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This paper investigates theoretically the vertical evolution of a turbulent plume into a
linearly stratified ambient fluid, by regarding it as composed of two distinct regions. In
the first region, called the positive buoyant region, the plume buoyancy and the plume
momentum act in the same upward direction, whereas in the second region, called
the negative buoyant region, they act in opposite directions. In a first step, analytical
expressions for the plume variables at the transition height (i.e. between the two
regions) are obtained from one-dimensional conservation equations, using the plume
entrainment model and under the Boussinesq approximation. In a second step, these
variables are used in order to determine analytically the buoyancy and volume fluxes
as well as the density deficit of the plume at its top. In this investigation, the transition
height (denoted zt) and the total plume height (denoted zp) are obtained in the form
of two integrals. These integrals are evaluated asymptotically in three different cases
associated with particular flow regimes. Finally, the limit of the Boussinesq assumption
for such flows is discussed.
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1. Introduction
A turbulent plume that develops in a stable density-stratified environment has a

natural bounded limit. Indeed, owing to the decrease of the ambient density with
respect to the vertical coordinate z, the plume de facto turns into a rising fountain
(i.e. a negatively buoyant plume) at a certain height. As an example, figure 1,
based on qualitative air–helium experiments, illustrates this phenomenon, which can
be described as follows.

(a) At the initial development of the plume (figure 1a), owing to the mixing and/or
entrainment process, the density difference between the plume and the ambient
fluid decreases with z until it becomes null. Hereafter, this particular vertical
location will be called the transition height and will be denoted zt. Note that, in the
literature, this height is sometimes called the zero (or neutral) buoyancy height.

(b) Above this height, the released fluid continues to rise as a result of its momentum.
However, the buoyancy now acts in the opposite direction, so that the plume
behaves like a rising fountain and naturally reaches a maximal height, here denoted
zp, as soon as its momentum becomes null (figure 1b).
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(a) (b) (c) (d)

FIGURE 1. Typical evolution of a turbulent plume in a stratified environment (photos by the
authors taken from qualitative air–helium experiments).

(c) Once this maximal height is reached, the released fluid falls down around the
central up-flow (figure 1c).

(d) This down-flow then spreads horizontally as a radial gravity current at a vertical
location usually called the spreading height (figure 1d).

These naturally bounded plumes are widely encountered in environmental and
geophysical flows, as, for example, volcanic eruptions (Woods 1995; Suzuki et al.
2005; Kaminski et al. 2011), submarine pyroclastic eruptions (Head & Wilson
2003) and hydrothermal plumes (Speer & Rona 1989), because the oceans and the
atmosphere are generally density-stratified.

During the past fifty years, many studies focusing on this kind of flow have been
carried out. The first experimental studies measured the height zp, since this value
was the most accessible one (see e.g. Briggs 1969). Also, theoretical studies have
been performed, allowing us to gain insight into the physics of the phenomenon.
For example, Woods (1997) investigated the non-Boussinesq effects on plumes in
a stratified ambient and showed that they are confined to a region close to the
source. Caulfield & Woods (1998) studied Boussinesq plumes in nonlinear stratified
surroundings in order to determine whether a given stratification (not necessarily
stable) is responsible for the occurrence of a natural bounded limit or not. Scase,
Caulfield & Dalziel (2006), using a point source formalism, gave the evolution of the
plume variables as a function of the vertical coordinate for a linearly stratified ambient.
More recently, Kaye & Scase (2011) studied the stratification conditions under which
the plume is straight-sided. The interested reader can also refer to the reviews by
Turner (1986), Kaye (2008) and Woods (2010).

Most of the theoretical studies are based on the formalism due to Morton, Taylor
& Turner (1956). In their article, these authors proposed a one-dimensional model
in which the velocity of the ambient fluid entrained at the edge of the plume is
basically assumed to be proportional to the mean centreline velocity of the plume.
The constant of proportionality is generally denoted α and called the entrainment
coefficient. This approach leads us to a set of coupled differential equations for
buoyancy, momentum and volume fluxes, which are given, under the Boussinesq
approximation and considering top-hat profiles for the velocity and density, as follows:

d(ub2)

dz
= 2αbu,

d(u2b2)

dz
= gηb2,

d(ηub2)

dz
=−b2uN2, (1.1)
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where g is the gravitational acceleration and b(z), u(z) and η(z) are, respectively, the
radius, the mean vertical velocity and the mean density deficit of the plume at the
vertical location z. The density deficit reads as η(z) = (ρ0(z) − ρ(z))/ρref , where ρ(z)
and ρ0(z) are, respectively, the plume density and the ambient density and ρref is a
reference density, which is typically taken, under the Boussinesq approximation, as the
ambient density at the source level (z = 0). The parameter N that characterizes the
stratification of the ambient fluid is defined as follows:

