rectangular transom stern, Fr, B and φc
completely determine the location of the collision of the CCW and the beginning
of the RT. This ballistic behaviour and the gravity-driven scaling of xc are also
consistent with supercritical channel expansion flows (Rouse, Bhoota & Hsu 1949,
when φc = 0).
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FIGURE 7. (a) Schematic of the ballistic projectile motion viewed looking upstream
and definition of φc. (b) Schematic of wake topology viewed from above showing the
definitions of Ym, Y0, θc and θw (displaying only y> 0 for clarity).

Case tan φc
xcα

FrB
tan θcFr
α

tan θw

Fr
1hmax

xB

Fr
A 0.99 1.07 1.01 0.53 1.24 2.68
B 0.99 1.10 1.01 0.47 1.20 2.87
C 1.17* 0.92* 1.03* 0.52 1.15 3.06

TABLE 2. Average wake geometry characteristics. α≡
√

2 cosφc. *Data measured by linear
extrapolation of Ym(x) for x< 1 due to the multi-valued nature of the interface in the CCW
region.

To measure the location of xc, we first determine the location of the interface
without interpolation by defining the integrated height function H(x, y)≡

∫
z fb dz. We

then determine the transverse location Ym(x) of the local maximum at each x of
H(y; x). A projection of a linear fit of Ym(x) provides xc such that Ym(xc)= 0 and the
slope of the linear fit provides θc (see figure 7b). This technique works best when fb

is not multi-valued, thus the linear fit of Ym(x) is taken from the region immediately
aft of the stern. To obtain φc, we use a linear fit of the same local maximums in the
y–z plane. The measured initial value of φc is consistent with potential flow theory
in the absence of gravity, where φc = π/4 at very early times (Martínez-Legazpi
et al. 2015). The first three columns of table 2 are near unity in accordance with
the ballistic result of (4.1). For cases at a constant Froude number (as these are), if
the potential energy of the free-surface jump proportional to D is the only driving
mechanism, then CCW features should be the same and the changes in B/D only then
moderate the value of xc. The data in table 2 establish this and a small parametric
study confirms this scaling and driving mechanism for a broader range of B/D and
Fr (see appendix C).

To understand the scaling of the far wake geometric parameters, we define the wake
angle θw (see figure 7b) as the angle of the beginning of the DW region. We measure
this angle by performing a linear fit of the transverse locations Y0(x) of the zero
crossing of H(y; x) − Hswl, where Hswl is the static water line. For convenience, we
measure θw at the streamwise point xB where Y0 crosses the y= B/D plane. As seen
in table 2, the wake angle shows no significant geometry dependence.

Figure 8 shows the centreline interface height 1h = H(0; x) − Hswl (relative
to the bottom of the stern) for all three cases, plotted using the ballistic scaling
x̃ = xα(B Fr)−1. The centreline interface height assumes the same slope for each
case until x̃ ≈ 1 = x̃c. For x̃ > x̃c, the profiles continue to a maximum value of 1h
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FIGURE 8. Centreline interface height H(y = 0; x̃) (relative to the bottom of the stern
located at z=−1). E case A;@ case B;A case C; and q Drazen et al. (2010) 8 knot
case. Every 16th point of simulation data plotted for clarity.

(see table 2) and then decrease. For cases A and C, the maximum location occurs
within our definition of RT, where we measure θw. Case B has an initial local
maximum at x̃c and then a secondary maximum. Inspection of the average interface
fb= 0.5 shows that this location contains both the collision and breaking of the CCW.
The 1hmax for each case is ≈ 1.2, which is similar to the transom stern experiments
of Drazen et al. (2010) (see filled symbols in figure 8).

It is tempting to compare the average interface structure on the ship centreline
of a dry transom stern to low Froude number two-dimensional hydraulic jumps
(e.g. Lin et al. 2012; Mortazavi et al. 2016) and two-dimensional sterns (Maki
et al. 2008; Rodriguez-Rodriguez et al. 2011). However, the average interface of
a two-dimensional hydraulic jump increases sharply over a distance twice the
fluid initial depth h1 and then asymptotically increases to an analytic value of

(−1+
√

1+ 8Fr2
h1
)/2 (Mortazavi et al. 2016). The overall behaviour of the centreline

interface height of the three-dimensional stern (i.e. a steep increase, a local maximum
and then a decrease) is different. Additionally, the 1hmax value of 1.2 is significantly
less than the analytic value for these Froude numbers (1hmax ∼ 2.1 if D∼ h1).

4.3. Average flow structure
Figure 9 shows a visualization of the three-dimensional average flow structure for case
A where the CCW collide on the centreline (figure 9a,b) and case C where the CCW
fully overturn before the formation of the RT (figure 9c,d). The CCW region for the
narrower geometry focuses the flow to the collision point xc, which is still present
(but weaker) for case C due to the fully overturning CCW. The colour of the average
streamlines represents ρ at that point which varies along the streamline. From the
mean mass conservation equation for a variable density flow, ∂ρ/∂t + ∂(ρUk)/∂xk =

−∂(ρu′k)/∂xk, we see that there is a source term on the right-hand side equal to the
divergence of the turbulent mass flux ρu′k (see Part 2). The change in ρ along an
average streamline thus reflects the source term associated with the turbulent mass
flux ρu′k.
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(a) (b)

(c) (d)

FIGURE 9. Visualization of average streamlines with average interface for (a) case A side
view, (b) case A top view, (c) case C side view, (d) case C top view. Lines coloured by
ρ. Red: ρ = 1.0 and blue: ρ = 0.001.

