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1Dipartimento di Ingegneria Meccanica, Università di Salerno, 84084 Fisciano (SA), Italy
2Institut de Mécanique des Fluides de Toulouse, CNRS–Université de Toulouse,
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The analysis of flow over a slowly perturbed bottom (when perturbations have a
typical length scale much larger than channel height) is often based on the shallow-
water (or Saint-Venant) equations with the addition of a wall-friction term which is
a local function of the mean velocity. By this choice, small sinusoidal disturbances
of wall stress and mean velocity are bound to be in phase with each other. In
contrast, studies of shorter-scale disturbances have long established that a phase lead
develops between wall stress and mean velocity, with a crucial destabilizing effect on
sediment transport along an erodible bed. The purpose of this paper is to calculate
the wall-shear stress under large length-scale conditions and provide corrections to
the Saint-Venant model.
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1. Introduction
The variation of the friction exerted by a fluid flow over a wavy boundary is an

important issue in fluid dynamics, e.g. for predicting the pressure loss in pipes or ducts
with variable cross-section, or the free-surface level in open flows, or the momentum
transfer and wave growth on a deformable interface or the erosion rate on an erodible
bed.

In some situations, such as atmospheric flows over hills or water waves, the
vertical extent of the flow is so large that it plays no significant role, and the flow
may be considered as unbounded, with possibly a boundary-layer structure for the
incoming flow. A laminar-flow analysis of such a situation was provided by Benjamin
(1959), within the frame of the Orr–Sommerfeld equation in a curvilinear system of
coordinates. The analysis is based on the existence of a two-layer structure for the
disturbances, namely an inviscid outer layer and a viscous inner layer close to the
wavy bottom. The analysis of turbulent flow by Jackson & Hunt (1975) is based
on the existence of a similar two-layer structure, with an outer inviscid layer, where
advection dominates, and an inner layer where Reynolds stresses play a significant
dynamic role and can be modelled using a mixing length. Improvements have been
provided by further analyses, see Belcher & Hunt (1998) for a review. For both
laminar and turbulent flow, an important result is that the phase of the shear stress
leads that of the wavy bottom, owing to the fluid’s inertia.
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Laminar flow (h/L)Re � 1 (h/L)Re � 1

Turbulent flow (h/L)c−1/2
f � 1 (h/L)c−1/2

f � 1

Re � 1 Very viscous flow –
(lubrication, falling films)

Re � 1 Fully developed flow Layered flow

c
1/2
f � 1 (rivers, channels) (wind over hills or water waves)

Table 1. A tentative classification of slowly varying flows (h/L � 1) and corresponding typical
applications (note that the dashed-out case shown with a dash corresponds to requirements
which cannot be met together).

On the contrary, for rivers and open channels, or tides in shallow seas, the flow is
generally fully developed over its total depth, so that the latter becomes a relevant
length scale of the problem. Such flows have been much studied in relation with,
in particular, the issues of sediment transport and ripple and dune formation, see
Engelund & Fredsoe (1982) for a review. Numerical results have been provided for
particular cases, within the framework of some turbulence model (Richards 1980;
Sumer & Bakioglu 1984; Colombini 2004). These results show that the shear stress
leads the bottom deformation. However, no general relationship was provided. No
measurements are available for fully developed flow either: those of Abrams &
Hanratty (1985), of the shear stress over a rigid wavy bottom, correspond to a
wavelength equal to the channel height, so that the condition for fully developed flow
(see below and table 1) is not satisfied.

It seems that a theoretical analysis of bounded fully developed flow is still missing,
unlike the case of unbounded flow. One consequence is that the widely used Saint-
Venant – depth-averaged – equations still rely on disputable closure laws, for both
the shape of the velocity profile and the bottom shear stress, of heuristic or empirical
nature (e.g. Balmforth & Mandre 2004).

The goal of this paper is to improve this situation by providing consistent corrections
to the bottom shear stress and pressure gradient associated with slow changes in the
water depth, for two-dimensional turbulent flow. For such flow, the transverse velocity,
normal to the boundary, is much smaller than the characteristic streamwise velocity,
U , so that the flow is described by the boundary-layer equations. These equations
describe a variety of flows – not only boundary layers – which can be tentatively
classified into three types, as presented in table 1. The simplest type corresponds
to flows with thickness h not only much smaller than the characteristic length L

over which h varies, but also smaller than the viscous diffusion length ν/U : these
low-Reynolds-number flows are described by lubrication theory (Batchelor 1967),
including, if needed, corrections related to small inertia effects (Chang & Demekhin
2002; Luchini & Charru 2010). Analysis of large-Reynolds-number flows requires
a further distinction: whether the flow is fully developed, or not, over the total
depth h. The condition for fully developed flow is that the diffusion time of bottom
disturbances over the flow depth h is much shorter than the advection time L/U .
This diffusion time is h2/ν for laminar flow, and h/uτ for turbulent flow where uτ is
the friction velocity, so that the condition for fully developed flow is (h/L)Re � 1 in
the former case, and (h/L)c−1/2

f � 1 in the latter where cf is the friction coefficient.
If one of these conditions is not met, then the perturbed flow has a layered structure
(of two or more layers) as analysed by Belcher & Hunt (1998).
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h(x, t)

y = yb (x, t)

y = ys (x, t)

Figure 1. Sketch of the free-surface channel with a variable bottom.

The calculation of the inertial correction to the bottom shear stress presented below,
and the associated correction to the pressure gradient, will allow the derivation of
a consistent set of depth-integrated equations of motion, which replace the classical
Saint-Venant equations.

The paper is organized as follows. In § 2, we start by showing the equivalence of
flow between a variable bottom and a variable free surface to one in which only
the bottom varies and the free surface is replaced by a stress-free symmetry plane.
In the next two sections, we solve this problem by a multiple-scale expansion up to
first order in the small time-derivative and gradient of the channel depth, first for
laminar and then for turbulent flow. In doing so, we derive the quasi-one-dimensional
depth-averaged equations that couple the depth to the mean velocity and pressure,
and obtain the phase lead of the wall shear stress. Applications will then be presented
in § 5 that concern the behaviour of surface waves and the bottom shear stress.

2. Boundary-layer equations for channel flow
We want to address the general problem of free-surface flow driven by gravity on

a variable bottom yb(x, t), when both the free surface and the bottom are slowly
varying with x and t except for a constant slope angle θ between the y-axis and
gravity (figure 1). The origin of coordinates is at the reference free surface and the
y-axis is directed orthogonal to it and upwards (see figure 1), so that the free surface
is located at y = ys(x, t) and the bottom is at y = yb(x, t) (a negative value). ys and
yb denote the upward elevations of free surface and bottom, respectively. The local
fluid depth is h(x, t) = ys(x, t) − yb(x, t).

Whenever the typical scale of variation in the x-direction is asymptotically
large compared to the y-scale, the Navier–Stokes equations of either laminar or
turbulent incompressible flow reduce to Prandtl’s boundary-layer equations, namely
in dimensional form

ux + vy = 0, Py = 0, (2.1a)

ut + uux + vuy + ρ−1Px = ρ−1τy. (2.1b)

Here u and v denote as usual the x- and y-component of velocity. The modified
pressure P incorporates the effect of gravity g and of the permanent slope θ as

P = p + ρg(y cos θ − x sin θ), (2.2)

where p is the standard thermodynamic pressure. The shear stress τ has been left
unspecified so that (2.1a, b) may equivalently be applied to either laminar or the
Reynolds-averaged component of turbulent flow by just inserting a suitable expression
for it.
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h(x, t)

y

x

Figure 2. Sketch of the symmetric-duct problem, equivalent after the Prandtl transformation
to the more general problem of figure 1.

