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Abstract

Background. The Psychiatric Genomics Consortium (PGC) has made major advances in the
molecular etiology of MDD, confirming that MDD is highly polygenic. Pathway enrichment
results from PGC meta-analyses can also be used to help inform molecular drug targets. Prior
to any knowledge of molecular biomarkers for MDD, drugs targeting molecular pathways
(MPs) proved successful in treating MDD. It is possible that examining polygenicity within
specific MPs implicated in MDD can further refine molecular drug targets.
Methods. Using a large case–control GWAS based on low-coverage whole genome sequencing
(N = 10 640) in Han Chinese women, we derived polygenic risk scores (PRS) for MDD and for
MDD specific to each of over 300 MPs previously shown to be relevant to psychiatric diag-
noses. We then identified sets of PRSs, accounting for critical covariates, significantly predict-
ive of case status.
Results. Over and above global MDD polygenic risk, polygenic risk within the GO: 0017144
drug metabolism pathway significantly predicted recurrent depression after multiple testing
correction. Secondary transcriptomic analysis suggests that among genes in this pathway,
CYP2C19 (family of Cytochrome P450) and CBR1 (Carbonyl Reductase 1) might be most
relevant to MDD. Within the cases, pathway-based risk was additionally associated with
age at onset of MDD.
Conclusions. Results indicate that pathway-based risk might inform etiology of recurrent major
depression. Future research should examine whether polygenicity of the drug metabolism gene
pathway has any association with clinical presentation or treatment response. We discuss limita-
tions to the generalizability of these preliminary findings, and urge replication in future research.

Introduction

Recurrent major depressive disorder (MDD) is a complex phenotype with limited established
associations with biological markers and molecular genetic pathways. The China, Oxford and
Virginia Commonwealth University Experimental Research on Genetic Epidemiology
(CONVERGE) study and the Psychiatric Genomics Consortium (PGC) have made advances
in the molecular genetic etiology of MDD, confirming that MDD is highly polygenic, with
aggregation of top loci effects accounting for a small proportion of the variance in case–control
status (Peterson et al., 2017; Major Depressive Disorder Working Group of the PGC et al.,
2018). Thus, supporting examination of variants across the entire genome, rather than just
top loci, will likely be most informative to etiology.

Statistical genomics can be used to examine both global polygenic risk and risk within
established gene pathways. With genomic data, it is increasingly feasible to begin to isolate
and examine molecular drug targets for MDD. One way to work toward this aim is by inspect-
ing molecular pathway (MP) enrichment in relation to severe MDD diagnosis, or in relation to
symptom presentation in severe cases. It is also important to present caveats: MP analyses are
fraught with potential for spurious findings and require (1) large sample sizes, (2) strict cor-
rection for (a) multiple comparison and (b) average background polygenic signal, (3) a grain of
salt, given the diffuse and quite polygenic signal from even very large GWAS meta-analyses,
and thus (4) replication. It is also important to note that available database information
about MPs is far from complete.
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Keeping these important points in mind, we also know that
many MPs are enriched for MDD signal, and that medication
targeting-specific neurotransmitter pathways are efficacious.
Thus, it is possible that MPs have some influence on the presen-
tation of and risk for severe MDD, and potentially on drug
response. Given the aim of genomic research to identify promis-
ing drug targets for MDD, the identification of potential molecu-
lar classifiers of drug response is highly desirable.

To this aim, we examined global polygenic risk for MDD,
and also polygenic risk for MDD specific to MPs, in the presen-
tation of severe MDD in a large case–control sample of Han
Chinese descent (N = 10 060) (CONVERGE Consortium, 2015).
CONVERGE aimed at identifying genetic risk factors for
recurrent MDD among a rigorously ascertained cohort, and pre-
sents several advantages for genetic study. The sample is entirely
female, thus reducing heterogeneity from sex differences. Further,
unlike most studies of its size, CONVERGE subjects all have four
Han Chinese grandparents, thus reducing noise stemming from
population stratification. Finally, to increase severity and potential
genetic signal, all subjects were ascertained for recurrent depres-
sion, rather than a single episode. This ascertainment method,
and the size of the study, allowed CONVERGE to identify and
replicate risk loci for MDD (CONVERGE Consortium, 2015).

