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An Axiomatic Theory of
Inductive Inference
Luciano Pomatto and Alvaro Sandroni*y

This article develops an axiomatic theory of induction that speaks to the recent debate on
Bayesian orgulity. It shows the exact principles associated with the belief that data can
corroborate universal laws. We identify two types of disbelief about induction: skepti-
cism that the existence of universal laws of nature can be determined empirically, and
skepticism that the true law of nature, if it exists, can be successfully identified. We for-
malize and characterize these two dispositions toward induction by introducing novel
axioms for subjective probabilities. We also relate these dispositions to the (controver-
sial) axiom of j-additivity.
1. Introduction. We seek an axiomatic understanding of specific problems
of induction. Informally, induction is taken to mean the process of using em-
pirical evidence to validate general claims, and, for our purposes, it is critical
to differentiate between two types of epistemic skepticism about induction.

One may doubt it is possible to know whether nature abides by any law.1

Any empirical regularity may be a temporary fluke. Hence, patterns can sug-
gest, but not prove, the existence of universal laws. So, onemay ascribe non-
vanishing odds to the idea that nature does not follow any law, nomatter how
numerous and consistent the data may grow to be. We refer to this disposi-
tion asHumean skepticism, with the caveat that we do not claim to provide a
complete representation of Hume’s (and other authors’) actual statements.
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1. The definition of “law” is subjective, as we make clear in the main text.
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In addition, even if it is taken for granted that nature abides by a law, one
may be skeptical that such a law can be inferred with arbitrarily high preci-
sion, even when the data growwithout bounds. Let us say that in each period
either 0 or 1 must occur and that 1 has been observed every period, over a
long time, say t periods. The data are consistent with the law “nature produces
only 1” and with the law “nature produces 1 until period t and 0 afterward,”
among (infinitely) many other laws. So, one may maintain a nonvanishing
doubt that empirical evidence can validate a specific law, even under the as-
sumption that the data follow one. We refer to this form of skepticism as
Goodman’s skepticism, with the same caveat as above.

We consider a probabilistic framework in which an agent, named Bob, is
endowed with a coherent view of the world (i.e., a finitely additive probabil-
ity measure) over paths (i.e., infinite binary sequences). As the data unfold,
Bob updates his view of the world through Bayes’s rule.2 No restrictions are
placed on which paths may be produced. So, no relationship between past
and future is, a priori, required (apart from the idea that either 0 or 1 occurs
each period). Bob is not dogmatic about induction either. He believes that
the data may or may not follow eternal laws.

Under the lenses of this formal framework, we formalize Hume’s and
Goodman’s skepticisms by introducing two novel axioms for subjective
probabilities. These axioms refer to Bob’s belief as the data unfold and be-
come arbitrarily numerous. Bob’s view of the world is inductive in the sense
of Hume, as we define it, if, under data compatible with laws, Bob expects to
become almost convinced that nature indeed follows laws. This axiom rules
out Humean skepticism about induction. Bob’s view of the world is induc-
tive in the sense of Goodman if he expects to successfully identify nature’s
law up to a vanishing degree of error, conditional on nature abiding by one.
This axiom rules out Goodman’s skepticism about induction.

A natural starting line of inquiry is the extent of the connection between
the two problems of induction.We start by asking whether Goodman’s skep-
ticism implies Hume’s skepticism and the converse implication. Neither is
true. Some coherent views exhibit Goodman’s skepticism but not Hume’s
skepticism, and, conversely, some coherent views exhibit Hume’s skepti-
cism but not Goodman’s skepticism. Thus, these two types of skepticism
are not logically nested.

Of particular interest are the coherent views that express skepticism in
the sense of Goodman but not in the sense of Hume. If, say, confronted with
the question of whether the data are generated by a Turing machine, such
2. This framework follows de Finetti’s (1970) viewpoint that inference involves personal
judgments of likelihood that must be formalized in a coherent way. See de Finetti (1970)
for a connection between coherent views of the world and Dutch books. We make no
original attempt to justify Bayesianism and subjectivism.
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views of the world express conviction that with enough data it is possible to
make this determination with near certainty. In spite of this remarkable con-
fidence on the capacity of Bayes’s rule to address this apparently insur-
mountable inference problem, the same view of the world, if confronted
with the (arguably simpler) question of which Turing machine generates the
data, assuming that one does, remains skeptical that this determination can
be made with arbitrarily high precision.

