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Abstract. Let E/Q be an elliptic curve and let p be a prime of good super-

singular reduction. Attached to E are pairs of Iwasawa invariants µ±
p and λ±

p

which encode arithmetic properties of E along the cyclotomic Zp-extension
of Q. A well-known conjecture of B. Perrin-Riou and R. Pollack asserts that

µ±
p = 0. We provide support for this conjecture by proving that for any ℓ ≥ 0,

we have µ±
p ≤ 1 for all but finitely many primes p with λ±

p = ℓ. Assuming

a recent conjecture of D. Kundu and A. Ray, our result implies that µ±
p ≤ 1

holds on a density 1 set of good supersingular primes for E.

1. Introduction

Let E/Q be an elliptic curve and fix a prime p of good reduction. Attached to
E is the p-primary Selmer group Sel(E/Qcyc), where Qcyc denotes the cyclotomic
Zp-extension of Q. This group fits into the exact sequence

(1) 0 → E(Qcyc)⊗Qp/Zp → Sel(E/Qcyc) → X(E/Qcyc) → 0,

where X denotes the p-part of the Shafarevich-Tate group, and therefore encodes
many arithmetic properties of E along the cyclotomic line.

If p is a prime of ordinary reduction then Sel(E/Qcyc) is cotorsion as an Iwasawa
module (see [6, Theorem 17.4]) and its characteristic ideal is therefore generated
by a polynomial Lalg

p ∈ Zp[T ]. The algebraic Iwasawa invariants λalg
p and µalg

p

measure the degree and p-divisibility of Lalg
p , respectively. If E[p] is irreducible

as a Gal(Q̄/Q)-module, a well-known conjecture of Greenberg [5, Conjecture 1.11]
asserts that µalg

p = 0.
If p is a prime of supersingular reduction then Sel(E/Qcyc) is no longer cotorsion,

however Kobayashi [8] introduced signed Selmer groups Sel±(E/Qcyc) which are
cotorsion and encode analogous arithmetic data. In particular, the characteristic
ideals of Sel±(E/Qcyc) are generated by polynomials L±p,alg ∈ Zp[T ] which have

associated pairs of Iwasawa invariants µ±p,alg and λ±p,alg. In the supersingular setting,

E[p] is automatically irreducible and it is similarly conjectured (see [13, Conjecture
6.3] and [12, Conjecture 7.1]) that µ±p,alg = 0.

Recently, Chakravarthy [2, Theorem 1.3] made progress towards Greenberg’s
conjecture by proving that µalg

p ≤ 1 for all but finitely many primes of good ordinary
reduction. In this article, we prove a similar result in the supersingular setting.

Theorem 1.1. Let ℓ ≥ 0 and ∗ ∈ {+,−}. Then µ∗p,an ≤ 1 for all but finitely many
good supersingular primes p with λ∗p,an = ℓ.
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In the above theorem, λ±p,an and µ±p,an denote the Iwasawa invariants attached

to the analytic p-adic L-functions L±p,an ∈ Zp[[T ]] defined by Pollack in [13]. The
construction of these p-adic L-functions requires ap = 0, which is automatically
true when p > 3. The main conjecture of Iwasawa theory in this setting asserts
that L±p,an and L±p,alg generate the same ideal in Zp[[T ]], and in particular that

(2) λ±p,alg = λ±p,an and µ±p,alg = µ±p,an.

Thus, Theorem 1.1 provides support for the vanishing of µ±p,alg.

Remark 1.2. The main conjecture is known to hold in many cases: the CM
case was established by Pollack and Rubin [15], and Kobayashi [8, Theorem 1.3]
proved the containment (L±p,an) ⊆ (L±p,alg) for non CM curves. A proof of the
full supersingular main conjecture was recently announced by Burungale, Skinner,
Tian, and Wan [1, Theorem 1.2].

We henceforth assume (2) and write λ±p , µ
±
p to mean either algebraic or analytic

invariants. Letting rE denote the Mordell-Weil rank of E, Kundu and Ray con-
jecture [7, Conjecture 3.17] that λ±p = rE on a density 1 set of good supersingular
primes. Assuming this conjecture, the condition on λ-invariants in Theorem 1.1
could be removed and one would have the bound µ±p ≤ 1 on a density 1 set of good
supersingular primes for E.