N2 =− 1
ρref

dρ0

dz
. (1.2)

Note that
√

gN2 corresponds to the well-known Brunt–Väisälä frequency.
The aim of this paper is to investigate theoretically turbulent plumes in a linearly

stratified ambient (dρ0/dz = const. < 0). To do so, we shall benefit from recent
advances in plume theoretical modelling, where two dimensionless functions Γ (z)
and σ(z) have been introduced:

Γ (z)= 5gη(z)b(z)

8αu (z)2
and σ(z)= N2u (z)2

gη (z)2
. (1.3)

The function Γ (z), also called the plume function, corresponds to a normalized
Richardson number. It was used by Hunt & Kaye (2005) and Michaux & Vauquelin
(2008) in order to rewrite the conservation equations of Morton et al. (1956) in the
case N = 0 (i.e. homogeneous ambient). Remarkably, the plume function enables the
inflow regimes to be classified as forced when the plume is initially momentum-
dominated (Γi < 1) or as lazy when the plume is initially buoyancy-dominated (Γi > 1).
Note that the subscript i stands for initial and denotes quantities at the source level
(z= 0).

The function σ(z) (sometimes called the buoyancy frequency parameter) has been
introduced in order to account for the stratification of the ambient. According to
Bloomfield & Kerr (1998), the function σ(z) quantifies the relative magnitude between
the two buoyancy fluxes that control the inflow behaviour.

By using these two functions, Mehaddi, Vauquelin & Candelier (2012) have
investigated theoretically negatively buoyant releases (rising fountains) in linearly
stratified ambients. Herein, we propose to generalize their approach by dealing with an
initially positive buoyant release (plumes) in the case of a linear stable stratification
(N = const.). More precisely, the two regions depicted in figure 1(b), which correspond
to a positive buoyant region (0 < z < zt) and a negative buoyant one (zt < z < zp), will
be investigated successively in the next two sections.

2. Positive buoyant region
The purpose of this section is to provide us with the value of the transition height

zt, as well as analytical expressions for the plume variables (bt, ut and ηt) at this
location, as functions of the initial conditions. By using the plume function Γ (z) and
the function σ(z) given by (1.3), the conservation equations (1.1) can be combined in
order to get the derivative of the primary variables as follows:

db

dz
= 4α

5

(
5
2
− Γ

)
, (2.1)

du

dz
= 8

5
αu

b

(
Γ − 5

4

)
, (2.2)
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dη
dz
=−2αη

b

(
4
5
Γ σ + 1

)
. (2.3)

Note that (2.3) indicates that the derivative of η is strictly negative so that the density
deficit decreases (from a finite value at the source to zero at the transition height).
We can also note from (2.1) and (2.2) the existence of a neck (minimal radius for
Γ = 5/2) as well as a maximum of velocity (for Γ = 5/4) so that we recover results
that are well known for a plume in a homogeneous environment (Fannelop & Webber
2003; Michaux & Vauquelin 2008).

By using (2.1)–(2.3), it may be shown that Γ (z) and σ(z) are solutions of a set of
coupled differential equations:

dΓ
dz
= 4αΓ

b

[
1−

(
1+ 2

5
σ

)
Γ

]
, Γ (0)= Γi, (2.4)

dσ
dz
= 16

5
ασΓ

b
(σ + 1), σ (0)= σi. (2.5)

Further, by combining the five equations (2.1)–(2.5) and after some algebra, the
plume variables (divided by their values at the source level) can be expressed as

b

bi
=
(
Γ

Γi

)1/2(
σ

σi

)3/8(
σi + 1
σ + 1

)1/8

, (2.6)

u

ui
=
(
Γi

Γ

)1/2(σi

σ

)1/8
(
σi + 1
σ + 1

)1/8

, (2.7)