A distinction is needed between the boundary-layer equations and the presence of
an actual layer within the flow space. Equations (2.1a,b) not only hold in the classical
boundary layer, where the x-scale is fixed by the geometry of the solid wall and the
y-scale is implicitly determined to be small by the properties of the flow, but also in a
channel when the y-scale is given a priori but the x- and t-scales turn out to be large.
The main difference between these two problems lies in the boundary conditions.
In fact, in a classical boundary layer the pressure gradient is imposed by the outer
stream and (2.1a,b) allow only two velocity conditions at the wall and one at infinity,
whereas in a duct or channel Px acts as an additional unknown and the velocity
boundary conditions become four. (This is, for instance, the standard procedure used
to study the inflow transient.) With reference to figure 1, the boundary conditions are

uy(x, ys, t) = 0, v(x, ys, t) = ys,t + u(x, ys, t)ys,x, (2.3a)

u(x, yb, t) = 0, v(x, yb, t) = yb,t . (2.3b)

(More general adherence conditions for a solid moving boundary could be u(x, yb, t) =
ub and v(x, yb, t) = yb,t + ubyb,x , where ub is the horizontal velocity of the bottom.
Here we assume our reference frame to be such that the mean horizontal velocity
of the bottom is zero, and any variable horizontal velocity that may be caused by
deformation to be of higher than the first order in the boundary-layer expansion.)

Within the context of the boundary-layer formulation, the general problem defined
above can easily be reduced to the simpler problem of two-dimensional flow between
a symmetry (stress-free) plane at y = 0 and a single slowly varying wall located at
y = − h(x, t) = yb − ys (figure 2). Indeed, the boundary-layer equations are known to
be invariant under Prandtl’s shift (y ′, v′ and y, v denote the old and the new variables,
respectively):

y = y ′ − ys(x, t); v = v′ − ys,t − u ys,x. (2.4)

It can be easily verified that applying (2.4) transforms the boundary conditions (2.3)
into

uy(x, 0, t) = v(x, 0, t) = u(x, −h, t) = 0; v(x, −h, t) = −ht . (2.5)

Therefore, the problem of figure 1 is integrally transformed into that of figure 2, and
all results obtained for the latter shall be subsequently transferable to the former
more general problem using (2.4).

3. Laminar flow in a slowly varying duct
As a preparation for the subsequent analysis of turbulent flow, let us start by

examining the laminar solution to the problem defined by (2.1a,b) with boundary
conditions (2.5). We shall do so by two different methods, a straightforward
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520 P. Luchini and F. Charru

perturbative expansion of the velocity profile and the consistent section-averaged
equations recently introduced by Luchini & Charru (2010).

Depth h(x, t) is assumed to be a given slowly varying function of both variables,
such that ht and hx are inversely proportional to a large characteristic scale that may
asymptotically be driven to infinity. (The total variation in h itself need not be small,
only to occur over a large time and distance.) Note that in this analysis the x-scale
is not fixed by Reynolds number but rather by the variation of h; thus our results,
though based upon the boundary-layer equations, will be uniformly valid with respect
to Reynolds number.

At order 0 with respect to ht and hx , the continuity equation (2.1a) trivially produces
v(0) = 0 while the momentum equation (2.1b), with a constant viscosity ν such that
τ = ρνuy , reduces to

νu(0)
yy = ρ−1P (0)

x . (3.1)

Its solution is Poiseuille flow:

u(0) = (1 − z2)uM, (3.2a)

P (0)
x =

−2ρνuM

h2
, (3.2b)

where z = y/h(x, t), v(0) = 0, and uM is the local maximum velocity (attained at
z = 0).

3.1. The first-order velocity profile

At order 1, (2.1a) and (2.1b) become

u(0)
x + v(1)

y = 0; P (1)
y = 0, (3.3a)

νu(1)
yy − ρ−1P (1)

x = u
(0)
t + u(0)u(0)

x + v(1)u(0)
y = u

(0)
t + u(0)u(0)

x − u(0)
y

∫ y

0

u(0)
x dy, (3.3b)

with u(1)
y (0) = u(1)(−h) = v(1)(0) = 0 and v(1)(−h) = −ht . The latter requires

∂

∂x

∫ 0

−h

u(0) dy = Qx = −ht , (3.4)

where Q is the flow rate per unit width. Equation (3.4) effectively represents a
compatibility condition for the two boundary conditions on v(1). It may also be
reformulated in terms of the mean velocity U = Q/h = 2uM/3 as

ht + (Uh)x = 0 (3.5)

and is easily recognized to represent the integral form of mass conservation. Equation
(3.5) eventually determines the variation of U for a given h(x, t) and then, through
(3.2b), the pressure gradient P (0)

x . A similar compatibility condition for v(2) requires
the integral of u(1) to be constant and implicitly determines the value of the pressure
gradient P (1)

x . Without loss of generality this constant can be assumed to be zero, so
that the zeroth-order flow rate equals the total flow rate, i.e.∫ 0

−h

u(1) dy = 0. (3.6)

We now change independent variable from y to z = y/h(x, t). By a standard
transformation which also finds its use in connection with similarity solutions of the
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Figure 3. First-order velocity correction (3.10): —, coefficient of uM,x; – –, coefficient of
ht ; - - -, coefficient of uM,t .

boundary-layer equations, the right-hand side of (3.3b) becomes

u
(0)
t |y + u(0)u(0)

x |y − u(0)
y

∫ y

0

u(0)
x |y dy

= u
(0)
t |z + u(0)u(0)

x |z − u(0)
z

∫ z

0

(
ht/h + u(0)

x |z + hxu
(0)/h

)
dz. (3.7)

It follows from (3.2a) and (3.4) that u(0)
x |z + hxu

(0)/h = −3(1 − z2)ht/2h. Therefore,

νu(1)
zz − h2ρ−1P (1)

x = h2uM,t (1 − z2) + h2uMuM,x(z
4 − 2z2 + 1) + uMhht (z

4 − z2). (3.8)

Upon integrating twice, the expression of u(1) is found to be

νu(1) = −h2uM,t z
4/12 + h2uMuM,x(z

6/30 − z4/6)

+ uMhht (z
6/30 − z4/12) + C1z

2 + C2z + C3, (3.9)

where C1, C2 and C3 are free constants, with C1 = h2(ρ−1P (1)
x + uM,t + uMuM,x)/2.

Imposing the three conditions u(1)
z (0) = u(1)(−1) =

∫ 0

−1
u(1) dz = 0 finally gives

νu(1) = h2uM,t (−z4/12 + z2/10 − 1/60)

+ h2uMuM,x(z
6/30 − z4/6 + 11z2/70 − 1/42)

+ uMhht (z
6/30 − z4/12 + 2z2/35 − 1/140) (3.10)

with

ρ−1P (1)
x = (4/35)uMht/h − (4/5)uM,t − (24/35)uMuM,x. (3.11)

The resulting profiles of the three functions that appear in the expression of the
first-order velocity u(1)(z), normalized so that their value at 0 is −1, are shown in
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522 P. Luchini and F. Charru

figure 3. Notice that by use of the continuity equation (3.5), (3.10) and (3.11) can be
recast as a linear combination of uM,t and any two of ht , hx and uM,x .