We remark that if rE = 0 then [7, Theorem 3.8] implies that both λ±p and

µ±p vanish for all but finitely many primes p (in fact, Sel±(E/Qcyc) = 0 for these
primes). Thus, the primary contribution of Theorem 1.1 is in providing support for
the vanishing of µ±p in the positive rank case. We also note that, under some mild

assumptions, it is known [7, Lemma 3.3] that λ±p ≥ rE for all good supersingular
primes p > 2, thus the cases where ℓ < rE in Theorem 1.1 are mostly vacuous.

The crux of Chakravarthy’s proof in the ordinary setting is constructing a bound
(which holds for all but finitely many p) on the size of the modular symbols defining
the ordinary p-adic L-function. In the supersingular case, the signed p-adic L-
functions are defined via a decomposition theorem of Pollack [13, Theorem 5.6],
and in particular they are not as immediately understood in terms of modular
symbols. The approach taken here is to instead apply Chakravarthy’s bound to
the sequence of Mazur-Tate elements θn for E (which are defined using modular
symbols), where one can show (see Proposition 3.8) that there exists an integer n0

such that for all but finitely many primes p,

(3) µ(θn) ≤ 1, for all n ≥ n0.

The lower bound n0 depends only on the conductor of E (and not on p). We then
relate the Iwasawa invariants of the Mazur-Tate elements to those of the signed
p-adic L-functions in order to deduce Theorem 1.1.

The assumption on λ-invariants in Theorem 1.1 comes from the fact that, while
one can show that µ(θn) = µ∗p for n large enough of fixed parity (see Proposition
3.1), in this case the lower bound on n in the asymptotic depends on both p and
λ±p . The idea is that if we assume λ±p does not vary with p then it is possible to
take p ≫ 0 so that µ(θn) = µ∗p holds for any fixed n, and in particular for the n0

appearing in (3).
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2. Iwasawa invariants

Fix a prime p and let F be a nonzero power series in Λ = Zp[[T ]]. By the
Weierstrass preparation theorem [18, Theorem 7.3] there are unique nonnegative
integers λ and µ such that

(4) F = pµDU,

for some distinguished polynomialD ∈ Zp[T ] of degree λ and some U ∈ Λ×. (Recall
that a polynomial D ∈ Zp[T ] is called distinguished if D ≡ T degD mod p.) In terms
of the coefficients of F =

∑
i≥0 aiT

i, we have

µ = min{ordp(ai) | i ≥ 0},
λ = min{ i | ordp(ai) = µ}.

2.1. Refined Iwasawa invariants. Let Γ ∼= Zp be the Galois group of the cy-

clotomic Zp-extension of Q and let Γn = Γ/Γpn ∼= Z/pnZ denote the Galois group

of its nth-layer. Let ωn = (1 + T )p
n − 1 and Λn = Λ/(ωn). Fixing a topological

generator γ ∈ Γ, one has isomorphisms Λ ∼= Zp[[Γ]] and Λn
∼= Zp[Γn] induced by the

map γ 7→ 1 + T . Refined Iwasawa invariants are those attached to elements of Λn.
We now give two definitions of refined Iwasawa invariants – both useful in different
contexts – and then show that they are equivalent.

2.1.1. Definition via the division algorithm. Since Λ = lim
←

Λn, for each n ≥ 0 there

is a projection map πn : Λ ↠ Λn, F 7→ F mod ωn, and we can define the Iwasawa
invariants of πn(F ) as follows. Since ωn is a distinguished polynomial, the division
algorithm for distinguished polynomials in Λ allows us to write

F = ωnQn + Fn,

for some unique Qn ∈ Λ and a polynomial Fn ∈ Zp[T ] of degree < pn. Define

λ(πn(F )) = λ(Fn),

µ(πn(F )) = µ(Fn).

2.1.2. Definition via augmentation ideals. Following [14] and [16], one can define
the Iwasawa invariants of θ ∈ Zp[Γn] as follows. For each n ≥ 1, the element

γn = γ mod Γpn

generates Γn and we define the µ-invariant of θ =
∑pn−1

j=0 cjγ
j
n by

µ(θ) = min
0≤j≤pn−1

ordp(cj).

For the λ-invariant, let θ′ = p−µ(θ)θ ∈ Zp[Γn] and let In be the augmentation ideal
of Fp[Γn]. (Thus, In is the ideal generated by the image of γn − 1 in Fp[Γn].) Since

θ′ has nonzero image under the natural reduction map (·) : Zp[Γn] → Fp[Γn] and
all ideals of Fp[Γn] are powers of In, we can define

λ(θ) = ordIn θ′ = max{j | θ′ ∈ Ijn} ∈ {0, 1, . . . , pn − 1}.