This analysis used summary statistics from a leave-one-batch-
out GWAS of MDD within CONVERGE. We constructed
Bayesian subject-level genome-wide MDD polygenic risk scores
(PRS) and MDD PRS specific to pruned MPs. Scores and covari-
ates were regressed onto case status, and pathway scores with
significant signal above and beyond global MDD polygenic risk
were then examined by within-pathway, gene-based PRS.

Methods and materials

Sampling

Recurrent MDD cases and healthy controls were recruited from
51 mental health centers and psychiatric departments of general
medical hospitals across 21 provinces of China. Details have
been previously published (CONVERGE Consortium, 2015).
We controlled for potential clinical heterogeneity by recruiting
only female participants, and to control for ethnic stratification,
only participants whose grandparents (all four) were of Han
Chinese descent were recruited to participate. Cases and controls
[age M (S.D.) = 44.4 (8.9) and 47.7 (5.6), respectively] were
excluded for diagnosis of bipolar disorder, any psychotic symp-
toms occurring outside of the context of a major depressive epi-
sode, and any diagnosis of intellectual disability. Description of
the clinical features of the cases can be found in Edwards et al.
(2018). Cases had at least two major depressive episodes with
the first episode occurring prior to age 50, and could not have
abused drugs or alcohol prior to their first episode of depression.
Controls were clinically screened to rule out prior depressive epi-
sodes and had to be at least 40 years of age, past the age window
of typical MDD onset. The study protocol was approved centrally
by the Ethical Review Board of Oxford University, and by the eth-
ics committees of all of the participating hospitals in China. All
participants provided written informed consent.

DNA sequencing

DNA extraction, sequencing, genotyping, and imputation details
have been reported (Cai et al., 2017). Briefly, DNA was extracted

from saliva using Oragene and sequenced reads were obtained
from Illumina Hiseq machines aligned to Genome Reference
Consortium Human Build 37 patch release 5 (GRCh37.p5) with
Stampy (v1.0.17) with default parameters (Lunter and Goodson,
2011). Reads consisting of base quality ⩽5 or containing adaptor
sequencing were filtered out. Alignments were indexed in BAM
format (Lunter and Goodson, 2011) using Samtools (v0.1.18)
(Li et al., 2009), and PCR duplicates were marked for downstream
filtering using Picardtools (v1.62). The Genome Analysis Toolkit’s
(GATK, version 2.6) BaseRecalibrator (McKenna et al., 2010) cre-
ated recalibration tables to screen known SNPs and INDELs in the
BAM files from dbSNP (version 137, excluding all sites added
after version 129). GATKlite (v2.2.15) was used for subsequent
base quality recalibration and removal of read pairs with improp-
erly aligned segments as determined by Stampy.

Calling and imputation of genotypes

GATK’s UnifiedGenotyper VariantRecalibrator (version 2.7-2-
g6bda569) was used on post-BSQR files for variant discovery
and genotyping at all polymorphic SNPs in 1000 G Phase1
ASN panel (The 1000 Genomes Project Consortium et al.,
2012), as well as variant quality score recalibration. A sensitivity
threshold of 90% was applied for imputation after optimizing
for transition to transversion ratios. Genotype likelihoods were
calculated using a binomial mixture model implemented in
SNPtools (version 1.0) (Wang et al., 2013), and imputation was
performed at sites with no reference panel using BEAGLE (ver-
sion 3.3.2) (Browning and Browning, 2007). A second round of
imputation was performed at biallelic polymorphic SNPs using
1000G Phase 1 ASN haplotypes as a reference panel. To deter-
mine the final number of SNPs, we applied a conservative inclu-
sion threshold for SNPs: (1) a p value for violation HWE >10–6,
(2) information score >0.9, and (3) minor allele frequency in
CONVERGE >0.5%.