The celebrated theorems of Lévy (1937), Doob (1949), and Blackwell
and Dubins (1962) make clear that under j-additivity a Bayesian must be-
lieve that his opinion about a given hypothesis will converge to the truth. In
particular, j-additivity excludes both Hume’s and Goodman’s skepticism,
and therefore it implies a form of “Bayesian orgulity” (Belot 2013). Differ-
ent results were obtained by Juhl and Kelly (1994), Kelly (1996), and Elga
(2016), among others, who have shown that there exist non-j-additive co-
herent views of the world that allow for Humean skepticism. Hence, in the
absence of j-additivity, epistemic skepticism is allowed.

Our results reveal a complex relationship between skepticism and sub-
jective probability. There are non-j-additive coherent views that rule out
Humean skepticism and others yet that rule out Goodman’s skepticism. Thus,
the spectrum of coherent views is rich enough to allow, at the same time, both
orgulity and skepticism about induction. In particular, in the absence of j-
additivity, orgulity and skepticism are allowed. Orgulity is not an exclusive
property of j-additivity and may hold with or without it. This is a difficulty
for a clear-cut theory of induction that seeks the root causes of orgulity and
skepticism about induction.

We show that while a lack of j-additivity does not assure Hume’s skep-
ticism and Goodman’s skepticism, it always assures skepticism in at least
one of these two ways. This is demonstrated by the structure theorem for
coherent views of the world. It shows that a coherent view is inductive in
the sense of Hume and in the sense of Goodman if and only if it is j-additive.
Thus, j-additivity is the definitive condition that assumes away both Hume’s
and Goodman’s skepticism about induction. It is not necessary to rule out ei-
ther type of skepticism, but it is required to rule out both types simultaneously.

The interpretation of the structure theorem requires considerable care.
The equivalence between induction and j-additivity may suggest that the
problems of how to conceptually justify either induction or j-additivity are,
in fact, one and the same problem and that j-additivity is the root and only
cause of the conviction in the ultimate success of induction. This reading of
the structure theorem may prove incomplete. Consider an alternative ap-
proach in which the focus is not on using data to ultimately (i.e., in the limit
as data grow) uncover eternal laws of nature but onmaking predictions within
a practical (i.e., bounded) future. Consider the case in which a long sequence
of 1s has been observed. One may wonder whether “nature produces only
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1s.”One may also wonder whether “nature will produce only 1s for the next
1,000 periods.”Our last result concerns the latter case, in which Bob remains
agnostic about the validity of universal claims but asks whether regularities
in the past can be used to make sharp predictions about a bounded future.
This result shows that any coherent view of the world, no matter how it is
formed, must be confident that multiple repetitions of Bayes’s rule transform
pattern data into a near infallible guide to a bounded future.

Moreover, after enough data there must be high confidence on limited,
but correct, inductive inferences. This holds even if, a priori, no assumption
is made on the relationship between past and future in the sense that the data
may unfold according to any path, including those without patterns. It also
holds even if Bob is a skeptic in regard to the use of data to ultimately val-
idate specific or general laws. Eventually there must be high confidence that
the past is a limited, but successful, guide to the future. This conclusion fol-
lows from conditional probability alone and holds for any coherent view of
the world. Thus, some confidence in inductive inference follows from co-
herence.

The article speaks to the recent debate on “Bayesian orgulity,” originated
with Belot (2013, 2017). Central to Belot’s thesis is the argument that the
convergence results of Levy, Doob, and Blackwell and Dubins are proof
that Bayesianism implies epistemic arrogance. The debate has spurred dif-
ferent views. Huttegger (2015) argued that the issue of convergence to the
truth should be put in the context of a long but finite horizon. Weatherson
(2015) revisited Belot’s argument from the perspective of Bayesian impre-
cise probability. The work closest to this article is Elga (2016), who showed
the existence of non-j-additive subjective probabilities expressing episte-
mic humility.

