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Abstract

We demonstrate the existence of K-multimagic squares of order N consisting of N2 distinct integers
whenever N > 2K(K + 1). This improves our earlier result [D. Flores, ‘A circle method approach to
K-multimagic squares’, preprint (2024), arXiv:2406.08161] in which we only required N + 1 distinct
integers. Additionally, we present a direct method by which our analysis of the magic square system may
be used to show the existence of N × N magic squares consisting of distinct kth powers when

N >

⎧⎪⎪⎨⎪⎪⎩
2k+1 if 2 � k � 4,
2�k(log k + 4.20032)� if k � 5,

improving on a recent result by Rome and Yamagishi [‘On the existence of magic squares of powers’,
preprint (2024), arxiv:2406.09364].

2020 Mathematics subject classification: primary 11P55; secondary 05B15, 05B20, 11D45, 11D72, 11E76,
11L07.

Keywords and phrases: Hardy–Littlewood method, additive forms in differing degrees, magic squares,
multimagic squares.

1. Introduction

An N × N matrix Z = (zi,j)1�i,j�N is a magic square of order N if the sums of the entries
in each of its rows, columns and two main diagonals are equal. Given K � 2, we say a
matrix Z ∈ ZN×N is a K-multimagic square of order N, or an MMS(K, N) for short, if
the matrices

Z◦k := (zk
i,j)1�i,j�N ,

remain magic squares for 1 � k � K. Here, we expand on our previous investigation
[5], where we saw that given any K � 2 and N ∈ N, there exists many trivial examples
of MMS(K, N) using at most N distinct integers. Given K, we previously focused on
the problem of finding a lower bound for N such that there exists an MMS(K, N) using
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2 D. Flores [2]

TABLE 1. Best known results for K-multimagic squares.

K Smallest N for which an MMS(K, N)
with distinct entries is known to exist Attributed to

2 6 J. Wroblewski [1]
3 12 W. Trump [9]
4 243 P. Fengchu [1]
5 729 L. Wen [1]
6 4096 P. Fengchu [1]

K � 2 (4K − 2)K Zhang et al. [11]

N + 1 or more digits. Via the circle method, we proved in [5] that N > 2K(K + 1) is a
suitable lower bound on N for this problem.

However, this may not be satisfactory for those familiar with magic squares as the
typical parlance usually refers to magic squares with any repeated entries as trivial. A
more satisfactory result would be to determine a lower bound on N in terms of K for
which there exists an MMS(K, N) with distinct entries.

This question has been considered in the past by several authors (see [1, 4, 9–11])
via constructive methods. We give a brief overview of the best known results in
Table 1. The curious reader is encouraged to read the introductions of both [5, 7]
for more information on the history of magic squares.

Although the circle method tells us there exists an MMS(K, N) with at least N
distinct entries when N > 2K(K + 1), it could be the case that to establish the existence
of an MMS(K, N) with all distinct entries, we may require N to be even larger relative
to 2K(K + 1). This difficulty may be seen in the recent work by Rome and Yamagishi
[7], where they tackle the simpler problem of showing the existence of magic squares
of distinct kth powers. Via the techniques in [7], one may obtain an asymptotic formula
for the cardinality of the subset of N × N magic squares of kth powers (with potential
repeats) as soon as

N �

⎧⎪⎪⎨⎪⎪⎩
2k+2 + Δ if 2 � k � 4,
4�k(log k + 4.20032)� + Δ if 5 � k,

with Δ = 12. However, Rome and Yamagishi end up requiring Δ = 20 to ensure that all
entries of these magic squares are distinct kth powers. To understand why this increase
in N is required in [7], we first need to establish the notion of a partitionable matrix.

DEFINITION 1.1. We say a matrix C = [c1, c2, . . . , crn] of dimensions r × rn is parti-
tionable if there exist disjoint sets Jl ⊂ {1, 2, . . . , rn} of size r for 1 � j � n satisfying

rank (CJl ) = r for 1 � l � n,

where CJ denotes the submatrix of C consisting of columns indexed by J.
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[3] Multimagic and magic squares 3

Upon examination of the methods used in [7], one sees that N is required to
be slightly larger because of the difficulty of finding a large enough partitionable
submatrix for the family of coefficient matrices associated with magic squares with
particular repeated entries.