Figure 10 shows transverse cuts of the average planar flow field (v, w) and
magnitude of the average velocity for cases A and C within the three different wake
regions. Figure 10(a,b) represents the CCW region where the waves collide at the
centreline or overturn. For the narrow geometry of case A near x̃= 1 (see figure 10a),
the planar flow field shows two jets colliding and shooting liquid in the vertical
direction. The spray field (mainly the region above the mean interface) is significant.
Figure 10(b) shows the overturning CCW splash up of the jet for the wider geometry
of case C at x̃ = 0.64. Figure 10(c,d) represents locations within the RT. Here,
both wakes contain a velocity deficit below the mean interface at the centreline
y∼ 0. This deficit is due to the presence of the upstream corner wave collision. The
average planar velocity vectors show the turning of the velocity field away from the
centre plane as part of the formation of the downstream DW region. The spray field
contributes the most to the extent of the mixed region at this streamwise location in
the RT. The depth of the mixed region below the mean interface increases in the RT
due to the presence of air entrainment. Figure 10(e, f ) represents the DW region 10D
from the stern for both geometries. For case A specifically, we observe the primary
ωx vortical structures (see inset) caused by the upstream breaking. For both cases, the
mixed region widens as it encompasses surface fluctuations, spray and air entrainment.
Of note is the confinement of the mixed region to a small vertical extent below the
mean interface at this wake distance.

Figure 11 shows select profiles of the averaged planar velocity field (u, w) and
corresponding mean transverse vorticity ωy profiles on the centre plane. In the CCW
region (at x̃c), a shear layer appears in u at the transition from the bulk water region
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FIGURE 10. (Colour online) Transverse cuts of average planar velocity (v, w). Contours
represent magnitude of average velocity u. Black line represents ρ= 0.5. CCW: (a) case A
x̃= 1 and (b) case C x̃= 0.64; RT: (c) case A x̃= 1.96; (d) case C x̃= 1.12; DW: (e) case
A x̃= 3.95; and ( f ) case C x̃= 2.23. Inset in (e, f ) is corresponding average streamwise
vorticity ωx. Vectors shown (every 8 points) within the mixed region 0.01<ρ < 0.99.

to the mixed-phase region. At this x location, u also exhibits a jet flow above the
shear layer. The jet is strongest for cases where the CCW collide on the centre plane
(e.g. figure 11a) but is still present for the widest geometry (figure 11b). There is
also a positive w at this location near the mean interface ρ = 0.5, or z − zi = 0.
The mean transverse vorticity (see corresponding figure 11e, f ) shows a strong
negative peak at the location of the shear layer. A secondary vortex structure exists
above this primary structure (below the average interface) as a consequence of the
aforementioned jet.
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FIGURE 11. Ship centreline wake profiles at select locations as a function of z− zi, where
zi is the location of ρ = 0.5. (a–d) —— u(z); - - - w(z); and + ρ = (0.01, 0.99). (e–h)
—— ρωy and + ρ = (0.01, 0.99). (a,e) Case B x̃ = 1; (b, f ) case C x̃ = 1; (c,g) case B
x̃= 3; (d,h) case C x̃= 2.1.

In the DW region on the ship centre plane (see figures 11c,d and 11g,h), the jet is
no longer present and the velocity profile on the ship centre plane in the mixed region
is a wake deficit with minimal mean vertical velocity. The far wake location only has
the primary vorticity associated with the wake deficit profile. Inspection of the flow
field at y locations off of the centreline that intersects breaking waves (in the CCW
for case C and the DW for all cases) contain a strong jet flow with secondary vortex
structure similar to that shown in figure 11(a,b) (not shown).

We comment on the difference between this mixed region flow structure and that
of two-dimensional hydraulic jumps. In some sense, the only qualitative similarity
is the presence of the shear layer at the transition between the bulk water and
mixed-phase regions. The most significant difference between these flows is there
is no appreciable evidence for the presence of a primary vortex structure situated
above a dividing streamline immediately downstream of the (three-dimensional) stern
geometry. In the three-dimensional stern flow, the presence of the CCW introduces
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a strong three-dimensional flow structure in the mixed region. The resulting jet
and corresponding secondary vortex of this three-dimensional flow are qualitatively
different from the two-dimensional model of a roller above a dividing streamline.
Further downstream of the stern, the centre plane flow is a wake deficit profile. The
presence of three-dimensional breaking in the DW region reintroduces the strong
three-dimensional structure to the flow similar to those observed in the CCW. In
the DW region, the three-dimensional flow might resemble a roller-bore structure
in an oblique plane but with the presence of a strong cross-stream advection. Its
presence will significantly alter the turbulent statistics in this region (evidence of this
in Part 2, § 3). As shown in the forthcoming section, the three-dimensional breaking
in DW is also associated with enhanced air entrainment in the far wake.