This article is also connected to the work of Kelly (1996), who formal-
ized the connection between inductive inference and finitely additive prob-
abilities, to the work of Gilboa and Samuelson (2012), who analyzed how
subjectivity can enhance inductive inference, and to Al-Najjar, Pomatto, and
Sandroni (2014), who study how different dispositions toward induction can
affect incentive problems.

2. Basic Concepts and Results

2.1. Patterns and Coherence. An agent named Bob observes, in every
period, one of two possible outcomes, 0 or 1. The set Q 5 f0, 1g∞ is the set
of all paths or infinite histories of outcomes. Given a path q and a time t, we
denote by qt the set of paths that share with q the same first t outcomes. We
call qt a finite history. We fix an algebra Σ of subsets of Q (subsets of Qmen-
tioned in the text belong to Σ, even when not stated explicitly). The agent is
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endowed with a finitely additive probability P on Σ.3 The measure P cap-
tures Bob’s subjective viewpoint on how the outcomes will evolve. We re-
fer to P as a coherent view of the world.

Some paths are governed by a law or pattern, and some are not. For in-
stance, the path 1∞ 5 (1, 1, 1, :::) follows the law “nature produces only the
outcome 1.” A classic example of a pattern is given by periodic paths, de-
fined by repeated cycles as in (1, 0, 1, 0, ...) or (1, 1, 0, 0, 1, 1, ...), or, more
generally, eventually periodic paths (i.e., sequences that are periodic after
some point in time). Both examples are subsumed by the class of comput-
able paths, which consists of all sequences that can be generated by a Tur-
ing machine (i.e., all paths that are the output of some finite program run-
ning on a computer with unlimited storage).

In order to speak of induction it is critical to demarcate between paths
governed by a law and paths that do not follow any discernible pattern. This
distinction can be made in many different ways, and the precise way in
which this determination should be made is orthogonal to the central ques-
tions in this article. So, we need not take a definitive stance of this matter.
Instead, we assume that the final determination of what constitutes a law
is subjective. That is, Bob determines which set of paths A ⊆ Q are the ones
that abide by a law. The complement of A is the set of paths that according
to Bob do not follow any pattern. For simplicity, we often refer to paths in A
as laws and to paths not in A as nonlaws.

We make the following assumptions on A and P.
3. Th
E1 an

86/6963
Assumption 1. A is countable.
While flexible enough to capture many formal definitions of pattern, includ-
ing the set of periodic, eventually periodic, or computable paths, the assump-
tion is not, however, without loss of generality. It greatly simplifies the anal-
ysis because it rules out both conceptual and technical difficulties that are
outside the scope of this article. The main implication of assumption 1 is that
it allows a view of the world to assign strictly positive probability to each
law-like path. If, for example, A was uncountable, then Bob would have
to assign zero probability to most individual laws. Formally:
Remark 1. For any coherent view of the world, there can be, at most,
countably many paths with strictly positive probability.
at is, a function P : Σ → ½0, 1� such that P(Q) 5 1 and for every pair of disjoint sets
d E2 in Σ it satisfies P(E1 [ E2) 5 P(E1) 1 P(E2).
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The result applies to Bob’s view of the world both before and, by Bayes’s
rule, after the data are observed.

An alternative approach, which allows capturing more complex inference
problems, is to consider nondeterministic laws. In section 7 we discuss this
alternative approach and, in particular, the difficulties it involves.
4. As
initia
Edge

6 Publ
Assumption 2. P(fqg) > 0 for every q ∈ A, and P(Ac) > 0.
Bob believes that any law in his set A is, a priori, possible. Bob also does not
rule out the possibility that nature does not follow any pattern. This assump-
tion enables Bayesian inferences about universal laws.4 Assumption 2 sim-
plifies the notation and the statement of some of the results but can be sub-
stantially weakened. Formally, all results in the article continue to hold if
their statements are modified by replacing the condition “for every q ∈ A”
with “for every q ∈ A such that P(fqg) > 0.”
Assumption 3. Given any finite history qt, A \ qt ≠ ∅ and Ac \ qt ≠ ∅.
Given any finite history qt, no matter how complex or simple it may be, there
are infinitely many laws that are compatible with it (i.e., there are infinitely
many laws q ∈ A such that the first t outcomes are equal to qt) as well as
uncountably many nonlaws that are also compatible with it. So, for any data,
Bob can never rule out the hypothesis that nature abides by laws or the hy-
pothesis that it does not. This captures the idea that there are many different
ways in which past and future can relate to each other. The history 1, 1, 1, 1, 1
is equally compatible with the law “always 1” and with the law “1 in the first
5 periods and 0 afterward.” In sum, the assumption ensures that it is not pos-
sible to deduce conclusively, from any finite data, whether nature abides by
laws or, if so, which law. Hence, it makes clear that induction, in this article,
refers to probabilistic inferences that can approach certainty but never reach
it in finite time. This assumption is also satisfied by all canonical definitions
of patterns, and so is useful for the interpretation of the results. However, our
results remain unchanged under the weaker condition that there exists (at
least) one law �qwith the property that for every t there is a lawq ∈ A distinct
from �q such that qt 5 �qt. So, upon observing t outcomes matching the path
�q, Bob cannot conclude with certainty that the law, if it exists, must be �q.