(If n = 0 then θ ∈ Zp and we define µ(θ) = ordp(θ) and λ(θ) = 0.)
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2.1.3. Equivalence of definitions. We now show that the definitions of refined Iwa-
sawa invariants given above agree.

Proposition 2.1. Let n ≥ 0 and θ ∈ Zp[Γn]. If F ∈ Zp[T ] is the unique polynomial
of degree < pn mapping to θ under the composition

Λ ↠ Λn

∼=−→ Zp[Γn], T 7→ γn − 1,

then λ(θ) = λ(F ) and µ(θ) = µ(F ). In particular, the Iwasawa invariants defined
in §2.1.1 and §2.1.2 agree.

Proof. The case n = 0 is clear, so suppose n ≥ 1. Write θ = pµ(θ)θ′ for some
θ′ ∈ Zp[Γn]. Let Fθ′ ∈ Zp[T ] be a representative of the image of θ′ in Λn, so

F ≡ pµ(θ)Fθ′ mod ωn. By the division algorithm, we can choose Fθ′ such that
degFθ′ < pn, in which case the degree of F forces the equality F = pµ(θ)Fθ′ in
Zp[T ]. Since θ′ ≡ (γn − 1)λ(θ)θ′′ mod p for some θ′′ ∈ Zp[Γn], the commutativity
of the diagram

Zp[Γn] Λn

Fp[Γn] Fp[T ]/(ωn),

where the horizontal maps are γn 7→ 1 + T and the vertical maps are reduction
mod p, implies that Fθ′ ≡ Tλ(θ)Fθ′′ mod p for some Fθ′′ ∈ O[T ] of degree < pn.
Hensel’s lemma [11, §II Lemma 4.6] now gives a factorization Fθ′ = DU in Zp[T ],

where D,U ∈ O[T ] are such that degD = λ(θ) and D ≡ Tλ(θ) mod p (so D is
distinguished), and U ≡ Fθ′′ mod p (so U ∈ Λ× since the constant term of Fθ′′

does not vanish mod p by maximality of λ(θ)). It follows that F = pµ(θ)DU and
by uniqueness of the Weierstrass decomposition (4), we obtain µ(θ) = µ(F ) and
λ(θ) = λ(F ). □

2.1.4. Relating invariants in Λ and Λn. The following lemma is known in the lit-
erature (see [14, Remark 4.3]), though we outline a proof for completeness.

Lemma 2.2. Let n ≥ 0 and F ∈ Λ. If λ(F ) < pn then the Iwasawa invariants of
F and πn(F ) agree.

Proof. We may assume µ(F ) = 0. Use the division algorithm to write

(5) F = ωnQn + Fn.

If µ(Fn) were positive then (5) implies

F ≡ T pn

Qn mod p,

which contradicts the fact that λ(F ) < pn. Hence we must have µ(Fn) = 0. From
(4), we can write F = (Tλ(F ) + pF0)U for some F0 ∈ Zp[T ] of degree < λ(F ).
Combining this decomposition with (5) yields

Fn ≡ Tλ(F )(U − T pn−λ(F )Qn) mod p,

but since U is a unit and λ(F ) < pn, U − T pn−λ(F )Qn must also be a unit. It
follows that λ(Fn) = λ(F ). □
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3. Bounding the µ-invariant

Let E/Q be an elliptic curve of conductor NE and fix a prime p of good reduction
such that ap = 0.

3.1. Mazur-Tate elements. Let L±p ∈ Λ and θn ∈ Q[T ] denote the plus/minus
p-adic L-functions and Mazur-Tate elements for E, as defined in §§2.9 and 6.15 of
[13], respectively. The definition of both L±p and θn depend on a choice of complex

periods Ω±E ∈ C. We henceforth assume that Ω±E are p-cohomological periods for
E, in the sense of [16, §2.2]. The choice of cohomological periods ensures that the
coefficients of θn are p-integral (cf. [16, Remark 2.2]), thus we can view each θn as
an element of the localization Z(p)[T ] ⊆ Q[T ].