5. Air entrainment

This section adopts a Lagrangian description of the density (or volume fraction)
field using the cavity identification algorithm described in § 2.2 to determine the
characteristics of the large-scale air entrainment to establish a foundation for bubble
source modelling in the near wake of a stern. The Eulerian definition of the mixed
region of § 4.3 is such that a variation in density at a single point encompasses
all of the physical effects such as surface fluctuations, spray and air entrainment.
Understanding the mean flow and turbulent characteristics in the mixed region using
the Eulerian framework enables the development of incompressible highly variable
turbulence models and is left for Part 2. Using the following Lagrangian techniques,
analysis of the spatial and size distribution of the actual air cavities provides a
physical understanding of only the entrainment.

5.1. Volumetric entrainment and surface entrainment rate
Let ve(x, t) represent the fractional volume of the entrained air at any given point
based on the individual air cavities calculated from the cavity identification algorithm
of § 2.2. Figure 12 shows a visualization of the average entrainment ve(x) for cases
A (case B is similar) and C. The entrainment is concentrated in regions of breaking
waves and in the rooster-tail region. For cases A and B, the xc location is not a
strong source of entrainment. For example, the maximum ve in this region is 0.04 for
case A. We reiterate here that the jet impact on the ship centreline generates a large
positive vertical velocity and significant spray (see figure 10a,b). The entrainment by
the entrapment of an air pocket due to the overturning waves in the CCW in case C
is more than twice as large with maximum ve = 0.09. This is also true in the DW
region where the maximum values ve are the largest within the wake: 0.20 for case
A and 0.13 for cases B and C. The maximum penetration depth of the entrainment
envelope (defined as ve > 0.01) is −0.85 < z < −0.69 relative to the still water line
for both the DW and RT regions in all three cases.

We define the entrained air volume per unit distance as Ve(x)=
∫
∞

−∞
dy
∫
∞

−∞
dz ve(x).

Figure 13(a) shows Ve(x̂) (normalized by the half-beam B for a simple length scale)
for all three cases, where x̂ = x/Fr scales the streamwise distance with the ship
speed. The initial peak of entrained volume occurs near x̂& 1 for all three cases. The
entrainment increases in the DW x̂& 2.5. Table 3 shows the total amount of entrained
volume per unit half-beam. The narrowest geometry (case A) entrains the most air
while cases B and C entrain approximately the same amount, which is consistent
with the maximum average void fraction in the DW.
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FIGURE 12. Visualization of average entrainment ve(x) at streamwise locations for
(a) case A and (b) case C. Transparent isosurface is the average interface f b = 0.5.

Case
∫
ve d∀/B x̂∗ S(x̂∗)/B x̂d S(x̂d)/B

A 0.14 1.00 1.64× 10−3 3.05 8.01× 10−3

B 0.09 0.94 1.40× 10−3 2.88 5.03× 10−3

C 0.09 0.91 3.31× 10−3 2.58 2.81× 10−3

TABLE 3. Average entrainment characteristics. x̂= x/Fr.

We derive the surface entrainment rate S by considering mass conservation in
an infinitesimal control volume at x of size −∞ < y <∞; −∞ < z < zi, where zi
is the vertical location of the interface. Let w(x, y, t) be the entrainment rate of
the dimensionless ve(x, t) through the interface with units of velocity [L/T]. Mass
conservation for the location x gives∫

∞

−∞

dy wve(x, y, zi)=

∫
∞

−∞

dy
∫ zi

−∞

dz∇xy · (uxyve)+
d
dt

∫ zi

−∞

dz ve(x, y, z, t), (5.1)

where uxy(x, y, z, t) are the x− y planar velocity components (u, v) and ∇xy represents
the planar gradient. Knowing there is no net flux in the y-direction, the rate of total
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FIGURE 13. (a) Entrained air volume per unit half-beam along the wake Ve(x̂)/B.u Case
A; 6 case B; and @ case C. (b) Average surface entrainment rate per unit half-beam
S(x̂)/B along the wake. Wake distance scaled with ship speed x̂ = x/Fr. —— Case A;
– – – case B; and — - — case C.

entrainment S between x and x+ δx is then (with units [L2/T])

S(x, t)=
∫
∞

−∞

dy wve(x, y, zi)=

∫
∞

−∞

dy
∫ zi

−∞

dz
∂

∂x
(uve)+

d
dt

∫ zi

−∞

dz ve(x, y, z, t). (5.2)

Assuming that u≈U and taking a time average, the average surface entrainment rate
is

S(x)=U
d

dx

∫
∞

−∞

dy
∫
∞

−∞

dz ve(x, y, z)=U
d

dx
Ve(x). (5.3)