Finally, we emphasize that while our main examples of laws and patterns
refer to celebrated ideas such as Turing machines and periodicity, our re-
sults would continue to hold even if Bob had an eccentric understanding
is well known, Bayesian inference about a hypothesis requires the latter to have
l positive probability. See, e.g., Broad (1918), Wrinch and Jeffreys (1919), and
worth (1922), among others. See also Zabell (2011) for these and other references.
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of what is a law or pattern. That is, none of our results depend on the labels
given to laws and nonlaws, nor do they depend on the nature of the paths that
are categorized as laws and nonlaws (provided that assumption 1 on the ex-
istence of at most countably many laws holds). The key point is that what-
ever Bob’s understanding of what constitutes laws and patterns might be, he
privileges paths in the set A by assigning strictly positive probability to each
of them. This is a nonjudgmental, but meaningful, differentiation of laws and
nonlaws because, as we discussed, only countably many paths can have
strictly positive probability.

We fix for the remainder of the article a set of paths A satisfying assump-
tions 1 and 3. We also restrict the attention to views of the world that satisfy
assumption 2.

2.2. Induction and the Separation Theorem. We now formalize specific
forms of induction.
86/6963
Definition 1. A coherent view of the world P is inductive in the sense of
Hume if for every path q ∈ A,

P Ajqtð Þ→ 1 as t→∞: (1)
From sufficient data with a pattern, Bob ultimately concludes, with probabil-
ity approaching certainty, that nature must follow some law. A view of the
world that violates (1) is such that the probability of the set A of law-like paths
remains bounded away from 1, regardless of the number of realizations. Any
such worldview captures what we refer to as Humean skepticism: Bob main-
tains a nonvanishing doubt that perhaps nature does not work through eternal
laws, no matter how consistent and numerous the data he observes.

At each point in time, the observed finite history qt is consistent with a
path following a pattern as well as with a path that does not follow a pattern.
So, by Bayes’s rule, even a view of the world that is inductive in the sense of
Hume will always attach nonzero probability to the event that nature does
not abide by laws (under assumption 2). What distinguishes between skep-
ticism and inductivity in the sense of Hume is whether Bob’s doubt on the
regularity of nature vanishes as the number of observations that exhibit a pat-
tern goes to infinity.
Definition 2. A coherent view of the world P is inductive in the sense of
Goodman if for every path q ∈ A,

P qf gjA \ qtð Þ→ 1 as t→∞: (2)
If it is granted that nature abides by some law and sufficient data with a pat-
tern are observed, Bob infers nature’s true law with increasing precision and
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ultimately concludes it is eternal. A view of the world that violates (2) cap-
tures what we refer to as Goodman’s skepticism: even assuming that an un-
derlying law exists and that extensive evidence is available, Bob remains
skeptical he will ever be able to perfectly single out the data-generating
law with arbitrarily high confidence.

As in the case of induction in the sense of Hume, at no point in time is
Bob’s inference solved perfectly. Hewill always attach nonzero odds tomul-
tiple paths. However, a view of the world that is inductive in the sense of
Goodman is confident Bob must ultimately assign probability close to 1 to
the law generating the data.

