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Abstract
Interest is growing in the application of standard statistical inferential techniques to the calculation of
cost-effectiveness ratios (CER), but individual level data will not be available in many cases because it is
very difficult to undertake prospective controlled trials of many public health interventions. We propose
the application of probabilistic uncertainty analysis using Monte Carlo simulations, in combination with
nonparametric bootstrapping techniques where appropriate. This paper also discusses how decision
makers should interpret the CER of interventions where uncertainty intervals overlap. We show how
the incorporation of uncertainty around costs and effects of interventions into a stochastic league table
provides additional information to decision makers for priority setting. Stochastic league tables inform
decision makers about the probability that a specific intervention would be included in the optimal mix
of interventions for different resource levels, given the uncertainty surrounding the interventions.
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As more prospective cost-effectiveness analysis (CEA) studies are undertaken, providing
stochastic data on costs and effects, interest has grown in the application of statistical
techniques to the calculation of cost-effectiveness ratios (CER). Several methods have been
developed, including confidence planes (20), mathematical techniques (22), and the net
health benefit approach (4).

However, it is important to recognize that many public health interventions do not lend
themselves to the collection of sampled individual level data (by patient, health facility,
region, etc.), especially in a developing-country context. For example, it is difficult to de-
velop a feasible experimental design to identify the costs and effects of a national radio
health education program or a policy to subsidize the use of essential pharmaceutical prod-
ucts. Many economic evaluations require nonstochastic parameter estimates and modeling
assumptions.
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Typically, uncertainty stemming from the use of such nonsampled secondary data
sources in CEA has been dealt with by sensitivity analysis (2;3).These deterministic analyses
draw inferences from point estimates of variables, but interpretation is conditional upon a
range of uncertainty that is assumed for critical variables. There are three major limitations to
this approach: a) the analyst has discretion as to which variables and what alternative values
are included; b) interpretation is essentially arbitrary because there are no comprehensive
guidelines or standards as to what degree of variation in results is acceptable evidence that
the analysis is robust; and c) variation of uncertain parameters one at a time carries a risk
that interactions between parameters may not be captured (19).

This paper examines the application of probabilistic uncertainty analysis with Monte
Carlo simulations in this context.1 This builds on work already described in the literature
(3;9;10;15) and requires that analysts assume some distributional form for costs and effects
from which repeated samples are drawn to determine a distribution for the CER. The
definition of an uncertainty range for CER is hampered by the instability of sample estimates
of CERs, causing its mean to vary (6). This paper applies the simple percentile method—
usually employed to estimate uncertainty ranges for CER in nonparametric bootstrapping—
to estimate uncertainty intervals for CERs involving probabilistic uncertainty analysis.
The approach is illustrated by constructing uncertainty intervals for seven hypothetical
interventions in tuberculosis control.

In addition, this paper discusses how information on uncertainty should be communi-
cated to policy makers. The abovementioned techniques present study results in terms of
some type of uncertainty interval. However, little or no attention is paid to the question of how
decision makers should interpret the results where uncertainty intervals overlap. The recently
developed stochastic league tables inform decision makers about the probability that a spe-
cific intervention would be included in the optimal mix of interventions for various levels or
resource availability, taking into account the uncertainty surrounding costs and effectiveness
(14). This paper derives a stochastic league table for hypothetical interventions in tubercu-
losis control. We show that the incorporation of uncertainty ranges for CERs in a stochastic
league table provides additional information to decision makers for priority setting.

This methodologic work on estimating uncertainty is part of the larger World Health
Organization (WHO) concept of Generalized-CEA (18). The WHO proposes to provide
policy makers with a simple set of results that are more generalizable across settings by
evaluating the costs and effectiveness of new and existing interventions, compared to the
starting point of doing none of the current interventions, called the “null.” This removes the
constraint that the current intervention mix must be continued and eliminates differences
in starting points, which traditionally makes the results of incremental analyses difficult to
transfer across settings.

PROBABILISTIC UNCERTAINTY ANALYSIS BY MONTE
CARLO SIMULATIONS

Probabilistic uncertainty analysis using Monte Carlo simulations has been well described
elsewhere (3;9;10;15). Most applications assume a distributional form (e.g., normal, uni-
form, binominal) for each estimated (but nonsampled) variable. Repeated samples are then
drawn from these distributions to determine an empirical distribution for some construct of
the variables, such as CERs.