Figure 13(b) shows the average surface entrainment rate S(x̂) per unit half-beam B
using the derivative of a local polynomial fit of Ve. There is an initial peak average
surface entrainment rate near x̂ ≈ 1 = x̂∗ and a secondary peak average surface
entrainment rate in the far wake x̂= x̂d. Table 3 contains these locations and surface
entrainment rates. For the initial peak, x̂∗ ≈ x̂c for case A, which is expected because
the average interface isosurface (see figure 6) shows the CCW colliding intact on
the centreline. For cases B and C, x̂∗ ∼ 0.9, implying that the beam geometry is
not a factor in the location of the peak entrainment. The small amount of wave
breaking for x < xc in case B shifts x̂∗ towards that of case C rather than case A.
The value of S(x̂∗)/B for case C is approximately twice that of case A due to the
wave breaking in the CCW region. The scaling of x̂∗ with the absence of the beam
geometry shows that the gravity-driven ballistic scaling that held surprisingly well for
the wake interface geometry characteristics is not necessarily an entrainment scaling.
The secondary peak in the average entrainment rate that occurs in the DW region has
an inverse dependence on B. This is also the same with S(x̂d)/B. We discuss this
point further in § 5.2.
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FIGURE 14. Average cavity density spectra as a function of effective radius N(reff ) for
all three cases:u case A;A case B; and@ case C. (a) CCW x< xc; (b) RT xc < x< xB;
(c) DW for x> xB; (d) DW for |y|6 B; and (e) DW |y|> B. xB defined in table 2. Data
normalized by each measurement volume ∀i and cavities with reff < aN not shown.

5.2. Air entrainment size spectrum

We calculate the average bubble-size density spectra N(reff ; b) utilizing the individual
cavity volume vi

e and effective spherical radius ri
eff (see appendix A for definitions

and details). Figure 14 shows the average spectra computed in the sub-domains of
the different regions in the wake (here ∀ in (A 2) is each sub-domain volume). In the
CCW region, x< xc (figure 14a), the cavities have relatively small effective radii. The
entrainment in the breaking CCW of case C generates significantly more cavities than
cases A and B due to the fully overturning CCW. In the RT region or for our purposes
xc< x< xB (figure 14b), all three cases have very similar air cavity distributions. In the
DW region or x> xB (figure 14c), the three cases have similar distributions for reff <

0.1. However, case A has significantly more cavities for reff > 0.1, which indicates
why case A has the maximum average void fraction, average entrainment volume and
subsequently largest average entrainment rate. The maximum cavity radius present and
the total number of cavities increases from the CCW to DW region.

To understand the dependence of the spectrum in y, we separate the DW region
(figure 14c) into two subregions. Figure 14(d) shows the air cavity density spectra
for the central core of the DW region, or |y|6B. This spectrum is nearly identical in
magnitude and slope to the RT region in figure 14(b). Figure 14(e) shows the DW for
|y| > B where the generation of larger bubbles due to the wave overturning is clear.
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Case CCW RT DW

A −7.71 −4.38 −4.25
B −7.19 −4.42 −4.48
C −4.92 −4.52 −4.82

Mean — −4.44 −4.51

TABLE 4. Power-law exponent β for N ∼ rβeff for reff < 0.1 in the CCW, RT and DW
regions.

For these two subregions, the volume in the density spectra is the DW subdomain
region of figure 14(c) for comparison. Note that for reff < 0.1, the two subregions
contribute almost equally to the total spectrum in figure 14(c).

Of interest to the modelling community is the distribution of the bubble-size spectra,
or specifically the slope β of the power law N(r) ∼ rβ . Table 4 lists the power-law
exponent corresponding to figure 14(a–c). The power-law exponent for reff < 0.1 is in
the range −5<β <−4 as long as significant air is being entrained (i.e. not for cases
A and B in the CCW region). The power-law exponent for cases A and B in the
CCW region is effectively the same; however, case B has a slightly smaller slope and
a larger number of cavities than case A, which is consistent with the observation that
there is a small amount of overturning in this region for this case. Additionally, the
power-law exponents for case C in the breaking CCW and DW region are effectively
the same. Finally, there is a slight increase in β with B/D in the RT and DW regions.

The value of β depends on many physical processes. Dimensional analysis for the
spectrum above the Hinze scale gives a value of −10/3 for a given entrainment rate
(Garrett, Li & Farmer 2000). Experiments of unsteady breaking waves support this
value (Deane & Stokes 2002). In appendix B, we show through energy conservation
that the initial breakup of a cavity by a turbulent field in the absence of any other
physical mechanism produces this same −10/3 value. This value however is only
valid for the initial moment of cavity breakup. Further breakup by turbulence and
buoyancy effects will increase the number of smaller bubbles and decrease the number
of larger bubbles (Garrett et al. 2000; Deane & Stokes 2002). As the values in table 4
represent long time averages of entrainment, turbulent breakup and buoyancy, a value
β >−10/3 is expected. The slopes in table 4 are consistent with the experiments of
a turbulent entraining ship hull boundary layer (β =−4.36) where multiple physical
effects, including entrainment, buoyancy and turbulence, are present (Masnadi et al.
2018).

6. Summary
We present simulations and analysis of the three-dimensional air entraining flow

in the wake of a canonical surface ship for a range of half-beam-to-draft ratios
0.75 6 B/D 6 2.1 and dry draft-based Froude numbers 2.38 6 Fr 6 3, matching the
values in laboratory-scale experiments (Drazen et al. 2010). The high-resolution iLES
employ state-of-the-art conservative volume-of-fluid (Weymouth & Yue 2010) and
boundary data immersion methods (Weymouth & Yue 2011) to enable robust and
accurate prediction of the large-scale flow field and air entrainment for complex
air entraining flow. The analysis of air entrainment utilizes a newly developed
Lagrangian method, borrowed from image processing techniques and modified to
ensure conservation of bubble volume in the post-processing phase, to efficiently
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identify regions of connected air cavities to isolate entrainment. We observe reasonably
good agreement between simulations and related experimental data.