The distinction we make here need not be seen as the formal counterpart
of the classic and the new riddle of induction (see Goodman [1955] and
Stalker [1994], for a discussion), and the above terminology is used mostly
as a mnemonic device. Fundamentally, we ask two direct inference ques-
tions: Within the present probabilistic framework can one tell, from suffi-
cient data and with arbitrary precision, (1) whether nature must abide by a
law and (2) if so, which law?

We now examine the logical connection between these two questions.
6 Publ
The Separation Theorem. There exist coherent views of the world that
are inductive in the sense of Hume but not in the sense of Goodman and
views that are inductive in the sense of Goodman but not in the sense of
Hume.
The Separation Theorem shows that Hume’s skepticism and Goodman’s
skepticism are not logically nested. One does not imply the other. In the ap-
pendix we provide simple examples of views satisfying only one of the prop-
erties. Given the separation theorem, it is meaningful to consider those co-
herent views of the world that express both types of faith in induction.
Definition 3. A coherent view of the world P is inductive if it is inductive
in the sense of Hume and is inductive in the sense of Goodman.
Under an inductive view of the world, skepticism about induction vanishes.
Bob interprets evidence consistent with a pattern as a sign of the existence of
an underlying law of nature and expects further evidence to allow him to sin-
gle out the correct lawwith virtually exact precision. So, inductive views ex-
press great confidence in the power of empirical evidence to predict the fu-
ture. This can be expressed as follows:
Definition 4. A coherent view of the world P is confident that enough pat-
tern data transform the past into a near infallible guide to the future if for
every path q ∈ A,
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P qf gjqtð Þ→ 1 as t→∞ : (3)
So, conditional on sufficient long pattern dataqt, the future is forecasted with
an arbitrarily high degree of certainty.
Remark 2. A coherent view of the world P is inductive if and only if it is
confident that enough pattern data transform the past into a near infallible
guide to the future.
So, partial induction is the necessary and sufficient condition for confidence
that sufficient pattern data are a near perfect guide to the future. Remark 2
delivers an initial characterization of induction that will prove useful.

3. Orgulity and j-Additive Coherent Views. This section examines in-
ductive properties of j-additive coherent views. These results are known
and adapted to our framework. We refer to known results as “propositions”
and to novel ones as “theorems.”
Proposition 1. If a coherent view of the world is j-additive then it is in-
ductive.
The proof of this result can be found in Kelly (1996). Under j-additivity, af-
ter multiple observations consistent with a pattern, Bob infers nature’s un-
derlying law with arbitrary accuracy and concludes with almost certainty
that nature cannot follow a different law. However, j-additivity entails even
stronger forms of faith in induction.
Definition 5.A coherent view of the world P is completely inductive in the
sense of Hume if

P Ajqtð Þ→ 1 as t→∞, for every path q ∈ A,
and

P Acjqtð Þ→ 1 as t→∞, for P-almost every path q in Ac: (4)
A coherent view of the world that is completely inductive in the sense of
Hume expresses full confidence that, with sufficient data, laws and nonlaws
can be distinguished empirically and with near certainty. So, complete in-
duction in the sense of Hume is an expression of confidence that a remark-
ably difficult inference problem can be resolved with arbitrarily high preci-
sion.
Proposition 2. Any j-additive coherent view of the world is completely
inductive in the sense of Hume.
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This result has led Belot (2013) to speak of “Bayesian orgulity.” The basic
inference problem is difficult. Yet, j-additive coherent views are confident
that finite, but long enough, data suffice to determine with arbitrarily high
precision whether nature is governed by a law.