η

ηi
=
(
Γi

Γ

)1/2(σi

σ

)5/8
(
σi + 1
σ + 1

)1/8

. (2.8)

By combining (2.4) and (2.5) we also obtain

Γ =
[

I(σ )− I(σi)+ Γiσ
5/4
i

(σi + 1)3/4

]
(σ + 1)3/4

σ 5/4
, (2.9)

where I(σ )= (5/4) ∫ σ0 [t1/4/ (t + 1)7/4] dt is an incomplete beta function.
Thus, by substituting b given by (2.6) and Γ given by (2.9) into (2.5), the

differential equation for σ(z) reads as

dσ
dz
= Λi

bi

(
I(σ )− I(σi)+ Γiσ

5/4
i

(σi + 1)3/4

)1/2

(σ + 1)3/2, (2.10)

with

Λi = 16α
5

Γ
1/2

i σ
3/8
i

(σi + 1)1/8
. (2.11)

Note that, formally, the (numerical) integration of this differential equation would
allow the vertical evolution of the plume variables to be derived.

In the present case, however, we are only interested in obtaining the plume variables
at the transition height zt. To do so, we first note that, at this height, the density deficit
is equal to zero, so that the functions Γ and σ tend, respectively, to zero and to
infinity. To avoid this problem, it is convenient to introduce another function ∆= Γ 2σ
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that is independent of η and has a finite value at the transition height. This finite value
can be obtained by multiplying (2.9) by σ 2 and subsequently by using the fact that
σ →∞ when z→ zt. This yields

∆t =
[

5
4
β

[
1
2
,

5
4

]
− I(σi)+ Γiσ

5/4
i

(σi + 1)3/4

]2

, (2.12)

where the beta function β[1/2, 5/4] = 1.748.
Using this value in (2.6)–(2.8) yields

bt

bi
= (σi + 1)1/8

Γ
1/2

i σ
3/8
i

∆1/4
t ,

ut

ui
= Γ

1/2
i σ

1/8
i (σi + 1)1/8

∆
1/4
t

, ηt = 0. (2.13)

At this stage, the expressions for the plume variables at the transition height have
been drawn but the value of zt remains to be determined. Equation (2.10) is then
integrated between z= 0 and z= zt to obtain

zt

bi
= 1
Λi

∫ ∞
σi

(
I(σ )− I(σi)+ Γiσ

5/4
i

(σi + 1)3/4

)−1/2

(σ + 1)−3/2 dσ. (2.14)

The complexity of this equation does not allow analytical solutions to be derived.
Nevertheless, to go further, an asymptotic analysis can be performed in order to obtain
simple relations for the transition height zt.

In the case σi� 1, it may be shown that

I(σ )− I(σi)= 5
2(σ

−1/2
i − σ−1/2)+ O(σ−3/4

i ) (2.15)

and

Γiσ
5/4
i

(σi + 1)3/4
= Γiσ

1/2
i + O(Γiσ

1/4
i ). (2.16)

The term in (2.15) can be neglected in comparison with that in (2.16) provided the
condition Γiσi� 1 is satisfied. In this case, (2.14) turns to be

zt

bi
= 5

8αΓiσi
+ O(Γ −1

i σ
−5/4
i ). (2.17)

For the other limiting case σi� 1, similar developments yield

I(σi)= σ 5/4
i + O(σ 9/4

i ) (2.18)

and

Γiσ
5/4
i

(σi + 1)3/4
= Γiσ

5/4
i + O(Γiσ

9/4
i ). (2.19)

These two terms can be neglected in comparison with I(σ ), provided that Γiσ
5/4
i � 1,

and we obtain

zt

bi
= 5A

16αΓ 1/2
i σ

3/8
i

+ O(Γ −1/2
i σ

5/8
i ), (2.20)
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where A is a constant given by

A= lim
σi→0

∫ ∞
σi

(I(σ ))−1/2 (σ + 1)−3/2 dσ ' 3.3. (2.21)

Note that the relation (2.20), which is valid for small values of σi and when
Γiσ

5/4
i � 1, has already been obtained by several authors (see e.g. Turner 1986; Malin

1989) with a slightly different formalism. However, the relation (2.17), which is valid
for large values of σi and when Γiσi� 1, constitutes, to our knowledge, a new result.