The analyses provide new insight into the flow structure and large-scale air
entrainment characteristics within the near wake of a canonical surface ship. Analysis
of the mean interface characteristics provide a detailed description of the three
regions of the near wake: the converging corner wave, rooster tail and diverging
wave. It confirms that the geometric wake characteristics in the CCW region scale
ballistically, similar to the behaviour of supercritical chute piers. The small parametric
study of the rectangular geometry and stern speed in appendix C confirms that the
convergent corner waves are ballistic (gravity driven). This scaling gives a collapse
with draft Froude number and geometry for xc, the location at which the CCW
collide on the centreline, as xc(

√
2 cos φc)= BFr and that the convergent wave angle

tan θc = (
√

2 cos φc)/Fr. The angle φc = 45◦ is consistent with theory.
Examination of the mean flow structure in the mixed region immediately down-

stream of the three-dimensional geometry has only one main similarity to that of
two-dimensional hydraulic jumps (for the geometries considered): the presence of a
shear layer at the transition between the bulk water and mixed region. In the very
near wake, there is no appreciable evidence of a recirculating region situated above
a dividing streamline, making the mixed region flow behind the stern significantly
different than two-dimensional sterns or supercritical hydraulic jumps. We identify
the presence of a streamwise jet with secondary vorticity inside the mixed region
above the shear layer and below the average interface that originates from the
three-dimensional quasi-steady breaking wave originating from the corners of the
geometry. Further downstream in the diverging-wave region, the breaking waves
reintroduce this three-dimensional structure that might resemble a roller bore with
a strong cross-stream advection on an oblique plane that directly influences the air
entrainment (and turbulent statistics as shown in Part 2) in this region.

Lagrangian analysis of the air entrainment in the wake shows that it is strongest
where wave breaking occurs and the maximum void fraction and amount of entrained
volume depend upon the geometry. For the cases considered here, the narrowest
geometry produces the largest void fractions and total volume of entrained air due
to the fact that it generates large cavities in the DW region. The distribution of
the average entrained air provide estimates of the average surface entrainment rate
S(x̂). An initial peak of the surface entrainment rate occurs in the CCW region and
scales with Fr. A secondary peak of the surface entrainment rate occurs near the
beginning of the DW where the diverging waves break and entrain additional air
cavities. The location of the secondary peak and its associated peak value have a
weak and inverse dependence on B. The average air cavity density spectra obtained
from the Lagrangian cavity volume show that the power-law exponent for an effective
spherical radius reff < 0.1 is in the range −5< β <−4 under active air entrainment.
There is a slight increase in β with B/D in both the RT and DW regions.

Within realistic constraints on computational resources which limit the present
simulations to moderate (effective) Reynolds numbers and cavity sizes that are large
relative to physical Hinze scales, this work establishes a new understanding of the
complex flow and air entrainment in the near wake of a transom stern. Within
these limitations, we are able to obtain physical insights and quantification of the
scaling and characteristics of the wake geometry, flow structure and large-scale air
entrainment. Part 2 of this paper adopts an Eulerian analysis framework that combines
all of the surface fluctuations, spray and entrainment into a single, mixed-phase region
and presents the analysis and modelling of this incompressible highly variable density
turbulent flow.
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Appendix A. Lagrangian data labelling
This section describes a Lagrangian technique for distinguishing when a volume

fraction 0< f < 1 identifies a cell that is part of the bulk fluid region or entrainment
(or conversely spray). Used in computer vision techniques, the two-pass standard CCA
algorithm identifies and labels regions of connected (binary) data (Samet & Tamminen
1988), where a cell is considered connected to an adjacent cell if they both contain the
binary data. The first pass temporarily assigns labels to contiguously connected three-
dimensional regions and the second pass reduces each label to its smallest equivalence.
In CCA, it is standard practice to threshold the data prior to the first pass to permit
a fine-grained analysis of the connected components and ensure separation between
large and small cavities.

CCA begins by defining the atmosphere f 0
a as the large volume of air in the

simulation that is bounded by the upper domain boundary and the entrained air f̂a as
any volume of air that is not connected to the atmosphere. In cases where there is
no defined atmosphere, f 0

a = 0. Knowing that fa represents the air volume fraction the
total volume of air in the domain Ω∑

Ω

fa = 1−
∑
Ω

f = f 0
a +

∑
i

f̂ai. (A 1)

Here, all f̂ai are disjoint, i.e. for any fa(x0, t0) 6= 0 there is only one f̂ai that contributes
to the sum in (A 1). Applying the standard CCA practice of thresholding to fa
would violate (A 1) and result in a set of cavities sensitive to the thresholding levels.
Thus, our modification to the standard CCA procedure occurs in the application
of thresholding. The initial sweep at the largest threshold level finds and labels
significant cavities of air with the two-pass CCA. Subsequent sweeps reduce the
threshold level and either add any new non-zero elements to an existing cavity (if it
is so connected) or start a new cavity. A final threshold value of zero ensures that
(A 1) holds. In practice, this produces cavities insensitive to the specific threshold
levels chosen.