In addition,
6 Publ
Definition 6.A coherent view of the world P is completely inductive if it is
completely inductive in the sense of Hume and inductive in the sense of
Goodman.
Combining propositions 1 and 2 yields:
Corollary 1. If a coherent view of the world P is j-additive then it is com-
pletely inductive.
Under j-additivity, Bob must express the following viewpoint on induction:
I do not know whether nature works through laws or not, but given suffi-
cient data I will find out with an arbitrarily high degree of certainty. If na-
ture generates the data based on a law, I will ultimately conclude that nature
works through laws and uncover the law nature abides by, up to a vanishing
error. If the data are not governed by a law, then, in the long run, I will be-
come near certain that nature does not follow laws. This is true even though
any finite data are simultaneously consistent with countably many laws and
uncountably many nonlaws.
So, under j-additivity, Bob believes that Bayes’s rule resolves these essen-
tial problems of induction.With sufficient data, nature’s law is eventually un-
covered. A false inference of laws, when nature follows none, is unlikely.
The intuition behind these results is as follows: First, let us assume, for sim-
plicity, that nature abides either by the law “always 1” or by a law “1 until
period t and 0 thereafter,” for some t > 0. No sequence of 1s, either large
or small, suffices to infer nature’s law conclusively, but there is a crucial dif-
ference between a short and a long sequence. Ex ante, the odds of the law
“always 1” are fixed and strictly positive. The odds of the law “1 until some
period t ≥ m and 0 thereafter” are arbitrarily small ifm is sufficiently high. It
is here that the assumption of j-additivity is used. Under j-additivity, such
tail events must be unlikely. It now follows, by Bayes’s rule, that conditional
on a sufficiently long sequence of 1s, the likelihood of the law “always 1”
eventually dominates the likelihood of any competing standing theories.
Thus, under j-additivity, Bob cannot express Goodman’s skepticism.

The intuition regarding Hume’s skepticism is related but not identical.
Assume, for simplicity, that nature either abides by the law “always 1” or
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does not abide by any law. Once again, no sequence of 1s, either large or
small, suffices for conclusive inference. For any sequence of 1s, no matter
how long, there are still many nonlaws that are consistent with it. However,
the set of nonlaws that are consistent with consecutive 1s until period t
shrinks monotonically to the empty set as t goes to infinity. This follows
because no nonlaw is consistent with an infinite sequence of 1s. So, under
j-additivity, the ex ante odds of the set of standing nonlaws (i.e., those con-
sistent with data of consecutive 1s until period t) goes to zero as t goes to
infinity. Hence, by Bayes’s rule, conditional on a sufficiently long sequence
of 1s, the relative likelihood of the law “always 1” is much higher than the
competing and still standing nonlaws. Thus, under j-additivity, Bob cannot
express Hume’s skepticism. Finally, the intuition regarding property (4) is
also similar. The set of laws consistent with nonpattern data of length t shrinks
monotonically to the empty set as t goes to infinity (because no law is consis-
tent with an infinite sequence of nonpattern data). Thus, under j-additivity,
it is unlikely that laws are consistent with long nonpattern data. Hence, prop-
erty (4) holds and so does complete induction in the sense of Hume.

4. Orgulity and General Coherent Views. As shown, j-additive coher-
ent views rule out skepticism about induction. We now consider Bob’s con-
clusions about the ultimate fate of multiple repetitions of Bayes’s rule for
general, not necessarily j-additive, coherent views of the world. We start
with an important result, a corollary of Elga (2016) (related results can also
be found in Juhl and Kelly [1994] and Kelly [1996]):5
5. Th
assum
appen

86/6963
Proposition 3. Let ε > 0. There exists a coherent view of the world P such
that

P Ajqtð Þ ≤ ε for every t and every q ∈ A:
The view P displays a complete failure of induction in the sense of Hume.
Under P, no evidence can overturn Bob’s initial pessimistic belief on the ex-
istence of laws. Hence, j-additivity suffices to rule out Hume’s skepticism
about induction, and this condition cannot be completely disposed of. Elga
(2016) shows that not all coherent views are inductive in the sense of Hume.
But, the separation theorem shows that some non-j-additive coherent views
are inductive in the sense of Hume. Moreover, there are also coherent views
that are not j-additive but nevertheless are inductive in the sense of Good-
man. Lack of j-additivity does not assure skepticism in the sense of Hume
e construction in Elga (2016) does not immediately apply to our framework (where
ptions 1–3 hold). For completeness, we provide an alternative construction in the
dix.
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and does not assure skepticism in the sense of Goodman either. Other strong
forms of induction can also be obtained without j-additivity.
6 Publ
The Complete Humean Induction Theorem. There exists a coherent
view of the world P that is not j-additive but is completely inductive in
the sense of Hume.
Insomuch as confidence about Humean induction must be granted under j-
additivity, the same confidence must also be granted without j-additivity,
for some coherent views of the world. An example of such a view can be
found in the appendix.