3.2. Boundary forces

The first-order solution of (3.3a,b), in addition to the velocity profile, yields
corresponding corrections to both pressure and shear stress at the wall (pressure
being important for the evolution of the free surface, if any, and shear stress for its
effects on a channel’s bottom, as will be exemplified in § 5). The pressure correction
was determined by choosing the free constants in the expression of velocity in such a
way as to enforce (3.6); by summing together the zeroth-order and first-order results
(3.2b) and (3.11), while at the same time expressing uM through the mean velocity
U = 2uM/3, the equation providing the total pressure gradient may be rewritten in
the following form that will be useful later:

6

5
Ut +

54

35
UUx − 6

35

Uht

h
+

Px

ρ
= −3νU

h2
. (3.12)

The first-order shear stress τ (1)
w at the boundary y = −h(x, t), on the other hand,

is proportional to the derivative of the velocity correction (3.10), and allows the total
shear stress to be expressed as

τw = τ (0)
w + τ (1)

w =
3ρνU

h

(
1 +

h2Ut

15νU
+

4h2Ux

35ν
+

hht

105ν

)
. (3.13)

In steady flow (where hU = const. and thus hUx = −Uhx), this expression simplifies
to

τw = [1 − (4Re/35)hx] τ (0)
w , (3.14)

where Re = hU/ν is the mean-velocity Reynolds number and is, in this particular
case, constant with x.

It should be remarked that for undulating height perturbations, the term
proportional to hx is in quadrature with h itself, whereas the zeroth-order shear
stress (which changes quasi-statically, insofar as it is proportional to U/h = Q/h2) is
in phase with it. Signs are such that the first-order correction produces a phase lead.

3.3. The method of consistent section-averaged equations

If only the boundary forces are of interest and not the details of the velocity profile, a
quicker way to obtain the former directly was proposed by Luchini & Charru (2010).
In view of a subsequent generalization to turbulent flow in the next section, it may
be interesting now to verify that the laminar pressure gradient and shear stress can
indeed be re-obtained in this way.

The key observation is that an equation such as (3.12), tying the mean velocity
to the first-order-corrected pressure gradient, can be consistently generated from the
integrated form of the kinetic-energy balance (Bernoulli) equation, while only using
the zeroth-order velocity profile. (The kinetic-energy equation had already been noted
by Usha & Uma (2004) to give the right stability threshold of long waves in a falling
liquid film, but its generality as a consistent nonlinear formulation does not appear
to have been recognized at the time.)

The kinetic-energy balance appropriate to the boundary-layer approximation can
be constructed by multiplying (2.1b) by u and integrating, which can be written as

∂

∂t

αhU 2

2
+

∂

∂x

βhU 3

2
+

hUPx

ρ
= −f (0), (3.15)
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where f (0) is the dissipation function, f (0) = ν
∫ 0

−h
u(0)

y

2
dy (the index (0) emphasizing

that it is evaluated for the zeroth-order velocity profile), and α and β are the form
factors

α =
1

hU 2

∫ 0

−h

u(0)2 dy, β =
1

hU 3

∫ 0

−h

u(0)3 dy. (3.16)

The reason (3.15) holds true for the first-order-accurate pressure gradient is that the
first two terms, containing time- and x-derivatives, are already of first order while the
dissipation, owing to the minimum-dissipation property of laminar flow in a straight
channel, has a vanishing first-order correction (Luchini & Charru 2010).

In order to be compared to the outcome of the previous section, (3.15) can be
transformed to a convective form, by subtracting the continuity equation multiplied
by βU 2/2 and then dividing by h. It results in

∂

∂t

αU 2

2
+ U

∂

∂x

βU 2

2
− (β − α)

U 2

2h

∂h

∂t
+

UPx

ρ
= − f (0)

h
. (3.17)

For the parabolic laminar velocity profile, the coefficients (3.16) and the dissipation
function, respectively, are evaluated as α =6/5, β =54/35 and f (0) = 3νU 2/h. With
these values, (3.17) can be recognized to be term-by-term identical to (3.12). Yet the
first-order velocity correction u(1) was not involved in its derivation this time.

After the pressure gradient Px has been determined to first order, in one or the other
way, the section-averaged momentum equation becomes instrumental in calculating
the first-order-accurate wall-shear stress τw . The integral of (2.1b) from −h to 0 may
be written as

(hU )t + (αhU 2)x + hρ−1Px = −ρ−1τw, (3.18)

where τw(x, t) is the fluid shear stress on the bottom surface and α is the same
form factor already defined in (3.16). Differently from the dissipation function, τw

contains both zeroth- and first-order contributions, and cannot be considered known
a priori. However, Px has already been extracted from either (3.12) or (3.17) and is
now known; the momentum integral then becomes an expression for τw itself.

The convective form of (3.18), obtained by subtracting the continuity equation
multiplied by αU and then dividing by h, reads

− τw

ρh
= Ut + U (αU )x − (α − 1)

Uht

h
+

Px

ρ
. (3.19)

For α = 6/5, eliminating Px between (3.19) and (3.17) exactly reproduces the shear
stress previously obtained in (3.13), a result which can also be easily verified.

4. Turbulent flow
Under turbulent-flow conditions, the Reynolds-averaged turbulent velocity is still

governed by (2.1) with boundary conditions (2.5). The closure of these equations,
however, requires a turbulence model for the shear stress, τ .

4.1. Constant-viscosity turbulence model

The simplest possible turbulence model is a constant eddy viscosity. Although this
is a very rough model and is likely to be insufficient for most applications, here
we consider it first, for the two reasons that its use is not rare in connection with
shallow-water flow (Engelund 1970) and that it may serve as a comparison baseline
for subsequent improvement.
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The justification for an eddy viscosity being held constant is that all models that use
a variable one predict negligible variations in the central part of a channel. Adopting
a constant eddy viscosity everywhere amounts to supposing that only the central
region is important for the phenomenon under study. Of course, already a sign of
the dangers of this assumption is that the mean turbulent flow in a straight channel
then turns out to have a parabolic Poiseuille profile just like a laminar flow. This is
contrasted by the obvious advantage that one can immediately recycle all laminar
results by simply inserting an appropriate value of viscosity in them. It seems fair
to determine this effective (turbulent + laminar) viscosity by imposing that at zeroth
order it should return the empirically observed friction coefficient cf = 2τ (0)

w /ρU 2.
The effective viscosity having this property is

ν =
cf hU

6
. (4.1)

In turbulent flow, cf may generally be a function of Reynolds number as well as wall
roughness; by parameterizing our results in cf we implicitly account for an arbitrary
dependence on both. With this choice (3.13) and (3.14), respectively, become

τw =

(
cf +

2

5

hUt

U 2
+

24

35

hUx

U
+

2

35

ht

U

)
ρU 2

2
(unsteady), (4.2)

τw = [cf − (24/35)hx]ρU 2/2 (steady flow). (4.3)

4.2. Variable-viscosity turbulence model

The main defect of assuming a constant eddy viscosity, to predict an unrealistic
mean-velocity profile, may be overcome by adopting a variable eddy viscosity which
depends on the wall-normal coordinate y (an algebraic turbulent-viscosity model,
as it is commonly qualified to distinguish it from those that introduce additional
differential equations). In fact, replacing (3.1) by[

ν(y)u(0)
y

]
y

= ρ−1P (0)
x (4.4)

can return just any desired mean-velocity profile u(0)(y) provided only

ν(y) =
τ (0)

ρu
(0)
y

=
yP (0)

x

ρu
(0)
y

=
−yτ (0)

w

ρhu
(0)
y

. (4.5)

The unperturbed velocity profile then becomes the starting point of the analysis.
Equation (4.5) was repeatedly exploited in the past to deduce a turbulent-viscosity
diagram from analytical (Hinze 1975), experimental (Nezu & Rodi 1986) or numerical
(Jimenez et al. 2001) mean-flow velocity data. The underlying closure assumption (the
‘model’) is then that the same effective viscosity as obtained from (4.5) will govern
velocity perturbations. This is not necessarily granted but, since it is not the purpose
of this paper to delve into the intricacies of turbulence modelling, we restrict ourselves
to saying that our results will be valid within the limitations of an algebraic turbulence
model, with all the reservations that the eddy-viscosity concept itself requires. It is, at
any rate, the same assumption as in Jackson & Hunt (1975) and a vast improvement
over a constant viscosity.