Diagnostic assessments

Participant interview sessions lasted approximately 2 h. Interviewers
were largely trained psychiatrists with a small number representing
post-graduate medical students or psychiatric nurses, and all were
clinically trained by the CONVERGE team for at least one week.
Interviews were recorded and included an assessment of psycho-
pathology, demographic characteristics, and psychosocial func-
tioning. Trained editors listened to a portion of the interviews
to provide ratings of interview quality. An assessment of lifetime
adversity (binary yes/no) reflected a composite of endorsements
on self-reported stressful life event and childhood sexual abuse
measures (Peterson et al., 2018). In CONVERGE, adversity has
been observed to contribute significant variance in genetic signal,
and was included as a feature in our follow-up analyses only to
determine whether genetic signal is influenced, in any direction,
by presence of lifetime adversity. We excluded participants who
had incomplete assessment information or were lacking high-
quality genetic data, to arrive at a final 4728 controls and 5612
case samples for analysis.

Polygenic risk for MDD and pathway-based risk as a
predictor of case status

MDD PRSs were constructed globally (genome-wide) and within
each of the MPs, using summary statistics from leave-one-batch-

794 Anna R. Docherty et al.

https://doi.org/10.1017/S0033291719000618 Published online by Cambridge University Press

https://doi.org/10.1017/S0033291719000618


out GWAS analyses of the CONVERGE sample. A list of
pathways was derived from independent, previously published
pathway enrichment statistics from the PGC (Schizophrenia
Working Group of the Psychiatric Genomics Consortium,
2014). These pathways were deemed to likely be the most relevant
to psychiatric disorders broadly. Gene lists corresponding to each
pathway were extracted from the relevant gene ontology database,
with the number of genes per pathway ranging from 8 to 598
(mean = 9). Python-based LDpred (Vilhjalmsson et al., 2015), a
polygenic risk scoring software, allows for the modeling of LD
to weight the relative contributions of syntenic variants to the out-
come phenotype. LDpred uses postulated proportions of causal
variants in the genome as Bayesian prior probabilities for PRS cal-
culations, and a range of eight different priors were used (propor-
tions of 1, 0.3, 0.1, 0.03, 0.01, 0.003, and 0.001) to construct
scores. All pathway scores were LD pruned and merged based
on excessive correlation between scores (R2 < 0.5). Stepwise
regressions were run with all PRS variables and critical covariates
as determined by the CONVERGE Consortium (2015). MDD was
treated as a dichotomous variable (despite likely heterogeneity) in
order to avoid predicting additional clinical information within
cases such as symptom count.

We tested two models for the relationship between PRSs and
MDD status. Model 1 included all risk scores and the two primary
ancestry principal components. Model 2 included all risk scores,
primary ancestry principal components, and the presence/absence
of lifetime adversity (a significant moderator of the genetic signal
in previous CONVERGE GWAS). Follow-up analyses included
similar associations of any significant pathway-based PRS
associations with age at onset (AAO), family history of MDD,
and number of lifetime episodes within the MDD cases.

Results

For the primary analysis of this paper, i.e. finding pathways
associated with MDD status, we employed a stepwise regression
that pared down the number of pathways PRSs to only the sig-
nificant ones (after adjusting for multiple testing). Statistics for
the best-fitting model are presented in Table 1, each parameter
in the model remaining significant after FDR correction. The
best-fitting stepwise regression included three robust predictors:
Global MDD, one ancestry PC, and the MDD PRS for the
GO:0017144 drug metabolism pathway. Model 2 results are pre-
sented in Table 2. Global MDD risk and GO:0017144 pathway-
based risk remained significant in Model 2, where lifetime
adversity was entered as a covariate (and was found to be the
most robust predictor). Of note, the stepwise models captured
no increase in pathway-based risk by genome-wide MDD PRS.
Standardized effect sizes, presented as squared Pearson partial
correlation coefficients in both Tables 1 and 2, were obtained
after adjusting for multiple testing (Bigdeli et al., 2016). We men-
tion that these analyses appear to be well powered, given that
(even after adjusting for multiple testing) we estimated to have
a power >80% to detect PRS explaining only 0.003 of variation
in MDD liability, which is half of the in-sample estimates for
GO:0017144.