We note here that a single threshold level of 0 is equivalent to the algorithm
utilized in Deike et al. (2016). Testing of the single and multilevel threshold algorithm
showed near-identical performance. However, the single threshold level incorrectly
groups bubbles with r ∼ ∆ that are a distance slightly larger than ∆ from a large
bubble with that larger bubble, biasing the volume of the larger cavity. The multilevel
threshold algorithm correctly identifies both bubble volumes as if they were on the
grid individually.

The information from the modified CCA algorithm provides calculation of the
volume of the individual air cavity vi

e =
∫

f̂ai(x) dx and effective spherical radius
ri

eff = [(3/4π)vi
e]

1/3 in § B.2 and § 5.1. To determine the average air cavity density
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Single-phase νe∆
−1 Two-phase

Grid k∆ t= 9 t= 20 δ∀b(t= 20) νe∆
−1(t= 9) β

643 0.0491 1.58× 10−2 9.99× 10−3 — — —
1283 0.0245 1.73× 10−2 7.57× 10−3

−8.0× 10−13 3.64× 10−2
−3.4± 0.7

2563 0.0123 1.66× 10−2 6.38× 10−3
−5.2× 10−14 3.37× 10−2

−3.5± 0.3
5123 0.00613 1.43× 10−2 5.22× 10−3

−3.0× 10−15 2.93× 10−2
−3.7± 0.4

10243 0.00307 1.23× 10−2 4.41× 10−3
−3.1× 10−17 2.50× 10−2

−3.8± 0.2

TABLE 5. Details for two sets of Taylor–Green vortex simulations using iLES. Single-
phase simulations νe∆

−1 at t= 9 and t= 20. Two-phase air bubble simulation normalized
fraction of bubble volume lost δ∀b = (1−∀b(t= 20)/∀b(0))/Nt over Nt time steps, νe∆

−1

at t= 9 and initial spectrum slope β.

spectra N(reff ; b) within a given liquid fluid volume ∀, we first count the number of
cavities n(reff ) within each effective radius bin b and define N(reff ; b) = n(reff )/(∀b).
A time average is performed such that the average air cavity density spectrum is

N(reff ; b)=
1
T

∫ t+T

t

n(reff , t; b)
∀b

dt. (A 2)

The units of the air cavity density spectrum are L−3 dr−1 (Deane & Stokes 2002).

Appendix B. Verification of the simulation method
We perform verification of the Navier–Stokes flow solver and the cVOF method

for single- and two-phase flows using the complex strain field provided by an
evolving Taylor–Green vortex (TGV) (Taylor & Green 1937). In previous work, TGV
simulations are used to provide characterization of iLES (Drikakis et al. 2007; Zhou
et al. 2014), and to study the interaction of vortices and microbubbles (Druzhinin
& Elghobashi 1998; Ferrante & Elghobashi 2007). We use TGV simulations to
quantify, for both single- and two-phase flows, the effective viscosity of our iLES as
a function of grid size and confirm the expected peak dissipation rate at time t∗ ≈ 9,
a rate of decay of kinetic energy κ of t−1.2 for t> t∗, and its transition to t−2 at large
time (Drikakis et al. 2007). For the two-phase simulations, we verify the volume
conservation of cVOF and confirm its ability to capture small-scale entrainment by
turbulence.

For our simulations, we use a triply periodic cubic domain of length 2π with
initial velocity field: u0 = u0[cos(kx) sin(ky) cos(kz), −sin(kx) cos(ky) cos(kz), 0]. We
employ symmetry planes to decrease the domain size by a factor of 8 without loss of
generality (Aspden et al. 2008). For two-phase simulations, we introduce a single air
bubble (ρair/ρwater= 0.001) of diameter kd= 0.5 located at (x, y, z)= (0.58, 1.55, 1.81).
Table 5 contains the simulation details. The physical Reynolds number is Re= u0k/ν.

B.1. Single-phase TGV simulations
Figure 15(a) shows the evolution of 〈κ〉 in the entire volume as a function of time,
for the range of resolutions k∆ considered. The energy decays as t−1.2 for t > t∗ ≈
9, and t−2 in the later stages (t & 11), as expected. We estimate the iLES effective
Reynolds number (or equivalently viscosity νe) by comparing the instantaneous energy
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FIGURE 15. (a,c) Evolution of kinetic energy 〈κ〉 and (b,d) grid-scaled effective viscosity
νe∆

−1 as a function of time for an inviscid simulation of a Taylor–Green vortex on varying
grids. ——, 10243; , 5123; - - -, 2563; — - —, 1283; · · · · · ·, 643; and in (a) , t−1.2

and t−2 power laws. (a,b) Single-phase simulations. (c,d) Two-phase simulations.

dissipation rate 〈ε〉 = d〈κ〉/dt to the square of the strain tensor D ≡ 2〈sijsij〉, where
κ = 1/2 ρu2

i , sij = 1/2(ui,j + uj,i), 〈〉 represents the volume average and (),i = ∂()/∂xi
(Aspden et al. 2008). The iLES effective numerical viscosity is then

νe =
〈ε〉

2〈sijsij〉
, (B 1)

which requires instantaneous volumetric measurements of d〈κ〉/dt and D to statistically
determine νe for each simulation. Figure 15(b) shows effective viscosity νe∆

−1 within
the volume using (B 1), showing that νe scales approximately linearly with ∆. The
energy dissipation rate reaches a peak value at t = T(u0k) ≈ 9. Table 5 shows the
peak value of the grid-scaled effective viscosity νe∆

−1 at t= 9 and during the decay
at t= 20.