An algebraic turbulent-viscosity model has the very useful property that (4.4) is
still endowed with a minimum-dissipation property just as when viscosity is constant.
Therefore, the consistent section-averaged formulation of § 3.3 remains valid. We
shall now pursue this quicker approach, deferring the calculation of the velocity
perturbation to the Appendix.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

43
13

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010004313


Phase lead of shear stress in shallow-water flow over a perturbed bottom 525

Multiplying (4.4) by u(0) and integrating by parts gives

hUρ−1P (0)
x = −

∫ 0

−h

ν(y)u(0)
y

2
dy = −f (0). (4.6)

Conversely, nullifying the first variation of f (0) under the constraint of an unchanging
flow rate gives back (4.4). On the other hand, integrating (4.4) itself from −h to 0
yields hP (0)

x = −ρν(−h)u(0)
y (−h) = −τ (0)

w . Comparing these two expressions of P (0)
x , we

can write the zeroth-order dissipation function simply as

f (0) = ρ−1Uτ (0)
w =

cf U 3

2
(4.7)

(just another form of the law of energy conservation). The kinetic-energy balance
equation (3.17) then applies unchanged to turbulent flow, provided only the α and β

coefficients are properly recalculated according to (3.16) from the new velocity profile,
and directly yields an expression for the first-order-accurate pressure gradient Px .
Remarkably, the turbulent eddy viscosity does not explicitly appear in it.

The expression of the first-order shear-stress correction, on the other hand, is
generated just as in laminar flow, by taking the difference between the kinetic-energy
equation (3.17) divided by U and the momentum equation (3.19), namely:

τ (1)
w

ρh
=

1

U

∂

∂t

(α − 1)U 2

2
+

∂

∂x

(β − α)U 2

2
− U 2

2

∂α

∂x
− (β − 3α + 2)

U

2h

∂h

∂t
. (4.8)

By just assuming that an algebraic turbulent eddy viscosity exists, but without
actually using its expression, the consistent section-averaged formulation thus allows
us to cast the first-order wall-shear correction in a form that depends only on the α

and β coefficients and ultimately on the shape of the turbulent mean-velocity profile.
It is true that an equivalent viscosity is uniquely specified by the velocity profile
through (4.5), but its elimination is nonetheless important because (4.5) contains the
derivative of velocity while (4.8) contains only its integrals, and is thus much more
robust in the face of possible imprecisions in the profile itself. The form of (4.8), in
addition, elucidates that the wall-shear correction actually depends on the departure
of α and β from unity, that is of the velocity profile from flatness. As a turbulent
profile is typically flatter than a parabola, we can already suspect that the constant-
viscosity assumption of § 4.1, with its ensuing parabolic velocity profile, is likely to
have overestimated the shear stress.

4.3. Wall layer and defect layer

In order to evaluate the α and β integrals and thus obtain an explicit expression for
the boundary forces, we shall now introduce the standard asymptotic separation of
the turbulent flow into a wall layer and a defect layer. Let us stress, however, that
this is not an obligatory step: these form factors only depend on the unperturbed
velocity profile in a straight duct. They can be more accurately generated if needed,
for instance by integrating an experimental or a numerical velocity profile.

The distinctively most successful description of wall-bounded turbulent flow is its
conceptual separation into two regions: a wall layer, where velocities are of the order
of the wall-shear velocity uτ (defined as uτ =

√
τw/ρ) and distance from the wall is of

the order of ν/uτ , and a defect layer where the velocity defect uM − u (uM being the
maximum of u) is of the order of uτ and distances span most of the height h. The two
overlap in a logarithmic region where velocity u increases from O(uτ ) to uM − O(uτ )
like uτκ

−1 log(h + y) + const., κ being the von Kármán’s constant. The separation
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between wall and defect layer becomes more and more pronounced as uτ/uM →
0, and in this sense uτ/uM (or equivalently uτ/U ) may be regarded as the small
parameter around which asymptotic descriptions of turbulent flow are built. Since
uτ/U =(cf /2)1/2 turns out to be approximately proportional to [log(Reτ )]

−1, where
Reτ = huτ/ν, it can be maintained that asymptotic theories of turbulent flow are
expansions in powers of the square root of the friction coefficient, or equivalently
of the reciprocal logarithm of Reynolds number (Mellor 1972). (Incidentally, we
may remark that such an expansion introduces an additional small parameter in
the analysis, independent of the typical time and length scales characterizing the
boundary oscillations.)

The wall layer gives a negligible contribution (an exponentially small one in the
parameter uτ/U ) to the integrals in (3.16); therefore to evaluate α and β we only need
the properties of the defect layer, where the zeroth-order velocity profile is known to
have the functional dependence

u(0) = uM + uτF (y/h). (4.9)

The universal dimensionless function F (y/h) can be obtained from a theory, an
experiment or a numerical simulation, but its only independent variable is the
dimensionless coordinate z = y/h. In particular, it is independent of the physical
viscosity and/or wall roughness, which only appear in (4.9) by indirectly affecting
the value of uτ . In the matching region with the wall layer, z → −1, the velocity
profile must behave logarithmically as u ∼ uτκ

−1 log(1 + z) + const. A very common
assumption for channel flow is just to extend this logarithmic behaviour all the way
to the free surface z = 0, thus writing F (z) = κ−1 log(1 + z) and

u(0) = uM + κ−1uτ log(1 + z). (4.10)

This is because the departure from logarithmic behaviour, the so-called wake region,
is in this case rather small (Nezu & Rodi 1986). On the wall side (4.10) diverges but
its integral converges. In order to obtain a simple closed-form result, we shall now
calculate the first-order shear-stress correction using (4.10).

The first step is to express the maximum through the mean velocity. From the
integral of (4.10):

U =
Q

h
= uM +

uτ

κ

∫ 0

−1

log(1 + z) dz = uM − uτ

κ
, (4.11)

whence

u(0) = U + κ−1uτ [1 + log(1 + z)]. (4.12)

The coefficients we need, defined in (3.16), are then

α − 1 =
( uτ

κU

)2
∫ 0

−1

[1 + log(1 + z)]2 dz =
( uτ

κU

)2

, (4.13a)

β − 1 = 3
( uτ

κU

)2
∫ 0

−1

[1 + log(1 + z)]2 dz +
( uτ

κU

)3
∫ 0

−1

[1 + log(1 + z)]3 dz

= 3
( uτ

κU

)2

− 2
( uτ

κU

)3

. (4.13b)

Since the separation between wall layer and defect layer is in fact an expansion
in powers of uτ/U , the term in (uτ/U )3 can be neglected as compared to (uτ/U )2.
Recalling that (uτ/U )2 = cf /2, it turns out that the spatial and temporal derivatives
of α and β , though non-zero in turbulent flow, are O[(uτ/U )3] and thus negligible.
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As a consequence, the total wall-shear stress expressed by (4.8) can be given by

τw = τ (0)
w + τ (1)

w =

(
1 +

1

κ2

hUt

U 2
+

2

κ2

hUx

U

)
cf

ρU 2

2
, (4.14)

or for steady flow (where hU = const.) by

τw =

(
1 − 2

κ2
hx

)
cf

ρU 2

2
. (4.15)

This is our main result. In turbulent, as in laminar, flow on an undulated surface the
first-order correction to wall shear entails a phase lead. As in § 4.1, the dependence of
(4.14)–(4.15) upon the Reynolds number and wall roughness has been encapsulated
in the unperturbed friction coefficient cf . Notice also that in the limit of cf → 0
(which is formally achieved, though logarithmically slowly, when Re → ∞ on a
smooth surface) the whole shear stress goes to zero but the ratio between the first-
and zeroth-order terms (and thus the phase lead) remains proportional to hx . For
a sinusoidal disturbance of wavenumber k and for constant cf , the phase angle is
precisely kh/κ2 (but see (5.14b) below for the effect of a variable cf ).