While not the main goal of this work, due to their likely
reduced power, we use a gene PRS-type secondary/exploratory
analysis to suggest genes in the drug metabolism pathway
that might be most important to MDD. Of the 33 genes in-
cluded in the pathway, most of which reflect protein coding
for cytochrome P450 and flavin containing monooxygenase

(https://icgcportal.genomics.cn/genesets/GO:0017144), 88 803 var-
iants on nine genes passed variant filtering and LD pruning.
Exploratory gene-based analysis included MDD PRS calculation spe-
cific to the nine genes involved in the GO:0017144 pathway.
Exploratory LDpred analyses of the PRSs associated with the 33
genes yielded three genes with suggestive signals (Table 3).
CYP2C19 and CBR1 both yielded FDR q-values of 0.05. Follow-up
analyses of the GO:0017144 pathway in the MDD cases resulted in
a significant association with AAO in the expected direction, after
correction for multiple testing (t = 3.388, p = 0.0007 without global
MDD PRS in the model; t = 3.382, p = 0.0008 with global MDD
PRS in the model). Gene-level analyses of CBR1 and CYP2C19 pre-
dicting AAO were suggestive but not significant ( p < 0.08).

Discussion

In the CONVERGE sample, MDD polygenic risk specific to the
GO:0017144 pathway significantly predicted MDD case status
above and beyond genome-wide polygenic risk for MDD.
Exploratory analyses suggest that among genes in this pathway,
CYP2C19 and CBR1 appear to contribute the most to MDD
liability, as their effect on trait remained significant after account-
ing for both MDD polygenic risk and for an established genetic
risk moderator, lifetime adversity. These scores were based on
MDD GWAS weights entirely within-ancestry, and did not rely
on summary statistics from Northern European ancestry
GWAS. This is the first study to test MDD PRS specific to MPs
in relation to recurrent MDD, and preliminary results suggest
that GO:0017144 may be relevant to recurrent MDD and to
clinical presentation.

MDD is genetically complex, and it is important to try to
identify areas of focus on the genome with which to inform
drug target research. These results are potentially relevant to
pharmacogenomics. Several common antidepressants (tricyclic
antidepressants and SSRIs, including citalopram, escitalopram,
sertraline, amitriptyline, and clomipramine) are substrates for
CYP2C19 (Sim et al., 2010). More importantly, CYP2C19 pos-
sesses epoxygenase activity and metabolizes various prostaglan-
dins (arachidonic acid, linoleic acid, eicosapentaenoic acid) to
active epoxide products, which have vasodilatory, anti-
inflammatory and antinociceptive effects (Fabbri et al., 2018).
Similarly, CBR1 plays a protective role in oxidative stress, neuro-
degeneration, and apoptosis. CBR1 normally breaks down prosta-
glandin E2, which may mediate the aversive/negative affect
component of inflammatory pain (Singh et al., 2017).

Because MDD is likely quite heterogeneous, it is important to
try to identify genetic classes of cases that differ phenotypically
(Milaneschi et al., 2017). This view is supported by research
attempting to genetically stratify severe psychopathology
(Howard et al., 2017). Recent research by Howard et al. has suc-
cessfully replicated a genetic classification of MDD using PRS
of ∼20 medical and psychiatric phenotypes. Future research
would benefit from examination of whether high-risk PRS
classes are phenotypically distinct (whether clinical features dif-
fer) and also whether they are distinct with respect to risk within
drug-relevant MPs.

Were there enough non-European GWAS to complete a simi-
lar stratified analysis to CONVERGE, we would have attempted
this in conjunction with our analysis of MP-based genetic
MDD risk. PRS for several medical and psychiatric phenotypes
can currently be calculated for European samples based on
European GWAS, but unfortunately the field lacks sufficient
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East Asian GWAS for analysis in CONVERGE. We hope that
future GWAS of non-European samples will facilitate additional
meaningful insights.