Having obtained the plume variables at the transition height given by (2.13), the
problem corresponding to the negative buoyant region (zt < z< zp) can now be tackled.

3. Negative buoyant region
Beyond the transition height, the problem corresponds to that of an initially non-

buoyant release (since ηt = 0) in a linearly stratified environment. Such a problem
is actually a particular case of the recent theoretical investigation by Mehaddi et al.
(2012), which deals with rising fountains in a stratified ambient. For this reason, the
details of the calculations will not be given here. However, for more clarity, we briefly
recall the basis of their analysis. Starting from (1.1), the negative buoyant region of the
inflow can be modelled after taking the following points into account:

(i) The buoyancy acts in the opposite direction since the density of the plume is
greater than that of the ambient. So, for mathematical convenience, the variable η
is redefined as η = (ρ − ρ0)/ρref (to remain positive) and now corresponds to a
density excess.

(ii) The initial conditions (found in the previous section) are bt, ut and ηt (=0).
(iii) At the top of the plume (i.e. z = zp), Γ (z) and σ(z) tend, respectively, towards

infinity and zero.

When the release reaches its maximal height zp, the buoyancy flux B= ub2η and the
volume flux Q = ub2 have finite values even if the velocity is equal to zero and the
radius is infinite at this location. From the conservation equations, it can actually be
shown that

M2 + g

N2
B2 = const.=M2

i +
g

N2
B2

i , (3.1)

where M = u2b2 is the momentum flux. According to the fact that M tends to zero at
the top of the plume, (3.1) allows the buoyancy flux at z= zp to be obtained as

Bp =
(

N2

g
M2

i + B2
i

)1/2

= Bi (1+ σi)
1/2, (3.2)

where the subscript p refers to quantities at z= zp.
In all cases, the volume flux Q reaches its maximal value at the top of the plume.

This value can be first expressed as a function of ut, bt and ∆t, by considering
the problem of an initially non-buoyant release (Mehaddi et al. 2012). This maximal
volume flux reads as

Qp

utb2
t

=

(
∆

1/2
t + 5

4
β

[
1
2
,

5
4

])1/2

∆
1/4
t

, (3.3)
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where ∆t, ut and bt have to be replaced by their expressions (2.12) and (2.13). We are
led to

Qp

Qi
= (σi + 1)3/8

Γ
1/2

i σ
5/8
i

[
5
2
β

[
1
2
,

5
4

]
− I(σi)+ Γiσ

5/4
i

(σi + 1)3/4

]1/2

. (3.4)

The density excess at the top of the rising fountain can also be readily obtained
since ηp = Bp/Qp and its value reads as

ηp

ηi
= Γ

1/2
i σ

5/8
i (σi + 1)1/8[

5
2
β

[
1
2
,

5
4

]
− I(σi)+ Γiσ

5/4
i

(σi + 1)3/4

]1/2 . (3.5)

This last quantity is of practical interest since it allows us to obtain an estimate of the
dilution rate in the upper part of the plume and, subsequently, to obtain an order of
magnitude of the dilution rate in the layer that spreads horizontally.

The rising fountain height zf (= zp − zt) can also be expressed as a function of ∆t

and bt (Mehaddi et al. 2012):

zf

bt
= 5

16α
∆−1/4

t

∫ ∞
0

[
∆1/2

t +
5
4
β

[
1
2
,

5
4

]
− I(σ )

]−1/2

(σ + 1)−3/2 dσ. (3.6)

Bearing in mind that ∆t and bt are functions of the initial conditions σi and Γi, this
yields

zf

bi
= 1
Λi

∫ ∞
0

[
5
2
β

[
1
2
,

5
4

]
+ Γiσ

5/4
i

(σi + 1)3/4
− I(σ )− I(σi)

]−1/2

(σ + 1)−3/2 dσ. (3.7)

This equation cannot be solved analytically in the general case, but by using an
asymptotic analysis, three relations can be derived:

zf

bi
= 5

8αΓiσ
1/2
i

+ O(Γ −1
i σ

−3/4
i ), for σi� 1 and Γiσ

1/2
i � 1, (3.8)

zf

bi
= 5D

16αΓ 1/2
i σ

1/4
i

+ O(Γ −1/2
i σ

−5/4
i ), for σi� 1 and Γiσ

1/2
i � 1, (3.9)

zf

bi
= 5C

16αΓ 1/2
i σ

3/8
i

+ O(Γ −1/2
i σ

5/8
i ), for σi� 1 and Γiσ

5/4
i � 1, (3.10)

where C ≈ 1.1388 and D≈ 2.5563.
The total height of the plume zp is given by the sum of zt and zf . Expressions for

this height are given and discussed in the following section.