In [5], we define the notion of a matrix dominating a function as follows.

DEFINITION 1.2. We say that a matrix C ∈ Cr×s dominates a function f : N→ R+ if
for all J ⊂ {1, . . . , s},

rank(CJ) � min{ f (|J|), r},

where CJ = [cj]j∈J .

Then, by [6, Lemma 1], if a matrix C dominates a certain function, we obtain
information regarding its partitionable submatrices. This allows us to circumvent
several difficulties encountered in [7] and prove the following result.

THEOREM 1.3. Given K � 2, there exist infinitely many MMS(K, N) consisting of N2

distinct integers as soon as N > 2K(K + 1).

It is important to note here that our lower bound on N remains unchanged.
Additionally, just as in [5], one may easily obtain the following result via the
Green–Tao theorem.

COROLLARY 1.4. Given K � 2, there exist infinitely many MMS(K, N) consisting of
N2 distinct prime numbers as soon as N > 2K(K + 1).

Finally, we present an analogous argument for finding magic squares of distinct
kth powers. This approach uses the notion of our matrix of coefficients dominating a
particular function, allowing us to establish the following result.

THEOREM 1.5. Given k � 2, there exist infinitely many N × N magic squares of
distinct kth powers as soon as

N >

⎧⎪⎪⎨⎪⎪⎩
2k+1 if 2 � k � 4,
2�k(log k + 4.20032)� if k � 5.

This improves the recent result of Rome and Yamagishi [7]. It is worth noting,
just as Rome and Yamagishi did in [8], that Theorem 1.5 is not entirely optimal for
4 � k � 20, we simply choose this representation of our theorem for convenience (see
the introduction of [7] for more detail).

REMARK 1.6. The application of the circle method to this problem has been part of
the mathematical folklore for at least 30 years, with discussions dating back to the
early 90s in talks by Bremner (see [2, 3]). The recent breakthrough in this area lies
in achieving a refined understanding of the coefficient matrix associated with the
magic square system. Viewing a matrix as dominating a function appears to be the
appropriate perspective, as it provides insight into the partitionability of submatrices.
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2. Finding solutions of additive systems with distinct entries

Our basic parameter, P, is always assumed to be a large positive integer. Whenever ε
appears in a statement, either implicitly or explicitly, we assert that the statement holds
for every ε > 0. Implicit constants in Vinogradov’s notation	 and
 may depend on
ε, r, s, k, K and the elements of the matrix C.

Let C = [c1, . . . , cs] = (ci,j)1�i�r
1�j�s

∈ Zr×s be given, and consider the diagonal system

∑
1�j�s

ci,jxk
j = 0, 1 � i � r. (2.1)

We define Sk(P; C) to be the set of solutions x ∈ Zs to (2.1), where maxj |xj| � P. Given
i, j with 1 � i < j � s, it is not difficult to see that

#{x ∈ Sk(P; C) : xi = xj} = #Sk(P; C(i,j)),

where C(i,j) is the matrix obtained by substituting the ith column of C with ci + cj and
deleting the jth column of C.

Thus, if S∗k(P; C) denotes the subset of Sk(P; C) with distinct entries,

#
⋂

1�k�K

S∗k(P; C) = #
⋂

1�k�K

Sk(P; C) + O
( ∑

1�i<j�s

#
⋂

1�k�K

Sk(P; C(i,j))
)
. (2.2)

Separately, one may deduce from [5, Lemma 3.4] and [6, Lemma 1] the following
result.

LEMMA 2.1. Let K � 2 and C ∈ Zr×s with s � rK(K + 1). If C contains a partitionable
submatrix of size r × rK(K + 1), then one has the bound

#
⋂

1�k�K

Sk(P; C) 	 Ps−rK(K+1)/2+ε

for any ε > 0.

If C dominates the function
x − r{(s − 2)/r}
�(s − 2)/2� ,

then, for 1 � i < j � s, the matrix C(i,j) contains a submatrix of C of size r × (s − 2). By
[6, Lemma 1], this matrix contains a partitionable submatrix of size r × r�(s − 2)/r�.
Combining this with (2.2), Lemma 2.1 and [5, Theorem 2.2], we deduce the following
general result.