Finally, it must be remarked that the correction (4.3) provided by the constant-
viscosity turbulence model was larger than the correction obtained for τw in (4.15)
by a factor ≈ 0.05c−1

f (e.g. by five times for cf = 0.01). Any suspicions that the
constant-viscosity model might be inadequate are thus confirmed.

5. Applications
In this section we revisit three classical problems treated within the framework of

the shallow-water equations, and show how their results are modified by the first-
order consistent formulation. These problems are surface-wave propagation and its
characteristic lines, the stability of a free-surface flow over a flat bottom, and the
steady free-surface flow over a wavy bottom.

5.1. Classical versus consistent formulation of the quasi-one-dimensional
channel problem

We now return to the general problem of channel flow between a variable bottom at
the position y = yb(x, t) and a free surface at the position y = ys(x, t) = yb + h, the
problem that was depicted in figure 1. If interaction with the air above is neglected,
pressure p at the position y = ys(x, t) must be constant. The x-derivative of (2.2)
along the surface then gives

Px = ρg(ys,x cos θ − sin θ). (5.1a)

The classical formulation of this problem (de Saint-Venant 1871) starts from the
integral laws of mass and momentum conservation written on the assumption that
local velocity is close enough to its mean value to be confused with a plug flow. The
following notation is used:

ht + (Uh)x = 0, (5.1b)

Ut + UUx + ρ−1Px = −h−1ρ−1τw. (5.1c)

(Of course, (5.1c) may also be seen as a particular case of (3.19) with α = 1.) These
equations are then combined with an empirical closure for the bottom shear stress.
Since first-order corrections play no role in the classical theory, the typically assumed
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closure relation for τw is the zeroth-order equation

τw =
cf ρU 2

2
. (5.1d )

Inserting Px from (5.1a) and τw from (5.1d) into (5.1b)–(5.1c), thus leaves a system of
two differential equations in the two unknowns h and U .

The Saint-Venant equations (5.1) are widely used for environmental problems in the
atmosphere and the ocean, as well as in rivers (Balmforth & Mandre 2004; Pedlosky
2003; Whitham 1974). They also describe gravity currents and snow avalanches
(Hopfinger 1983), as well as thin granular flows on slopes (Aradian, Raphael &
de Gennes 2002; Forterre & Pouliquen 2008). They also provide a useful model in
engineering calculations, e.g. for the pressure drop and phase distribution in two-
phase flows in ducts (Lin & Hanratty 1986). However, it should by now be clear
that the formulation (5.1) does not contain all the order-one contributions that arise
from a consistent account of the deviation of the velocity profile from flatness. Nor
is it wholly consistent with a plug-flow limit, which would imply that the whole shear
stress (but not its phase lead) becomes zero as compared to the other terms in (5.1c).

A consistent formulation obviating these difficulties, as shown in the previous
sections, replaces the pair of equations (5.1c) and (5.1d ) by the kinetic-energy equation
(3.17), which for the values (4.13b) of the correction coefficients may be written to
within an error O[(uτ/U )3] as

(
1 +

cf

2κ2

)
Ut +

(
1 +

3cf

2κ2

)
UUx − cf

2κ2

Uht

h
+

Px

ρ
= − cf

U 2

2h
. (5.2a)

The wall-shear stress decouples from the system, and the momentum equation is
not involved at all in the determination of the pressure gradient. Indeed, its role is
reversed with respect to the classical formulation: rather that accepting a heuristically
imposed τw and providing a pressure gradient Px to balance gravity in (5.1a), the
momentum equation now takes Px from the solution of the rest of the system and
becomes the means by which a first-order accurate τw can be calculated. For this
purpose, the momentum equation (3.19) with the α coefficient taken from (4.13a)
reads

− τw

ρh
= Ut +

(
1 +

cf

2κ2

)
UUx − cf

2κ2

Uht

h
+

Px

ρ
. (5.2b)

Eliminating Px between (5.2a) and (5.2b) yields the expression of τw that was
previously shown as (4.14).

5.2. Base flow and linearized disturbance equations

A quantitative comparison between the two formulations will now be performed
with reference to the problem of small perturbations of a constant base flow.
In a straight open-surface channel, the classical formulation (5.1a)–(5.1d ) and the
consistent formulation composed of (5.1a), (5.1b) and (5.2a) share the following
constant base solution for the velocity U = Ū and flow height h = h̄:

Ū 3 = g cos θ Fr2 Q, h̄3 =
Q2

g cos θ Fr2
(5.3)

where Q is the flow rate per unit width and Fr is the Froude number defined by

Fr2 =
Ū 2

gh̄ cos θ
=

2 tan θ

c̄f

. (5.4)
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For small perturbations of either the bottom or the free surface, letting h = h̄ + δh,
U = Ū + δU and linearizing the classical formulation (5.1) yields

δht + Ūδhx + h̄δUx = 0, (5.5a)

δUt + Ū δUx + g cos θ (δyb + δh)x = −δ

(
τw

ρh

)
, (5.5b)

δ

(
τw

ρh

)
= c̄f

Ū 2

h̄

[
δU

Ū
− (1 + b)

δh

2h̄

]
. (5.5c)

The term b appearing in the last equation, defined as

b = − h̄

c̄f

dcf

dh
, (5.6)

accounts for the possible dependence of the friction coefficient on depth h in the fully
rough regime of turbulent friction. Its value can be obtained from the logarithmic
law (A 17), i.e. b = κ−1

√
2c̄f which gives b = 0.35 for c̄f = 0.01. Tangent to (A 17) in

this range of cf is the empirical Manning–Strickler power law cf ∝ (h/hr )
−b with

b = 1/3, as used for similar purposes by Gradowczyk (1968).
For the same problem, linearizing the consistent equations (5.1b) and (5.2a) instead

gives

δht + Ūδhx + h̄δUx = 0, (5.7a)

(1 + ac̄f )δUt + (1 + 3ac̄f )ŪδUx − ac̄f

Ūδht

h̄
+ g cos θ (δyb + δh)x

= − c̄f

Ū 2

h̄

[
δU

Ū
− (1 + b)

δh

2h̄

]
, (5.7b)

with the wall-shear stress (4.14) linearized as

δτw

τ̄w

= 2
δU

Ū
− b

δh

h̄
+ 2a

h̄δUt

Ū 2
+ 4a

h̄δUx

Ū
. (5.7c)

Here we have introduced

a = (2κ2)−1. (5.8)

5.3. Characteristic lines of the shallow-water problem

The classical shallow-water problem is hyperbolic and admits surface waves with

speed Ū ±
√

gh̄ cos θ . As is well known, the properties of steady flow are affected
by the direction of propagation of such waves, and change when both wave families
propagate downstream, that is when the Froude number exceeds unity. This behaviour
is modified when the inertial correction to the bottom friction is taken into account.
In order to determine the characteristic lines of the system, according to Whitham
(1974), we collect coefficients of the first derivatives of the unknowns in the form of
a matrix and write the vector equation

(
δht

δUt

)
+

⎡
⎣ Ū h̄

g cos θ + ac̄f Ū 2/h̄

1 + ac̄f

1 + 4ac̄f

1 + ac̄f

Ū

⎤
⎦

(
δhx

δUx

)
= · · · , (5.9)

where the right-hand side, not written, involves δh, δU and the prescribed bottom
slope δyb,x . The characteristic lines of this system are determined by the eigenvalues
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Figure 4. Wave velocity (a) and growth rate (b) of the slow and fast modes, for
Fr = 1.5 (dashed line) and Fr = 2.5 (continuous line); circles (�) correspond to kh̄ = c̄f Fr/2.