To illustrate the procedure, consider a hypothetical example first presented in Murray
et al. (18) related to four interventions for tuberculosis: a) passive case detection and treat-
ment with directly observed short-course therapy (DOTS) (A); b) bacille Calmette-Gu´erin
(BCG) vaccination at 50% coverage (B1); c) BCG vaccination at 75% coverage (B2); and
d) BCG vaccination at 100% coverage (B3). In addition, three other mutually exclusive
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Table 1. Costs and Health Effects of Interventions

Intervention Costs Effects

B1 180 200
B2 325 300
B3 600 400
A 550 500
AB1 631 600
AB2 726 650
AB3 952 700

Figure 1. Costs and health effects of interventions.

options are presented: DOTS combined with the different levels of BCG coverage, i.e.,
AB1, AB2, and AB3, respectively. Costs and health effects interact: the variable costs
component of DOTS decreases when the vaccination is given, and fewer cases of tubercu-
losis will occur. The health effects of BCG vaccination will be fewer in the presence of a
treatment program, because many of the deaths from tuberculosis expected in the absence
of treatment will be avoided. Total costs and health effects of the interventions at the popu-
lation level are presented in Table 1 and Figure 1. To reflect uncertainty, costs are assumed
to be normally distributed with a standard deviation of 100; health effects are assumed to be
normally distributed with a standard deviation of 100. The covariance is assumed to be zero.

The procedure to generate a sample distribution for the incremental CER from ex-
panding the intervention, for example, BCG coverage from 50% to 75% (B1→B2), is as
follows:

1. Take one sample of costs (C) and health effects (E) from the distribution of costs and effects from
B1: CB1 and EB1, and one sample of cost and effects from the distribution of costs and effects of
B2: CB2 and EB2;

2. The sample estimate of the incremental CER is then given by CB2-CB1 divided by EB2-EB1; and

3. Repeating this process a large number of times gives a vector of sample estimates that is the
empirical sampling distribution of the incremental CER statistic.

We used the statistical program @RISK 4.0TM (Palisade Decision Tools) to run the
analyses.
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Figure 2. Mean incremental CERs of three interventions as a function of the number of
samples.

There is little stability in these CER estimates where the distributions of costs or
health effects overlap—some simulations will produce negative net health effects and some
positive net health effects, for example. This can lead to positive or negative incremental
CERs. Figure 2 shows the mean value of the sampled estimates of the incremental CERs for
0→B1, B1→B2, and B2→B3. For the assumed ranges of costs and health effects, even
after a large number of samples, some means do not stabilize. The mean CER of 0→B1 is
relatively stable because the origin is fixed, and costs and health effects of intervention B1
constitute its only source of uncertainty (i.e., it is an average ratio).

The simple percentile method allows us to estimate confidence intervals in the presence
of these unstable means. This approach takes the 100(α/2) and the 100(1− (α/2)) percentile
values of the bootstrap distribution as the upper and lower confidence limits for the CER (6).
Table 2 shows the 90% confidence intervals for the seven mutually exclusive alternatives.
The occasional very high values for the incremental CER of the expansion from AB1→AB2
is the reason why its confidence interval does not include its mean value.

Of special interest are interventions that are weakly dominated on the basis of the
point estimate of their CER but have a wide confidence interval. In such cases, some
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Table 2. Sample Incremental CERs for Seven Interventions

Intervention Mean Minimum Maximum 90% confidence interval

0→B1 1 −379 340 0 4
B1→B2 2 −912 5,131 −8 8
B2→B3 3 −961 6,358 −11 13
B3→A −1 −1,046 635 −5 5
A→AB1 1 −4,469 1,727 −5 6
AB1→AB2 21 −20,545 109,129 −7 7
AB2→AB3 −4 −30,827 6,662 −11 12

simulations might show them to be no longer dominated. In Figure 1, consider intervention
B3. Because its mean is located northwest of intervention A, it appears to be strongly
dominated. However, the uncertainty range of the incremental CER of B3→A ranges
from −$5 to $5 per unit of health effect and thus includes positive values. Therefore, we
cannot be sure that B3 should be excluded from the set of alternatives under consideration.