We now relate the Iwasawa invariants of θn to those of L±p by showing that the
even Mazur-Tate elements recover the minus invariants of the p-adic L-function,
and vice-versa. Let q1 = q0 = 0 and define for n ≥ 2 the sequence

qn =

{
pn−1 − pn−2 + · · ·+ p− 1 n even,

pn−1 − pn−2 + · · ·+ p2 − p n odd.

Let λ±p and µ±p denote the Iwasawa invariant of L±p .

Proposition 3.1. If n ≥ 0 is even (resp., odd) and λ−p < pn − qn (resp., λ+
p <

pn − qn), then

µ(θn) = µ±p ,

λ(θn) = λ±p + qn,

where ± is opposite the parity of n.

Proof. This follows from the argument of [4, page 3], which we reproduce in brief
here. Let εn = sgn(−1)n denote the parity of n. By [13, Proposition 6.18], we have

(6) θn ≡ ω−εnn L−εnp mod ωn.

Here

ω+
n =

∏
1≤i≤n
i even

Φpi(1 + T ) and ω−n =
∏

1≤i≤n
i odd

Φpi(1 + T ),

where Φpi(T ) is the pith cyclotomic polynomial. Since λ(Φpn(1+T )) = pn − pn−1,

we have λ
(
ω−εnn L−εnp

)
= qn + λ−εnp . As the sequence pn − qn tends to infinity, we

may therefore take n large enough so that λ
(
ω−εnn L−εnp

)
< pn. The result now

follows from Lemma 2.2. □

Remark 3.2. The formula for λ-invariants in Proposition 3.1 can also be found in
[12, §5], [16, Theorem 4.1], and [17, Corollary 8.9], where it is instead deduced from
a 3-term compatibility relation (see [16, Proposition 2.5], for example) satisfied by
Mazur-Tate elements.

We now fix an integer ℓ ≥ 0 and let X±(E, ℓ) denote the set of all good super-
singular primes p > 3 for which λ±p = ℓ.

Remark 3.3. It is conjectured [7, Conjecture 3.17] that λ±p coincides with the
Mordell-Weil rank on a density 1 set of good supersingular primes, thus one expects
X±(E, ℓ) to have density 0 except when ℓ = rE .
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Corollary 3.4. Fix n ≥ 1. For all but finitely many p ∈ X±(E, ℓ), we have

µ±p = µ(θn)

where ± is opposite the parity of n.

Proof. Since λ±p = ℓ, we can take p large enough so that λ±p < pn − qn. For such p,
Proposition 3.1 yields the desired result. □

3.2. Modular symbols. Let f be the cuspidal newform attached to E via mod-
ularity. For r ∈ Q, recall the modular symbols of [9] defined by

[r]± =
πi

Ω±E

(∫ i∞

r

f(z)dz ±
∫ i∞

−r
f(z)dz

)
.

For odd primes p we have by definition (see [13, Definition 6.15])

θn =
∑

a∈(Z/pn+1Z)×
[a/pn+1]+γ

logγ a
n ∈ Zp[Γn].

Here 0 ≤ logγ(a) ≤ pn−1 is the unique integer for which a ≡ ω(a)(1+p)logγ(a) mod pn+1,

where ω : (Z/pn+1Z)× → Z×p is the mod p cyclotomic character (sending amod pn+1

to the (p− 1)st root of unity ω(a) ∈ Z×p with ω(a) ≡ a mod p.) Write µp−1 for the

set of (p− 1)st roots of unity in Z×p , and if α ∈ Zp define [α/pn]± = [a/pn]± where
α ≡ a mod pn.

Lemma 3.5. Let p be an odd prime of good reduction. For any n ≥ 0 we have

µ(θn) = min
0≤j≤pn−1

ordp

( ∑
η∈µp−1

[
η(1 + p)j

pn+1

]+)
.

Proof. Since logγ(a) = logγ(b) if and only if aω(a)−1 = bω(b)−1 mod pn+1, we have

(7) θn =

pn−1∑
j=0

∑
η∈µp−1

[
η(1 + p)j

pn+1

]+
γj
n.

The result now follows from Definition 2.1.2. □

Lemma 3.6. Let n ≥ 0 and C ∈ R. For all but finitely many primes p, if a ∈
(Z/pn+1Z)× then ∣∣∣∣C[

a

pn+1

]+∣∣∣∣ < p.

Proof. By Chakravarthy’s bound [2, Proposition 4.1], there are constants c1 and c2
depending only on the conductor of E (and not p) such that for any x ∈ Q,

|[x]+| ≤ c1 + c2 log(denominator(x)).