σref = c̄f Ū/2h̄, c̄f = 0.01.

of the matrix of x-derivative coefficients. It can be noticed that setting ac̄f = 0 in
(5.9) returns the coefficient matrix of the classical surface-wave problem. From the
calculation of the propagation velocity of the characteristic lines, it can be easily
shown that both characteristics will propagate downstream when the Froude number
exceeds the critical value given by

Fr2
c =

1

1 + 3ac̄f

. (5.10)

As an example, for c̄f = 0.01 the critical Froude number becomes 0.96, slightly lower
than the value unity of the classical surface-wave problem in shallow waters.

5.4. Stability of a free-surface flow over a flat bottom

We now investigate the stability of flow over a flat bottom (δyb = 0), as first
studied by Jeffreys (1925). The system (5.7a, b) admits sinusoidal solutions, such
that δh= Re(ĥ exp[ik(x − ct)]) and δU =Re(Û exp[ik(x − ct)]), with the dispersion
relation

(1 + ac̄f )
( c

Ū
− 1

)2

− ac̄f

(
3

c

Ū
− 2

)
− 1

Fr2
+

ic̄f

kh̄

(
c

Ū
− 3 + b

2

)
= 0. (5.11)

Setting a = b = 0 yields Jeffreys’ result. The correction term b, accounting for a variable
friction coefficient, was introduced in a similar stability analysis by Gradowczyk
(1968), whereas the inertial correction ac̄f is introduced here for the first time.

Let us first consider the classical formulation (5.5) with b = 0, whose dispersion
relation equals (5.11) with a = b = 0. (As pointed out by Whitham (1974, pp. 85 and
134), this case is actually better analysed through the nonlinear equations and leads
to the so-called roll waves, as studied, e.g. by Needham & Merkin 1984.) The two
roots of the dispersion relation correspond to a wave mode and a damped mode.
Figure 4(a) displays the real part of the two modes, for two Froude numbers below
and above the neutral-stability Froude number Fr = 2. It shows that the velocity tends

to (1 ± 1/2)Ū for vanishing wavenumber and is close to Ū ±
√

gh̄ cos θ for large
wavenumber. Figure 4(b) displays the normalized growth rate. The damped mode is
strongly so (damping rate larger than frequency) for any wavenumber and Froude
number, whereas the wave mode is weakly damped when Fr < 2, and unstable for all
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wavenumbers when Fr > 2. For kh̄ � c̄f Fr/2 the growth rate σ scales as (kh̄)2, and
for larger wavenumber it tends to the constant value

σ =
c̄f Ū

2h̄

(
−1 ± Fr

2

)
. (5.12)

On including the two corrections ac̄f and b, the general picture shown by figure 4
remains the same, but the flow becomes unstable for all wavenumbers at a Froude
number Frt now given by

1

Fr2
t

=
(1 + b)2

4
− ac̄f

9 + 4b − b2

4
. (5.13)

Gradowczyk’s b correction decreases the threshold Froude number from Jeffreys’
value Frt = 2, whereas the inertial correction ac̄f increases it. For example, the b

correction alone gives Frt = 1.48 with b = 0.35 (or Frt =1.5 with b = 1/3), whereas
the inertial correction alone gives Frt =2.36 with c̄f = 0.01 (ac̄f = 0.031); when both
corrections are included, Frt turns out to be 1.63.

To date the precise threshold remains open to experimental verification. Whereas
nonlinear roll waves at large Froude number have been well investigated (e.g. Brock
1969), no specific study, to our knowledge, reports the experimental determination
of the stability threshold. An experimental investigation of the analogous laminar
problem (Julien & Hartley 1986) suggests that the threshold may be rather elusive.

5.5. Steady flow over a wavy bottom

We now consider linearized stationary flow over a sinusoidal bottom
δyb = Re(ŷb exp[ikx]), with small amplitude (|ŷb| � h) and zero phase (real ŷb), with
particular interest in the phase angle of the disturbance of the bottom shear stress.
Indeed, on an erodible bed, the component of the shear-stress disturbance in phase
with the ripples is responsible for their migration, whereas the out-of-phase component
is responsible for their growth or decay: positive angle corresponds to ripple growth
(unstable flat bed) and negative angle to ripple decay (stable flat bed).

For Froude number smaller than the threshold (5.13), we have shown that the
flow is stable; in this range, the disturbances induced by the wavy bottom can be
calculated from the linearized consistent equations (5.7) with time derivatives set to
zero. On introducing δh= Re(ĥ exp[ikx]) and δU =Re(Û exp[ikx]), the substitution
of (5.7a) into (5.7b) and (5.7c) gives, respectively,

ĥ

h̄
=

(
Fr2

Fr2
c

− 1 − i(3 + b)
c̄f Fr2

2 kh̄

)−1
ŷb

h̄
, (5.14a)

τ̂w

τ̄w

=
|τ̂w|
τ̄w

eiφ = −(2 + b + 4ia kh̄)
ĥ

h̄
, (5.14b)

where the critical Froude number Frc turns out to be the same as in (5.10), arising
from the analysis of characteristic lines. The first of the above equations gives the
disturbance of the local flow depth, and the second then gives the disturbance of the
bottom shear stress. Figure 5 displays the modulus and phase of τ̂w according to both
the classical (dashed lines) and consistent (solid lines) formulations, for the subcritical
Froude number Fr2 = 0.5 Fr2

c (figure 5a,b) and for the supercritical Froude number
Fr2 = 2 Fr2

c (figure 5c,d ).
For small wavenumber, kh̄ � c̄f Fr/2, the disturbance of the flow depth h, just as

that of the velocity U , is very small with respect to yb, i.e. of the order of ikŷb. Thus
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Figure 5. Modulus and phase of the bottom shear stress τw = |τw| eiφ for a = 0 (− −) and
a = 1/(2κ2) (—). (a, b), Fr2 = 0.5 Fr2

c ; (c, d ), Fr2 = 2 Fr2
c . τref = (ŷb/h̄)τ̄ , c̄f = 0.01, Frc = 0.96,

b = 0.35.

the free surface follows the bottom deformation. The perturbation of the bottom
shear stress is found from (5.14) to be

τ̂w

τ̄w

∼ −2i
2 + b

3 + b

kh̄

c̄f Fr2

ŷb

h̄
, (5.15)

with phase angle φ ∼ −π/2. In this limit, the inertial correction is negligible (no term
involving ac̄f ). In figure 5, the dashed and solid lines superpose in this limit.

For larger wavenumber, Frc̄f /2 � kh̄ �
√

c̄f /2, where the second inequality is
required for the flow to be fully developed, the bottom shear stress is strongly affected
by the inertial correction. In the classical formulation (ac̄f =0) the shear-stress
disturbance is given by

τ̂

τ̄
∼ 2(1 + b)

1 − Fr2

ŷb

h̄
. (5.16)

The phase angle is φ ∼ 0− for Fr < 1 (figure 5b, dashed line) and φ ∼ −π for Fr > 1
(figure 5d, dashed line): the phase angle is negative for all wavenumbers and Froude
numbers. In the consistent formulation (non-zero ac̄f ), φ becomes positive beyond
some critical wavenumber kc for subcritical Froude number (figure 5b, solid line),
whereas it remains negative for all wavenumbers for supercritical Froude number
(figure 5d ). The large-kh̄ limit of the shear-stress disturbance is given by

τ̂

τ̄
∼ i

4a kh̄

(1 − Fr2)/Fr2
c

ŷb

h̄
, (5.17)
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which shows that the phase angle tends to φ = π/2 for Fr < Frc and φ = −π/2 for
Fr >Frc (notice, however, that this limit is achieved outside the range of validity of
the present theory).