Strengths

A strength of this study is that ascertainment successfully mini-
mized genetic heterogeneity due to sex differences and to ancestry.
Moreover, ascertainment was limited to recurrent depression
rather than a single episode, potentially increasing the strength
of the genetic signal. In addition, this large cohort provided suf-
ficient power to detect even small effects, and deep phenotyping
allowed for the additional inspection of lifetime adversity in relation
to genetic signal. We included a limited number of pathways – only
those implicated in severe psychopathology – in order to limit
Type I error.

Limitations

Strict ascertainment of females with four Han Chinese grandpar-
ents may limit the generalizability of GO:0017144 pathway find-
ings. Because the study rigorously ascertained recurrent MDD,

and not single episode, it is also possible that the effects observed
here are limited to severe and/or recurrent MDD. One source of
potential bias stems from the inclusion of the pathways implicated
in severe psychopathology in Europeans rather than in individuals
of Han Chinese ancestry. In addition, we did not detect signal for
some candidate pathways (e.g. serotonergic or noradrenergic) that
we might have expected to be relevant to MDD. Null results could
stem from insufficient coverage across enough genes in the path-
way after quality control, or pathway signal being obscured by the
global polygenic signal for MDD that we accounted for in our
models. This would be consistent with the small genetic effect
sizes we find in such a large MDD cohort.

Finally, there are problems inherent to any study of gene path-
ways. These include the field’s very limited molecular understand-
ing of gene pathways and related sequelae, incompleteness of
pathway databases, conflicting opinions about the independ-
ence/interdependence of gene pathways, and the elevated polyge-
nicity of all psychiatric traits. To the first three points, we assert
that it is studies like this that further develop the pathway litera-
ture and inform pathway database efforts. To the fourth point, it
is critical for studies to account for genome-wide polygenic risk
when testing for any signal relevant to a small portion of the

Table 1. Best-fitting stepwise regression model predicting major depressive disorder case status from global major depressive disorder polygenic risk score,
molecular pathway-based polygenic risk score, and ancestry

Estimate Standard error t-value p value Effect size R2

Ancestry principal component 2 3.176 0.565 5.624 1.86*10−8 0.04 0.007

MDD global L1O PRS 0.038 0.003 13.177 1.19*10−39 0.13 0.041

GO:0017144 Drug metabolism L1O PRS 0.056 0.012 4.828 1.38*10−6 0.03 0.006

MDD, major depressive disorder; L1O, leave-one-out cross-validation scoring procedure; PRS, polygenic risk score; GO, gene ontology database.

Table 2. Best-fitting stepwise regression model accounting for adversity

Estimate Standard error t-value p value Effect size R2

Lifetime adversity 0.176 0.011 15.843 1.57*10−56 0.15 0.059

MDD global L1O PRS 0.031 0.003 11.855 2.04*10−32 0.11 0.033

Ancestry principal component 2 3.989 0.503 7.933 2.13*10−15 0.07 0.015

GO:0017144 Drug metabolism L1O PRS 0.050 0.010 4.845 1.27*10−6 0.03 0.006

MDD, major depressive disorder; L1O, leave-one-out cross-validation scoring procedure; PRS, polygenic risk score; GO, gene ontology database.
Lifetime adversity is binary (1 = lifetime adversity and 0 = no lifetime adversity).

Table 3. Suggestive genes in drug metabolism pathway after false discovery rate correction

Suggestive genes in GO:17144 Chr:Mbp start-end FDR Targets/relevance

CYP2C19: Cytochrome P450 Family 2 Subfamily C
Member 19

10:94.763–10:94.853 0.05 • Tricyclic antidepressants and SSRIs

• Vasodilatory, anti-inflammatory and antinociceptive
effects

CBR1: Carbonyl reductase 1 21:36.070–21:36.073 0.05 • Protective role in oxidative stress, neurodegeneration,
apoptosis

FMO2: Flavin containing monooxygenase 2 1:171.185–1:171.213 0.09

GO, gene ontology database; Chr:Mbp, chromosome and position; FDR, false discovery rate corrected p value.
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genome. These points underscore the importance of independent
replication.
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