B.2. Two-phase TGV simulations
In the two-phase TGV evolution, our main interest is the initial (t< t∗) phase where
air from the single large bubble entrains into the water, resulting in bubbles covering
a range of smaller sizes (once entrained, the entrained bubbles themselves fragment
resulting in even smaller bubbles and as the evolution continues, t>O(10), the result
is a large bubble cloud). We establish the mass conservation of the cVOF solver
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by calculating the normalized fraction of bubble volume from the cVOF function f
as ∀b ≡

∑
(1 − f )/Nxyz, summed over all points Nxyz = NxNyNz in the computational

domain. The normalized fraction of bubble volume lost is effectively within machine
accuracy throughout the simulation (t & 20) for all grids considered, as shown in
table 5. We verify the two-phase iLES dissipation characteristics in the same manner
as the single-phase simulations. Figure 15(c,d) shows the evolution of 〈κ〉 and scaled
effective viscosity νe∆

−1 in the entire volume as a function of time for a range of ∆.
The decay of the kinetic energy follows the t−1.2 and t−2 power laws and the effective
viscosity continues to show scaling with grid size at the peak vortex decay (t = 9)
in the same manner as the single-phase simulations (e.g. figure 15b). The estimated
values of the grid-scale effective viscosity at the peak (t∗≈ 9) are in table 5 and have
a dependence of νe on ∆ given by νe ≈ 0.036∆.

To quantify the expected initial power-law slope of N(r) ∼ rβ (see appendix A
for definition of N) of the small bubbles that entrain from the larger bubble, we
compare it to what can be theoretically expected from an energy argument. Consider
the initial breakup of a large cavity into a spectrum of smaller bubbles in a turbulent
flow. Assuming the absence of surface tension and gravity, the dominant external
force on the bubbles is the gradient of the (large-scale) dynamic pressure (Hinze
1955), Π = ∇P, where P is the pressure varying over the scale of the large cavity.
For a bubble of size r, the force acting on it is therefore ∼Πr3. Using an entrainment
analogy (Brocchini & Peregrine 2001), the entrainment distance from the large cavity
would scale as dr ∼ r, and hence the work done scales as W ∼ Πr4. The total
energy required to entrain all cavities of given bubble size r in volume ∀ is therefore
Er ∼Πr4

· N(r) dr · ∀. We now consider the turbulent kinetic energy at scale r ∼ k−1

given by κr ∼ E(k) dk∼ r−2E(r−1) dr per volume, where E(k) is the turbulence power
spectrum. The amount of energy for entrainment comes from turbulence in the volume
surrounding the initial large cavity (with surface area A times the entrainment distance
dr). Therefore, the total available turbulent kinetic energy in the entrainment volume
for bubble size r is κrAdr ∼ Ar−1E(r−1) dr. Equating this to total energy required
for the cavity breakup Er, we finally obtain N(r) ∼ r−5E(r−1). For large Reynolds
number flows and small bubble size r (compared to the large cavity), we argue that
E(k) can be described by a Kolmogorov energy spectrum, E(k) ∼ k−5/3. This gives
the power-law bubble size spectrum N(r) ∼ r−10/3 for the initial breakup of a large
cavity into smaller bubbles.

Figure 16 plots the average bubble-size density spectra N(reff ) obtained from
iLES (from the initial t < t∗ entrainment phase) with different grid resolutions ∆,
where ∀ in (A 2) is the computational domain, the time average is over one vortex
period (uok)−1. Note that the original large bubble is not included. At these effective
Reynolds numbers, we expect that the variation of iLES effective viscosity in table 5
should have a minimal effect on the large-scale statistics. From figure 16, the
largest entrained bubbles are however reff k . O(10−1). The results show reasonable
collapse with N(reff ) close to the r−10/3

eff power law within the error of the fit. The
theoretical value of −10/3 we derive is for the expected size distribution of air
entrainment across a (single, large) interface, which does not account for effects such
as fragmentation of the bubbles after they are entrained. For cVOF, we are able to
quantify the bubbles in the bulk with time, but not directly the air entrainment which
is inferred from the bulk statistics. Thus it is, in general, difficult to separate the
entrainment from the fragmentation effects in the bubble-size spectra. For these results
(averaged over period T within the initial phase of entrainment), bubble fragmentation
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FIGURE 16. Two-phase Taylor–Green vortex: bubble-size density spectra N of the initial
entrainment of bubbles rk � 1 from a large bubble plotted as a function of effective
spherical radius normalized by vortex wavenumber reff k: iLES with E 1283; @ 2563;
× 5123; 6 10243 grids; and p 2563 with turbulent Weber number = 1000. —— r−10/3.
Inset: effective viscosity νe as a function of grid ∆ for the same symbols and —— νe =

0.036∆.

within the averaging window plays a role, and β =−10/3 is expected to be an upper
bound, as the bulk bubble spectral slope is known to evolve and generally decrease
with time (Deane & Stokes 2002; Deike et al. 2016).