We can conclude that for Fr <Frc, there exists a critical wavenumber kc below
which the phase angle is negative and above which it is positive. The value of this
critical wavenumber can be obtained from (5.14) by imposing a real shear-stress
disturbance, and is given by

(kch̄)2 =
(2 + b)(3 + b)c̄f

8a
(
Fr−2 − Fr−2

c

) . (5.18)

For Fr > Frc, the phase angle is always negative, with and without the inertial
correction. Here is the main conclusion of this section: for subcritical Froude number
(Fr < Frc, where Frc is given by (5.10)), ignoring the inertial correction (4.15) of the
bottom shear stress implies negative phase angle φ; taking into account this correction
strongly changes the picture: the phase angle becomes positive for all wavenumbers
larger than kc.

6. Conclusion
The main aim of this paper was to provide quantitative expressions of the phase

lead of shear stress in fully developed flow, which is important for its destabilizing
effects on the dynamics of an erodible bed. A similar phase lead has long been known
to occur for waves short enough that their effect is confined to a thin boundary
layer. It was numerically observed to also occur at larger wavelengths, but no general
relationship was, to our knowledge, previously derived.

It is important to clarify the parameter range in which the present analysis applies.
First, the longitudinal length (and time) scale of the disturbance has to be large
compared to typical channel depth. This assumption, h/L � 1, places the analysis in
the general framework of the boundary-layer equations (and in so doing excludes the
possibility of separated flow). Next our analysis requires the perturbation to reach
the surface, i.e. the perturbed as well as unperturbed flow to be fully developed. (The
opposite limit of a perturbation confined near the wall had already been studied and
is outside the scope of the present paper.) The condition determining such behaviour
is (h/L)Re � 1 in laminar and (h/L)c−1/2

f � 1 in turbulent flow. The possible regimes
are illustrated in table 1. Finally, in part of the analysis we have used the defect-layer
concept, which is itself an asymptotic expansion in powers of c

1/2
f .

The analysis led us to reformulate the widely used Saint-Venant equations (mass and
momentum equations for a plug flow with a friction term). Luchini & Charru (2010)
had previously shown that a laminar-flow problem satisfying the above assumptions
can be consistently formulated if the momentum equation is replaced by a suitable
form of the Bernoulli kinetic-energy balance. Whereas for laminar flow the new
formulation is exact (as also illustrated in § 3), extending it to turbulent flow requires
certain additional assumptions, in particular an algebraic turbulence model (not
differently, in this respect, from the unbounded-flow analyses already available in
the literature). Interestingly though, the precise form of the turbulent eddy viscosity
does not appear in the final result, which is only expressed through integrals of the
mean-velocity profile.

At a deeper level, it turns out that the inclusion of friction in the equations of
motion is inevitably tied to a departure of the velocity profile from flatness. While
this is obvious for laminar flow, it was not a priori granted for turbulent flow, which
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at least in principle can indefinitely approach a plug flow when Re → ∞ and the
wall is smooth. Nonetheless, deviation from flatness appears in the inertial terms
with a weight of (uτ/U )2, and thus happens to be proportional to cf just like the
friction term. Therefore, even in a formal mathematical limit of Re → ∞ (cf → 0), it
is inconsistent to include one without the other.

This said, both friction and inertial-term corrections have a relatively minor
practical effect on those wave phenomena that are governed by the interaction of
pressure with gravity. This was brought out in §§ 5.3–5.4. Completely different is the
situation when shear stress itself is the objective of study, because then a correction
proportional to cf hx superposes onto a background that is already of the order of cf .
Indeed, it was shown in § 5.5 that in this case the consistent theory predicts a phase
lead that was absent in the classical theory.

The dynamics of shear stress is typically important for the slow evolution of erodible
beds, with the formation of ripples and dunes. Indeed, as long as separation does not
occur and a linearized analysis applies, provided that the sediment transport rate is in
phase with the shear stress (i.e. transport relaxation effects are negligible), bedforms
grow when the phase of the shear stress disturbance is positive and decay when the
phase angle is negative. Quantitative prediction of the out-of-phase shear stress, or
equivalently of the phase lead, is therefore of crucial importance, as it has long been
recognized for turbulent flow (Engelund & Fredsøe 1982; Colombini 2004) and for
laminar flow as well (Charru 2006). Similar remarks hold for the similar problem of
the evolution of a thin viscous film sheared by a gas flow. The results presented here
should be relevant for further understanding of these phenomena.

Appendix. The turbulent velocity perturbation profile
The method adopted in § 4 has allowed pressure and shear-stress corrections to

be determined without any knowledge of the actual velocity-perturbation profile.
Nothing impedes, however, the velocity perturbation from being calculated, should
it turn out to be of interest. This appendix is devoted to doing so in the case of a
stationary height modulation.

The first step in our previous variable-viscosity analysis was the determination of an
equivalent eddy viscosity from a given unperturbed velocity profile u(0)(y). Although
the unperturbed velocity distribution (4.12) may at first seem very simplistic, it actually
gives rise to a reasonable eddy viscosity. In fact, combining (4.12) with (4.5) gives

ν = −κuτh z(1 + z). (A 1)

This is a parabola that vanishes at both the no-slip and stress-free boundaries, just
as a mixing-length argument may suggest. Experiments by Nezu & Rodi (1986)
confirm that deviations of the observed turbulent viscosity from a parabola, though
measurable, are reasonably small. The non-zero derivative of (4.12) at the free surface
is no more worrisome than its infinity at the solid wall already is: both concern only
the defect layer and must not be compared with the physical boundary condition but
only be used for matching with a suitable wall layer.

A.1. Wall layer

There are two ways in which the asymptotic separation into a wall layer and a
defect layer can be applied to the present problem of slow height modulations (or,
for that matter, to any problem). One is a dimensional argument that only uses this
separation in order to specify the non-dimensional groupings appropriate to each
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region. This is sufficient to determine the functional dependence of, for instance, the
friction coefficient on the Reynolds number up to a couple undetermined constants,
which are then to be experimentally measured. The second approach actually writes
differential equations for each region and solves them. The first approach is very
robust and gives results such as Prandtl’s friction law to a very close tolerance but
requires data fitting; the second leaves no constants to be determined but carries the
uncertainties of closure models.

For the wall layer the traditional argument is a dimensional one and says that, since
the scale of this small region is independent of h or its variations, there can exist only
one dimensionally consistent velocity profile (the ‘universal law of the wall’), where
u/uτ is a function of (h + y)uτ/ν and asymptotes to

u/uτ ∼ B + κ−1 log[(h + y)uτ/ν] (A 2)

for (h+ y)uτ/ν → ∞. In other words, the wall layer is too thin to have any significant
dynamics. There is no point then in trying to write a differential equation for its
(non-)evolution, and everybody just uses experimentally determined values of the two
constants κ and B . More precisely the x-derivative of uτ , once non-dimensionalized
in wall units as νuτ,x/u

2
τ , is Reτ times smaller than uτ,x non-dimensionalized with

h, and thus exponentially small in the context of an expansion whose parameter is
uτ/U � 1/ log(Reτ ) (Mellor 1972). This argument may fail near points of separation
where uτ = 0, but such failure is of no concern here as we only intend to consider
mild deviations from parallel flow.

The constants in (A 2) may be taken at their traditional values κ = 0.40 and B = 5
or any more recent revision (Zanoun, Durst & Nagib 2003). Possible wall roughness,
which will very often be relevant in practice, can be accounted for by changing the
value of B as in the standard theory of channel flow. In the fully rough limit, when
roughness height exceeds ≈50ν/uτ , (A 2) becomes independent of viscosity and can
be rewritten as

u/uτ ∼ C + κ−1 log[(h + y)/hr ], (A 3)

where hr is a representative roughness height and C another constant whose value
depends on the precise definition of hr .