COMBINING PROBABILISTIC UNCERTAINTY ANALYSIS
WITH NONPARAMETRIC BOOTSTRAP PROCEDURES

In the situation in which individual level data are available for some component of costs
or effects, one feasible approach is to combine probabilistic uncertainty analysis with
nonparametric bootstrapping to estimate a total “uncertainty range”2 for CERs (15). The
use of nonparametric bootstrapping has been advocated by many authors (5;6;8;16) and has
been extensively applied to empirical data (1;5;6;7;8;9;13;17;21;22;23;24) Unlike proba-
bilistic uncertainty analyses, the bootstrap approach is a nonparametric method that makes
no distributional assumptions concerning the statistic in question. Instead it employs the
original data in a resampling exercise in order to give an empirical estimate of the sampling
distribution of that estimate.

The basic concept behind nonparametric bootstrapping is to treat the study sample as
if it were the population, the premise being that it is better to draw inferences from the
sample in hand rather than make potentially unrealistic assumptions about the underlying
population. Using the nonparametric bootstrap approach, successive random draws are taken
with replacementfrom the study sample data. As such, the fact that an observation has been
selected does not preclude it from being selected again for the same resample, which leads to
the construction of different bootstrap resamples. The statistic of interest and its distribution
is calculated from these resamples. The number of bootstrap resamples, B, should at least
be 1,000 to construct confidence intervals, in order to ensure that the tails of the empirical
distributions are filled (6). An important advantage of the nonparametric bootstrap approach
is that it is of no consequence whether the original sample is a well-behaved distribution
because it forms its own probability density function.

To illustrate the combination of probabilistic uncertainty analysis and nonparametric
bootstrapping, consider a CEA with costs being the product of vectors of unit prices and
resource utilization. By defining a probability distribution of unit prices, and with resource
utilization and effectiveness data stemming from sampled data, a total uncertainty range can
be estimated by combining probabilistic uncertainty analysis with nonparametric bootstrap-
ping. To start with, a large number (B) of samples of size np of sets of unit prices are obtained
by random sampling from the prior distributions, and the mean price is calculated for each of
the B samples. Similarly, B bootstrap samples of size nq are taken from the resource utiliza-
tion and effectiveness data, and the mean resource utilization and effectiveness is estimated
for each of the B bootstrap samples. Then B replicates of the CER can be obtained by
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combining B bootstraps of both resource utilization and effectiveness data with the B sets
of prices sampled from the prior distributions. These are then used to calculate a percentile
interval.

UNCERTAINTY AT THE ALLOCATION LEVEL

Traditionally, the above results, as reported in Table 2, are placed in a single league table to
inform decision makers about the relative value of a set of (mutual exclusive) interventions.
Rank ordering in the league table approach is usually made on the basis of point estimates
of CE alone (11). However, in our example of tuberculosis control, uncertainty intervals
overlap and it is not clear how decision makers should interpret such information. This
problem was also faced in many practical situations, including the study by Goodman
and Mills (12), which incorporated the estimated uncertainty interval for their estimates
of the cost-effectiveness of interventions against malaria; however, because the intervals
overlapped, the authors were unwilling to suggest which ones should be given preference in
the event of a shortage of resources (12). We believe that additional information is obtained
in the data used to produce the uncertainty intervals, which could be used to guide policy
makers more than by simply saying that no decision could be made because confidence
intervals overlap.

We propose the use of stochastic league tables. The approach provides the probability of
inclusion of a specific intervention in the optimal mix of interventions given the uncertainty
surrounding the intervention. The construction of stochastic league tables requires four
steps and is described in more detail elsewhere (14). In a first step, CERs are calculated
for the respective programs by drawing single samples from distributions of both costs and
health effects, using Monte Carlo simulations. Second, based on these samples, the optimal
mix of interventions is defined, applying resource allocation decision rules as described in
Murray et al. (18). Third, this exercise is repeated 10,000 times to obtain a distribution of
rank orders of interventions, given a certain resource level. This provides information on
the probability of the cost-effectiveness of interventions. Fourth, this procedure is repeated
for various resource levels. This provides a so-called “budget expansion path,” which shows
that different interventions will be chosen at different resource levels.