LEMMA 2.2. Let K � 2 and suppose that C ∈ Zr×s satisfies s � rK(K + 1) + 2. If C
dominates the function

F(x) = max
{x − r{s/r}
�s/r� ,

x − r{(s − 1)/r}
�(s − 1)/r� ,

x − r{(s − 2)/r}
�(s − 2)/r�

}
,
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[5] Multimagic and magic squares 5

then

#
⋂

1�k�K

S∗k(P; C) = Ps−rK(K+1)/2(σK(C) + o(1)),

where σK(C) � 0 is a real number depending only on K and C. Additionally,
σK(C) > 0 if there exist nonsingular real and p-adic simultaneous solutions to the
system (2.1) for 1 � k � K.

3. K-multimagic squares with distinct entries

A matrix Z = (zi,j)1�i,j�N is an MMS(K, N) if and only if, for all k with 1 � k � K,
it satisfies the simultaneous conditions∑

1�i�N

zk
i,j =

∑
1�i�N

zk
i,i for 1 � j � N, (3.1)

∑
1�j�N

zk
i,j =

∑
1�j�N

zk
j,N−j+1 for 1 � i � N. (3.2)

One may wonder if these equations are equivalent to those of an MMS(K, N). Indeed,
at a first glance, it does not seem clear that the main diagonal and anti-diagonal are
equal. One can show that this is implied by simply summing over all j in (3.1) and
noting that this is equal to summing over all i in (3.2). Upon dividing out a factor of N,
one deduces that (3.1) and (3.2) imply∑

1�i�N

zk
i,i =

∑
1�j�N

zk
j,N−j+1.

Before we construct a matrix corresponding to this system, we must first establish
some notational shorthand. Let 1n denote an n-dimensional vector of all ones and 0n
an n-dimensional vector of all zeros. Let en(m) denote the mth standard basis vector of
dimension n. For a fixed N, we define

D1(N) = {(i, j) ∈ ([1, N] ∩ Z)2 : i = j}

and

D2(N) = {(i, j) ∈ ([1, N] ∩ Z)2 : i + j = N + 1}.

For each (i, j) ∈ ([1, N] ∩ Z)2, we define the 2N-dimensional vectors

di,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(eN(i) − 1N, eN(j) − 1N) for (i, j) ∈ D1(N) ∩ D2(N),
(eN(i) − 1N, eN(j)) for (i, j) ∈ D1(N)\D2(N),
(eN(i), eN(j) − 1N) for (i, j) ∈ D2(N)\D1(N),
(eN(i), eN(j)) otherwise.

Let φ : [1, N2] ∩ Z→ ([1, N] ∩ Z)2 be any fixed bijection. Then, the 2N × N2 matrix,

Cmagic
N = Cmagic

N (φ) = [dφ(1), . . . , dφ(N2)],
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corresponds to the system defined by (3.1) and (3.2) up to some arbitrary relabelling of
variables defined by the bijection φ. We now establish that one may apply Lemma 2.2
with C = Cmagic

N .

LEMMA 3.1. For N � 4, the matrix Cmagic
N dominates the function

F(x) = max
{x − r{s/r}
�s/r� ,

x − r{(s − 1)/r}
�(s − 1)/r� ,

x − r{(s − 2)/r}
�(s − 2)/r�

}
,

with s = N2 and r = 2N.

PROOF. We show in [5, Section 4] that Cmagic
N satisfies the rank condition

rank ((Cmagic
N )J) �

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
�2
√
|J|� − 1 if 1 � |J| � N(N − 1) − 1,

|J| − N2 + 3N − 1 if N(N − 1) − 1 � |J| � N(N − 1) + 1,
2N if N(N − 1) + 1 � |J| � N2,

when |J| � (N − 1)2 + 1 and

rank ((Cmagic
N )J) � 2N − 3,

when |J| = (N − 1)2 + 1. Given this, if |J| > N(N − 1), trivially,

min{F(|J|), 2N} = 2N � rank ((Cmagic
N )J).