A.2. Defect layer

In order to determine the velocity perturbation in the defect layer, the boundary-layer
equations (2.1) must be solved with the eddy viscosity (A 1) and boundary conditions
stating that

v(x, 0) = v(x, −h) = 0, (A 4a)

lim
y→−h

(y + h)uy = κ−1uτ , (A 4b)

lim
y→0

yuy = 0. (A 4c)

It was already remarked that in turbulent, as in laminar, flow there are two distinct
limits giving rise to the same boundary-layer equations: in the classical boundary
layer the x-scale is externally imposed and the y-scale is implicitly determined by the
parameter uτ/U (i.e. the y-scale is smaller than the x-scale by a factor of uτ/U );
in channel flow the y-scale is given and the x-scale is implicitly determined to be
larger. Contrary to the laminar case, though, two different scale parameters survive
in the turbulent channel-flow problem: the fluctuation-intensity parameter uτ/U
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that governs the separation between wall layer and defect layer, and the externally
imposed rate of variation of the bottom, which determines the characteristic scale
in the x-direction and time. Equations (2.1) with boundary conditions (A 4) must be
understood as the result of two independent expansions with respect to both of these
parameters.

Boundary conditions (A 4a) are the standard ones for v and, just as in the case
of laminar flow, indirectly determine the value of Px in the momentum equation
(2.1b). Condition (A 4b) replaces the no-slip condition of the complete problem with
the requirement that the velocity profile should tend to its characteristic logarithmic
behaviour in a neighbourhood of y = −h. More precisely, it imposes the asymptotic
behaviour of the velocity derivative, while leaving a free additive constant in u to
be determined later by matching with the wall layer. On the free surface, condition
(A 4c) imposes zero shear stress (but not necessarily zero velocity gradient, because
viscosity tends to zero as far as the defect layer is concerned).

For the zeroth-order problem, a straight duct, (2.1b) reduces to ρ−1Px = (νuy)y and
unsurprisingly for the viscosity distribution (A 1) its solution is exactly (4.12) together
with v(0) = 0 and P (0)

x = −ρu2
τ /h.

The perturbation problem is introduced next by assuming that channel height is
a function h(x) with a typical scale of variation asymptotically large compared to h

itself, so that hx is small, and that consequently (4.12) remains valid as a zeroth-order
solution but with U and uτ now functions of x.

First-order continuity formally determines the requirement that
∫ 0

−h
u(0) dy = Q =

hU = const., and thus determines U (x) as a function of h(x). The other parameter
uτ (x) must also be regarded as externally assigned as far as the defect layer is
concerned; its final value will only be known once an additional constraint is imposed
on it by matching with the wall layer.

Also at first order, the momentum equation (2.1b) and boundary conditions (A 4)
become

(
νu(1)

y

)
y

− ρ−1P (1)
x = u(0)u(0)

x + v(1)u(0)
y = u(0)u(0)

x − u(0)
y

∫ y

0

u(0)
x dy, (A 5)

v(1)(0) = v(1)(−h) = 0; lim
y→0

yu(1)
y = lim

y→−h
(y + h)u(1)

y = 0, (A 6)

with P (1)
x implicitly determined so that

∫ 0

−h
u(1) dy = 0 (a compatibility condition for

second-order continuity). Since uτ/U is assumed to be asymptotically small and (2.1b)
represents, in turbulent flow, the first term of an expansion in powers of uτ/U , we
are authorized to neglect O(u2

τ ) contributions on the right-hand side of (A 5), thus
writing

(
νu(1)

y

)
y

− ρ−1P (1)
x = UUx + Uδu(0)

x + Ux

(
δu(0) − yδu(0)

y

)
, (A 7)

where δu(0) = κ−1uτ [1 + log(1 + y/h)]. (The O(u2
τ ) correction to pressure will be lost,

however. Had we not performed it already by other means, the calculation of pressure
would require quadratic terms to be retained.) Thence, after changing variable from
y to z = y/h(x),

h−2
(
νu(1)

z

)
z

− ρ−1P (1)
x = UUx + κ−1(Uuτ )x[1 + log(1 + z)] − (Uhx/h + Ux)uτz

κ(1 + z)
. (A 8)
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Figure 6. First-order velocity correction (A 10).

Since hU is a constant, the factor Uhx/h+Ux = 0 and the corresponding term can
thus be deleted. Integrating once and then replacing ν by its expression (A 1) yields

z(1 + z)u(1)
z =

h(Uuτ )x
κ2uτ

[C2 + C1z + (1 + z) log(1 + z)], (A 9)

where κ−1(Uuτ )xC1 = UUx + ρ−1P (1)
x . The two last boundary conditions of (A 6)

require C1 = C2 = 0. After a second integration

u(1) =
h(Uuτ )x

κ2uτ

(
C3 +

∫ z

0

log(1 + z)

z
dz

)
. (A 10)

The remaining constant C3 must now be derived from the requirement of zero flow
rate for u(1) (which, from a formal viewpoint, stems from the continuity equation
at order 2). Its value, obtainable through a detour into complex-path integration, is
1 − π2/6. The resulting profile of the first-order velocity u(1)(z) is shown in figure 6.

In order to complete the matching with the wall layer and confirm the calculation
of the wall-shear stress given in § 4.3, the single value u(1)(−1) is all we shall actually
need. Imposing ∫ −1

0

u(1) dz = u(1)(−1) −
∫ −1

0

zu(1)
z dz = 0, (A 11)

where u(1)
z is to be taken from (A 9), gives

u(1)(−1) =
h(Uuτ )x

κ2uτ

. (A 12)

A.3. Matching

The matching condition between wall layer and defect layer requires that the
asymptotic behaviour for (h + y)/h → 0 of the latter be equated to the asymptotic
behaviour (A 2) for (h + y)uτ/ν → ∞ of the former. Writing u = u(0) + u(1), where
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u(1) has a finite limit for z → −1, and using the expression (4.12) of u(0) produces the
condition that

U + κ−1uτ

[
1 + log

(
h + y

h

)]
+ u(1)(−1) = Buτ + κ−1uτ log

(
uτ

h + y

ν

)
(A 13)

i.e. using (A 12),

U

uτ

+
h(Uuτ )x

κ2u2
τ

= B + κ−1

[
log

(
huτ

ν

)
− 1

]
(A 14)

or the corresponding expression for the roughness-dominated regime if (A 3) is used
in the place of (A 2).

By observing that for (Uuτ )x = 0 the result must be the zeroth-order value of U/uτ

(related to the friction coefficient in a straight duct), one can combine both cases of
a negligible or non-negligible roughness in a single formula by writing

U

uτ

+
h(Uuτ )x
2κ2u2

τ

=

(
U

uτ

)(0)

=

(
2

cf

)1/2

, (A 15)

where for the smooth-wall regime

(2/cf )1/2 = B + κ−1[log (huτ/ν) − 1] (A 16)

and for the fully rough regime

(2/cf )1/2 = C + κ−1[log (h/hr ) − 1]. (A 17)

In the coefficient (Uuτ )x/u
2
τ , uτ can (to first order in the perturbative expansion) be

replaced by u(0)
τ = (cf /2)1/2U . Neglecting at the same time the x-derivative of cf ,

which according to either (A 16) or (A 17) turns out to be of a higher order in uτ/U ,
gives

(Uuτ )x/u
2
τ � (cf /2)1/2(U 2)x/u

2
τ � (cf /2)−1/22Ux/U. (A 18)

Therefore, (A 15) becomes

U/uτ � (cf /2)−1/2(1 − κ−2hUx/U ) (A 19)

or, upon taking its reciprocal square,

τw � (1 + 2κ−2hUx/U )τ (0)
w = (1 − 2κ−2hx)cf ρU 2/2, (A 20)

which coincides with the formerly derived result (4.15) of § 4.3.

REFERENCES

Abrams, J. & Hanratty, T. J. 1985 Relaxation effects observed for turbulent flow over a wavy
surface. J. Fluid Mech. 151, 443–455.
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