Table 3 summarizes the results as probabilities (in percentages) that a particular inter-
vention in tuberculosis would be included in the optimal set at different resource availability
levels. Probabilities of inclusion of an intervention depend on the resource availability, its
costs, and its relative cost-effectiveness. In our example, at a resource level of 100, inter-
vention B1 is chosen in 19% of all cases (i.e., costs of B1 are less than 100 in 19% of the
cases, and other interventions are too costly to be chosen). If resource availability increases,
the probability of inclusion of other interventions also increases. Note that intervention B3,

Table 3. Stochastic League Table, with Probabilities of Inclusion of Interventions (%) for
Different Resource Availability

Intervention Resource level

100 200 300 400 500 600 700 800 900 1,000 1,100 1,200
B1 19 64 57 36 15 3 0 0 0 0 0 0
B2 0 6 36 58 42 10 1 0 0 0 0 0
B3 0 0 0 1 8 12 5 2 1 1 0 0
A 0 0 0 5 27 38 22 11 6 4 3 3
AB1 0 0 0 0 7 31 43 37 27 20 16 16
AB2 0 0 0 0 0 7 29 47 48 37 32 29
AB3 0 0 0 0 0 0 0 3 17 38 48 53
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which would not be considered in a deterministic approach because of strong dominance,
is now chosen in a low number of cases at certain resource levels. At the highest resource
level (1,200), AB3 is chosen in 53% of all cases. Decision makers can use this information
to prioritize interventions should more resources become available for health care.

Stochastic league tables present decision makers the probability that an intervention will
be included in the optimal choice and are therefore more informative than traditional league
tables, which simply present uncertainty ranges (and may leave decision makers indecisive
when they overlap). They also allow decision makers to better evaluate the impact of trading
off the efficiency goal against other objectives such as reducing health inequalities in their
selection of interventions. For example, the stochastic league table informs decision makers
that they are not likely to lose much in terms of efficiency if, at a resource level of 1,000,
they decide to select AB2 rather than AB3 for equity reasons.

DISCUSSION

This paper presents an extension and generalization of previously described methods ex-
amining uncertainty in cost-effectiveness studies. Whereas previous studies applied the
concept of bootstrapping and Monte Carlo simulations in the contexts of clinical trials, here
we apply them to decision models, analyzing cost-effectiveness based on any combination
of primary and secondary data. Given the prevailing scarcity of sampled data on costs and
effects of many public health interventions in developing countries, we propose the use
of probabilistic uncertainty analysis using Monte Carlo simulations, in combination with
nonparametric bootstrapping techniques where appropriate.

The reporting of some type of uncertainty range of CER in individual studies ignores
the question of how policy makers should interpret the results where uncertainty results
overlap. The paper has shown that cost-effectiveness uncertainty ranges of interventions in
tuberculosis control overlap and that decision making is difficult in such a situation. The
stochastic league table is a new way of presenting uncertainty around costs and effects
to decision makers. This paper shows that it provides additional information beyond that
offered by the traditional treatment of uncertainty in CEA, presenting the probability that
each intervention is included in the optimal mix for given levels of resource availability.

NOTES
1 There is confusion in the literature as to the definition of sensitivity analysis, on the one hand,

and uncertainty analysis on the other. We argue that sensitivity analysis refers to uncertainty about
social choices, such as the discount rate or the inclusion of productivity costs. Uncertainty analysis
refers to variation in the distribution of costs and effects (stemming from either nonsampled or
sampled data). Following that definition, we prefer to use the termprobabilistic uncertainty analysis
rather thanprobabilistic sensitivity analysisto describe the process of drawing repeated samples from
nonsampled data, i.e. from somea priori defined distributional form of costs and/or effects. We use
the termnonparametric bootstrappingonly in relation to drawing samples from sampled data.

2 Instead of calling this a confidence interval, the termuncertainty rangecould be used since
such an interval incorporates both uncertainty related to sampled and nonsampled data.
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