Let us now focus on the case in which N is even and |J| � N(N − 1). When N is even,
one may show that

F(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2x
N

if 0 � x � N(N − 1),

2x − 4
N − 2

− 4 if N(N − 1) � x.

Thus, if N(N − 1) − 1 � |J| � N(N − 1),

min{F(|J|), 2N} = 2|J|
N
� |J| − N2 + 3N − 1 � rank ((Cmagic

N )J).

Let us now suppose that 1 � |J| < N(N − 1) − 1 and |J| � (N − 1)2 + 1. Similarly, in
this range,

min{F(|J|), 2N} = 2|J|
N
�
⌈
2
√
|J| ⌉ − 1 � rank ((Cmagic

N )J).

Let us now consider the case |J| = (N − 1)2 + 1. Since N � 4,

min{F(|J|), 2N} = 2N − 4 + 4/N � 2N − 3 � rank ((Cmagic
N )J).

The case in which N is odd may be established in a similar fashion. �

By Lemma 2.2 and using the existence of nonsingular solutions to the magic square
system proved in [5], we deduce the following asymptotic formula.
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THEOREM 3.2. For K � 2 and N > 2K(K + 1), let M∗K,N(P) denote the number of
MMS(K, N) consisting of N2 distinct integers bounded in absolute value by P. Then,
there exists a constant c > 0 for which one has the asymptotic formula

M∗K,N(P) ∼ cPN(N−K(K+1)).

This immediately implies Theorem 1.3.

4. Magic squares of distinct kth powers

Let us now consider the problem of showing the existence of magic squares of
distinct kth powers. One may repeat the arguments of Rome and Yamagishi [7], where
instead of requiring a lower bound on the size of the largest partitionable submatrix,
we assume that the matrix of coefficients dominates the function

F(x) = max
{x − r{s/r}
�s/r� ,

x − r{(s − 1)/r}
�(s − 1)/r� ,

x − r{(s − 2)/r}
�(s − 2)/r�

}
.

It is clear that all arguments of [7] follow from this assumption by [6, Lemma 1],
assuming �(s − 2)/r� is large enough in terms of k. How large this term needs to be,
as seen in Lemma 2.1, is directly determined by when one can establish a mean value
estimate of the type

∫ 1

0

∣∣∣∣∣
∑
x∈A

e(αxk)
∣∣∣∣∣
s
dα 	 (#A)s−k+ε,

where A is the set from which the solutions may come. Then, by a direct analogue of
the arguments in Section 2, we obtain a version of [7, Theorem 1.4] which provides an
asymptotic for the number of solutions with distinct entries.

LEMMA 4.1. Let k � 2 and C ∈ Zr×s, where s � r min{2k, k(k + 1)} + 2. If C dominates
the function

F(x) = max
{x − r{s/r}
�s/r� ,

x − r{(s − 1)/r}
�(s − 1)/r� ,

x − r{(s − 2)/r}
�(s − 2)/r�

}
,

then

#S∗k(P; C) = Ps−rk(σk(C) + o(1)),

where σk(C) � 0 is a real number depending only on k and C. Additionally, σk(C) > 0
if there exist nonsingular real and p-adic solutions to the system (2.1).

Let

A (Q) = {x ∈ Zs : prime p | xi for any i with 1 � i � s, implies p � Q}.

Then, the same may be done to obtain an analogue of [7, Theorem 1.5], which provides
an asymptotic for the number of smooth solutions with distinct entries.
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LEMMA 4.2. Let k � 2 and C ∈ Zr×s, where s � r�k(log k + 4.20032)� + 2. If C domi-
nates the function

F(x) = max
{x − r{s/r}
�s/r� ,

x − r{(s − 1)/r}
�(s − 1)/r� ,

x − r{(s − 2)/r}
�(s − 2)/r�

}
,

then, providing η > 0 is sufficiently small in terms of s, r, k and C,

#(S∗k(P; C) ∩A (Pη)) = c(η)Ps−rk(σk(C) + o(1)),

where σk(C) is the same quantity as in Lemma 4.1 and c(η) > 0 depends only on η.

Applying Lemmas 4.1 and 4.2 with C = Cmagic
N and noting that the analysis in

[5, Section 5] implies σk(Cmagic
N ) is positive, we deduce Theorem 1.5.
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