The result now follows by letting x = a/pn+1 and taking p large enough so that
c1 + c2 log(p

n+1) < p
|C| . □

Lemma 3.7. Let p be an odd prime of good reduction. There is a constant n0

depending only on NE such that if n ≥ n0 then∑
η∈µp−1

[
η(1 + p)j

pn+1

]+
̸= 0

for some 0 ≤ j ≤ pn − 1.
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Proof. Since p is a good prime, a result of Chinta [3, Theorem 2] guarantees the
existence of an integer n0 (depending only on NE and not on p) such that if n ≥ n0

and χ is a Dirichlet character of conductor pn then L(E,χ, 1) ̸= 0. Let χ be an
even Dirichlet character of p-power order and conductor pn with n ≥ n0. Setting
v = 1 + p, we now have

pn−1∑
j=0

∑
η∈µp−1

χ(ηvj)

[
ηvj

pn+1

]+
=

∑
a∈(Z/pn+1Z)×

χ(a)

[
a

pn+1

]+
= τ(χ̄)

L(E,χ, 1)

Ω+
E

̸= 0.

Here τ(χ) is a Gauss sum and the middle equality above is due to [10, (8.6)]. It
follows that there is some 0 ≤ j ≤ pn − 1 for which∑

η∈µp−1

χ(ηvj)

[
ηvj

pn+1

]+
= χ(vj)

∑
η∈µp−1

[
ηvj

pn+1

]+
̸= 0,

where the middle equality follows from the fact that χ has p-power order and η is
a (p− 1)st root of unity. The result follows. □

3.3. Main result. We now prove our main theorem. First, we give a bound on
the µ-invariants of Mazur-Tate elements.

Proposition 3.8. There is a constant n0 depending only on NE such that if n ≥ n0

then µ(θn) ≤ 1 for all but finitely many primes p.

Proof. Let n0 be as in Lemma 3.7 and take n ≥ n0, so that

(8)
∑

η∈µp−1

[
η(1 + p)j

pn+1

]+
̸= 0

holds for all good primes p > 2 and some 0 ≤ j ≤ pn−1. Note the sum in (8) is the
jth coefficient of θn when written in the form (7). In particular, since θn ∈ Z(p)[T ],
this sum is a rational number whose denominator is dn not divisible by p. Thus
dn

∑
η∈µp−1

[η(1 + p)j/pn+1]+ is a nonzero integer, and from Lemma 3.6 we can

take p large enough so that∣∣∣∣dn ∑
η∈µp−1

[
η(1 + p)j

pn+1

]+∣∣∣∣ ≤ ∑
η∈µp−1

∣∣∣∣dn[η(1 + p)j

pn+1

]+∣∣∣∣ < (p− 1)p < p2.

It now follows that

ordp

( ∑
η∈µp−1

[
η(1 + p)j

pn+1

]+)
= ordp

(
dn

∑
η∈µp−1

[
η(1 + p)j

pn+1

]+)
≤ 1.

From Lemma 3.5, we now have that µ(θn) ≤ 1. □

Remark 3.9. It is interesting to note that the bound in Proposition 3.8 applies
to both ordinary and supersingular primes. In particular, if p is an ordinary prime
then by [16, (4)] we have µp = µ(θn(fα)) for n ≫ 0, where µp = µ(Lan

p ) and fα is the

p-stabilization of f to level pN at a root α of the Hecke polynomial X2 − apX + p.
It is therefore tempting to try to deduce Chakravarthy’s result [2, Theorem 1.3]
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8 R. GAJEK-LEONARD

that µp ≤ 1 for all but finitely many p from Proposition 3.8, however this does
not immediately follow since the Iwasawa invariants of θn(E) and θn(fα) need not
always agree (see [16, Example 3.4]).

Proof of Theorem 1.1. Fix ℓ ≥ 0. It suffices to show that for all but finitely
many primes p ∈ X±(E, ℓ), we have µ±p ≤ 1. By Proposition 3.8, there exists an

odd integer n+ and an even integer n−, neither of which depends on p, such that
µ(θn±) ≤ 1 holds for all but finitely many p. But by Corollary 3.4, for either choice
of sign ∗ ∈ {+,−} we have µ∗p = µ(θn∗) for all but finitely many p ∈ X∗(E, ℓ). □
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