Consider, for instance, the case in which A is the set of computable paths.
The Complete Humean Induction Theorem shows that some, but not all, co-
herent views of the world express the belief that even a fundamental prob-
lem such as whether nature can be reduced to a Turing machine can be solved
(up to a vanishing error) empirically, even in the absence of j-additivity. In
this sense, Bayesian orgulity is not restricted to j-additivity. It extends to
other coherent views of the world as well.

5. The Axiomatization of Induction. The Separation and the Complete
Humean Induction theorems present a difficulty for the development of a
crisp theory of inductive inference. The difficulty is that confidence on solv-
ing induction problems is a product of not only well-understood conditions,
such as j-additivity, but also properties coherent views might have, which
are less understood and intuitively less clear. The Complete Humean Induc-
tion Theorem is particularly challenging because it shows that confidence on
empirical solutions to strong forms of inference problems can be obtained
under conditions other than j-additivity. However, let �Σ be the smallest al-
gebra that contains all finite histories and all singletons {q} for q ∈ A. This
is the smallest algebra that allows the expression of property (3), which is
equivalent to a view P being inductive. The key point of this algebra is as
follows: it is possible to obtain property (1) and also property (2) without
j-additivity. It is even possible to combine properties (1) and (4) without
j-additivity (and, hence, produce complete Humean induction). However,
on �Σ, it is not possible for property (3) without j-additivity. This makes j-
additivity not only sufficient but necessary for partial induction (and, hence,
for complete induction as well). Thus,
The Structure Theorem. A coherent view of the world P is inductive if
and only if is j-additive on �Σ.
The Structure Theorem is a full characterization result that delivers an axi-
omatic understanding of induction. The key result is the demonstration that
while lack of j-additivity does not assure skepticism in the sense of Good-
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man and it does not ensure skepticism in the sense of Hume either, it always
assures skepticism in at least one of these two senses. So, on �Σ, any result that
holds without j-additivity holds under some skepticism over induction.
Conversely, results that require j-additivity, also require induction.

The collection �Σ is smaller than the j-algebras commonly used in prob-
ability theory. While j-algebras are mathematically convenient under j-
additivity, they do not play a particular role under finite additivity. What
makes �Σ appealing in the context of induction is that �Σ is the simplest (i.e.,
the smallest) algebra that allows distinguishing between inductive and non-
inductive views of the world. Small algebras such as �Σ have an additional ad-
vantage. Because �Σ is countable, finitely additive measures can be defined
onP using only elementarymathematics andwithout invoking the (uncount-
able) Axiom of Choice.

6. Pragmatism, Induction, and de Finetti. So far, we have focused on in-
duction in the sense of the empirical validation of eternal laws of nature.
There are, however, other perspectives on induction, such as the one in which
Bob is concerned with making accurate predictions about the practical future,
rather than uncovering universal laws of nature or even questioning their ex-
istence.6

If a law or theory makes predictions that are accurate within some finite
horizon, then the theory predicts as if it were correct. Thus, the argument
goes, data need not uncover the actual data-generating process. Nor do data
need to reveal whether a law exists. It only needs to allow for accurate pre-
dictions for the practical future. To fix ideas, we refer to this perspective as
pragmatism, with no claim that our narrow use of this terminology compre-
hends most associations with this word.

We now revisit the different problems on induction but from a more prag-
matic perspective. In doing so we take a shortcut in the conceptual develop-
ment. We define pragmatic inductive views as requiring that enough pattern
data lead to a near infallible guide to a bounded future, instead of first mak-
ing a distinction between induction in the sense of Hume and Goodman and
then obtaining accurate predictions as a result of both conditions as we did in
remark 2.
6. Se
betw

86/6963
Definition 7.A coherent view of the world P is pragmatically inductive if,
for every path q ∈ A and every natural number k,

P qt1kjqt
� �

→ 1 as t→∞: (5)
So, with enough pattern data, Bob is convinced that the next outcomes can
be predicted with near certainty. This follows, in Bob’s belief, even if nature
e Russell (1912, chap. 6) for a discussion of induction that clearly distinguishes
een the two perspectives.
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abides by no laws or if it abides by a law that cannot be inferred from the
data. The only claim is that after enough pattern data nature behaves as if it
abides by a (data-inferred) law for a bounded but arbitrarily long future.