4. Plume total height
By using (2.14) and (3.7), the plume total height zp is given in the form of

two integrals, which have to be integrated numerically in the general case. In the
present section, we focus on the asymptotic cases for which analytical expressions
have previously been carried out. Three cases, in particular, can be considered that
correspond to different flow behaviours.
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4.1. Plume-like behaviour

Let us consider the case σi � 1 and Γiσ
5/4
i � 1, which typically corresponds to a

plume (forced or moderately lazy) emitted into a weakly stratified ambient. From
(2.20) and (3.10) the ratio between the transition height and the rising fountain height
can be straightforwardly obtained as

zt

zf
= αn

αp

A

C
, (4.1)

where αn and αp are, respectively, the entrainment coefficients of the negative buoyant
region and of the positive buoyant region. As a first approximation, if we consider
that αn ' αp, then the ratio between the transition height and the plume height (zt/zp)
is constant and remains around 0.75. In other words, the positive buoyant region
represents 75% of the total plume height, and this is the reason why the inflow may be
considered as plume-like.

The total plume height can also be expressed as

zp

bi
= 5

16

(
C

αn
+ A

αp

)
1

Γ
1/2

i σ
3/8
i

(4.2)

or, alternatively, in terms of the source buoyancy flux as

zp = 1
4

(
5
2

)1/2
(

A

α
1/2
p
+ Cα1/2

p

αn

)
B1/4

i (g1/3N2)
−3/8

. (4.3)

We therefore recover a relation that has already been proposed and used by several
authors (Turner 1986; Malin 1989; Woods 2010; Kaminski et al. 2011). An interesting
feature of this relation is that it allows the source buoyancy flux Bi to be calculated as
soon as the plume height has been estimated.

To compare (4.2) with experimental data, we use the laboratory experimental results
of Fan (1967), Abraham & Eysink (1969) and Sneck & Brown (1974) reported by
Carazzo, Kaminski & Tait (2008). The entrainment coefficients αn and αp have been
set, respectively, to 0.07 and 0.12, as proposed by Carazzo et al. (2008). Such values
are consistent with the fact that a negatively buoyant release entrains less than a
positively buoyant one (Kaminski, Tait & Carazzo 2005; Kaye 2008). Results are
plotted in figure 2. Although in this approach the entrainment process in the vicinity of
the transition height may not be well represented (the entrainment coefficient is sharply
modified between the two regions), a good agreement is observed between the theory
and experiments.

Additional comparisons with numerical results can be made for the particular case
of a pure plume (Mi = 0), which has recently been studied by Devenish, Rooney &
Thomson (2010) using large-eddy simulations. In spite of the fact that Γi→∞ and
σi→ 0, the theory can still be applied in this case since the terms Γiσ

5/4
i and bi/Λi

remain finite:

Γiσ
5/4
i =

5
8αpg1/4

Q2
i N5/2

B3/2
i

and
bi

Λi
= 1

4

(
5

2αp

)1/2 B1/4
i

g1/8N3/4
. (4.4)

The plume height and also the transition height are plotted in figure 3. A good
agreement is again observed, except for the numerical simulation corresponding to
Γiσ

5/4
i = 0.006, for which a discrepancy is noticeable. Anyway, the values assigned to
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FIGURE 2. Comparisons between experimental data of Fan (1967), Abraham & Eysink
(1969) and Sneck & Brown (1974) and the relation (4.2).

 

100
10–4 10–3 10–2 10–1 100

101

FIGURE 3. Comparisons between the theory (αn = 0.07 and αp = 0.12) and the numerical
results of Devenish et al. (2010) for the transition height and the plume height.

the entrainment coefficients in the model provide us with fairly good results for this
asymptotic regime.