As k∆ decreases (from 0.05 to 0.003, table 5), the r−10/3
eff power-law range extends

to smaller reff for bubble-size resolution (reff &∆). At this length scale, there exists a
numerically induced length scale due to the volume-conservative VOF reconstruction
bias towards bubbles with sizes larger than the grid size ∆. Intuitively, in any
conservative VOF scheme, cavities with radius a < ∆ and spacing ∼∆ will be
reconstructed as a single air volume. We identify aN ≈ ∆ as the numerical Hinze
scale (Weymouth et al. 2010) with bubble-size distribution for a < aN suppressed
(aN acting as a numerical surface tension). We consider bubbles larger than aN ≈ ∆
resolved and well represented. (Note that spectra presented in § 5.2 do not include
bubbles for a< aN .) Owing to the differences in effective viscosity and influence of
fragmentation, the convergence of N(reff ) with k∆ within the resolved reff k region
can be reasonably discerned.

Finally, to show that the bubble distributions in the resolved scales are unaffected
by (weak) surface tension, we include a two-phase TGV simulation using a turbulent
Weber number We = ρwateru′2d/σ = 1000. We choose this value using the magnitude
of the root mean square velocity fluctuations presented in Part 2, the size of the
air cavities reported in § 5 and the physical scale of the problem (see § 3). We
include the surface tension force in the governing equations using a continuum force
and standard height function method (Popinet 2009). From figure 16, we see that the
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Case Fr B/D tan φc
tan θcFr
α

xcα

FrB
HS 2.38 0.75 1.36 1.19 0.93
ES 2.38 1.0 1.24 1.03 1.03
GS 2.38 1.25 1.20 1.00 1.07
A 2.53 1.0 0.99 1.01 1.07
D 2.53 1.0 1.00 1.20 0.98
B 2.53 1.25 0.99 1.01 1.10
C 2.53 1.77 1.17 1.03 0.92
DS 2.53 1.0 1.32 1.05 1.01
FS 3.0 1.0 1.21 1.00 1.06

TABLE 6. Cases used in parameterization study. The grid resolution is a constant ∆ =
D/64 in the interrogation domain. The computational parameters for [D-H]S cases are Lx×

Ly × Lz = 10D× 6D× 3D, 1t= 0.005 and δt= 0.1. Case D is a full-geometry case with
Lx × Ly × Lz = 13D× 10D× 3D, 1t= 0.001 and δt= 0.05.

presence of surface tension has a relatively small effect on the (resolved portion of the)
bubble spectrum, with N for We= 1000 slightly decreased especially for smaller reff ,
as expected.

Appendix C. Scaling of three-dimensional dry transom wakes

The results of § 4.2 reveal the underlying scaling of the wake characteristics with
the ship-wake geometric and air entrainment characteristics. This appendix explores
the scaling of these characteristics by considering additional speeds Fr = (2.38, 3.0)
and geometries B/D= (0.75,2.1). For numerical expediency, the cases included in this
section employ the use of a symmetry plane boundary condition on the centreline of
the stern y = 0. The details of the cases considered for this analysis are in table 6.
The inclusion of the symmetry plane enables a smaller time step and thus increases
the iLES effective viscosity by an order of magnitude.

First, we perform an analysis and comparison to understand the implications of the
use of the symmetry plane in the simulations. Mathematically, the symmetry plane
condition requires the statistics of u′i to be unchanged about that plane and that v=v+
v′= 0 on the plane y= 0. These two facts imply: (i) u′v′= 0 and v′w′= 0 on the y= 0
plane; (ii) u′v′ and v′w′ are symmetric about this plane; and (iii) v′∼ 0 at y= 0. Based
on this, we conclude that for features where the turbulence statistics are most relevant,
we do not expect the results from cases utilizing the symmetry plane assumption to
be accurate. Extensive analysis gives the mean velocity and interface for cases with
the symmetry plane which are quantitative and qualitatively similar when compared to
results without the symmetric centre plane. Quantities involving turbulent fluctuations
and stresses (and as a result the air entrainment) have appreciable quantitative (and
some qualitative) differences. This is sufficient for us to use these data to further
elucidate the scaling arguments presented in § 4.2.

The ballistic scaling arguments for the CCW flow give expressions for the collision
point xc and convergent corner wave angle θc (4.1). In § 4.2, we established gravity
as the main mechanism driving the wake characteristics immediately aft of a dry
transom stern for constant Froude number. Table 6 confirms that the potential energy
jump at the surface D is the driving mechanism for different Froude numbers and the
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FIGURE 17. (Colour online) Scaling data from table 6. Black symbols: xcα, red symbols:
α/ tan θc.p A;a B;c C;u D;E DS; + ES;× FS;@ GS;A HS; - - - scaling from § 4.2
(grey area is ±10 %).

expressions for xc and θc in (4.1) hold as the values are again near unity. Figure 17 is
a graphical representation of the scaling for each parameter (on the line being that the
scaled value is 1.0). Note in table 6 that φc is not 45◦ for cases using the symmetry
plane. They adopt a consistent value of 50◦ 6 φc 6 53◦, which is likely due to an
interaction between the inlet condition and symmetry plane. Despite this difference,
the scaling for xcα/FrB and tan θcFr/α is still ≈ 1, which supports the conclusion of
gravity being the driving mechanism in this region.
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