4.2. Non-buoyant forced (rising) fountain behaviour

The second asymptotic case considered corresponds to σi � 1, Γiσi � 1 and
Γiσ

1/2
i � 1. A typical case that illustrates this regime is a highly forced plume in

a strongly stratified ambient. According to these assumptions, (2.17) and (3.8) show
that zt � zf so that zp ' zf . In terms of the initial source momentum flux Mi = u2

i b2
i ,
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the total plume height can be rewritten as follows:

zp = D

4

(
5

2α

)1/2( Mi

gN2

)1/4

. (4.5)

This equation is similar to the relation given by Mehaddi et al. (2012) and by Scase
et al. (2006) for a non-buoyant forced (rising) fountain (ηi = 0) in a linearly stratified
ambient.

Furthermore, by comparing (4.5) with the correlation given by Malin (1989), the
entrainment coefficient α should be around 0.07, which is close to that of a forced jet
(Turner 1986).

4.3. Non-buoyant weak (rising) fountain behaviour

In the case σi � 1 and σ
1/2
i Γi � 1, corresponding to a lazy plume released in a

strongly stratified ambient, the ratio between the rising fountain height and the plume
height only depends on the parameter σi. By using (2.17) and (3.8), this ratio reads as

zt

zf
= 1

σ
1/2
i

. (4.6)

For this regime, and similarly as in the previous case, the rising fountain height is
much greater than the transition height (i.e. zf � zt) and, remarkably, these two heights
are independent of the entrainment coefficient. Indeed, in this case, the entrainment
of the ambient fluid is weak and the evolution of the density difference is primarily
driven by the stratification of the ambient.

Alternatively, as the problem is defined by two constants related to the ambient
conditions (g and N2), it is possible to build intrinsic length and velocity scales,
respectively, 1/N2 and

√
g/N2. Then, (2.17) and (3.8) can be rewritten as

N2zt = ηi(1+ O(σ−1/4
i )), (4.7)

N2zf = ui√
g/N2

(1+ O(σ−1/4
i )). (4.8)

With this new representation, (4.7) shows that the transition height zt depends in a very
simple way on the source density and on the strength of stratification, independently
of the other parameters. It can also be remarked from (4.8) that the dimensionless
rising fountain height zf is the ratio between the initial velocity of the release and the
intrinsic velocity defined by the ambient conditions.

5. Discussion and conclusion
This paper has considered the vertical evolution of a Boussinesq plume in a linearly

stratified ambient. Particular attention has been paid to the total plume height zp, which
has been estimated as a function of the initial release conditions and of the ambient
stratification. Furthermore, the mathematical approach used in this study has allowed
the plume buoyancy Bp and volume Qp fluxes at the total plume height location to be
obtained analytically.

In contrast with the vertical evolution of the density difference of a plume
developing in a homogeneous ambient, which is continuously decreasing, this
evolution is systematically non-monotonic in a stratified ambient. Indeed, in the
positive buoyant region, the density deficit η(z) decreases with respect to the vertical
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FIGURE 4. The dimensionless dilution rate ηp/ηi as a function of σi for given values of Γi.

coordinate from ηi at the source to zero at the transition height zt. Above this location
(i.e. in the negative buoyant region), the opposite trend is observed, since the density
excess increases from zero to a finite value ηp at the top of the plume zp.

Under certain conditions, this finite value ηp may be greater than the initial density
deficit ηi, and thus the problem might fall outside the Boussinesq assumption.

In order to investigate this point, the ratio ηp/ηi has been plotted in figure 4 for
several values of Γi and σi. Furthermore, from (3.5), it can be readily shown that

lim
Γi→∞

ηp

ηi
= (σi + 1)1/2, (5.1)

which corresponds to the limiting (bold) curve plotted in figure 4. It can be seen
that, for σi � 1, the order of magnitude of ηp will never exceed that of ηi, so the
Boussinesq approximation will remain valid throughout the plume. In the case σi� 1
and Γi� 1, an asymptotic form of (3.5) reads as

ηp

ηi
' 0.68Γ 1/2

i σ
3/4
i . (5.2)

Then, returning to the three regimes identified in § 4, we observe that, in the first
one (the plume-like regime), the plume will always remain within the Boussinesq
approximation. In the second one (non-buoyant forced rising fountain-like regime) and
in the third one (non-buoyant weak rising fountain-like regime), it is advised to verify,
by using the relation (5.2), whether the density excess at the top of the plume ηp

remains compatible with the Boussinesq assumption.
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