We now turn to the concept of complete induction in the sense of Hume,
from the pragmatic perspective. Let U be the set of unions of finite histories.
So, a set U ∈ U is a union of finite histories such as qt, where q ∈ Q and t is
a natural number. Any arbitrarily complex set E ⊆ Q can be approximated in
terms of finite histories by choosing a set U ∈ U such that E ⊆U .7
7. Fo
wher

6 Publ
Definition 8. A coherent view of the world P is pragmatically completely
inductive in the sense of Hume if for any set U ∈ U such that A ⊆U ,

P U jqtð Þ→ 1 as t→∞ on every q in A,

and for any set V ∈ U such that Ac ⊆ V ,

P V jqtð Þ→ 1 as t→∞ on P-almost every q in Ac:
Given the requirement for any set in U that contains A or Ac, there is, in par-
ticular, the same requirement for sets arbitrarily close to A or Ac. Sufficient
pattern data lead to near certainty of finite histories associated with laws,
and sufficient nonpattern data lead to near certainty of finite histories asso-
ciated with nonlaws. Combining the two definition yields
Definition 9. A coherent view of the world P is pragmatically completely
inductive if it is pragmatically inductive and pragmatically completely in-
ductive in the sense of Hume.
So, in particular, enough pattern data lead to a near infallible guide to a
bounded future, and enough nonpattern data lead to near certainty of future
finite histories associated with nonlaws.
The Pragmatic Induction Theorem. Every coherent view of the world is
pragmatically completely inductive.
Unlike the previous results, the Pragmatic Induction Theorem holds for all
coherent views of the world. No matter how coherent beliefs are formed,
they must express confidence that mechanical repetitions of Bayes’s rule
transform sufficiently numerous pattern data into a near infallible guide to
a bounded future. In the case of nonpattern data then, provided that the data
are sufficiently long, there must be confidence, approaching certainty, of an
r instance, the set Ac of paths not following a pattern can be written as Ac 5 \nUn,
e Un is a decreasing sequence in U.
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observable future associated with nonlaws. This holds without any other as-
sumption such as j-additivity. Therefore, any coherent view of the world con-
tains a seed of orgulity.

The concerns one may have about the orgulity of Bayesians may not go
away, at least completely, by abandoning j-additivity. The Pragmatic Induc-
tion Theorem relies on multiple repetitions of Bayes’s rule alone; hence, it
holds with or without j-additivity. However, the extent to which this remain-
ing form of orgulity is a difficulty for the Bayesian paradigm is a question
beyond the scope of this article. According to one viewpoint, the cases of
successful inference that follow from the repetition of Bayes’s rule can be
seen as a desideratum that provides support to the Bayesian approach. Ac-
cording to a different viewpoint, the Pragmatic Induction Theorem can be
seen as an expression of excessive confidence of the same paradigm. This
article does not resolve this fundamental tension, but it helps to make precise
the conditions under which orgulity holds.

While the Pragmatic Induction Theorem relies only on coherence and
Bayes’s rule, it is embedded in a standpoint that can be traced back to de
Finetti. The key conceptual point advanced by de Finetti is that the Bayesian
perspective on inference effectively solves the problem of induction. As de
Finetti (1970, 201) stated:8 “In the philosophical arena, the problem of in-
duction, its meaning, use and justification, has given rise to endless contro-
versy, which, in the absence of an appropriate probabilistic framework, has
inevitably been fruitless, leaving the major issues unresolved. It seems to me
that the question was correctly formulated by Hume. . . . In our formulation,
the problem of induction is, in fact, no longer a problem: we have, in effect,
solved it without mentioning it explicitly. Everything reduces to the notion
of conditional probability.”

In this sense, the Pragmatic Induction Theorem can be seen as formaliza-
tion of de Finetti’s viewpoint on induction. However, to the best our knowl-
edge, de Finetti never made a distinction between the two basic inference
problems (i.e., does nature abides by laws, and if so which one?) and never
examined these problems in a formal model. While pragmatism is the addi-
tional element necessary for the formalization of this viewpoint, there is a yet
more basic contribution. De Finetti mostly wrote about induction in the con-
text, as in de Finetti (1969), of exchangeable beliefs (i.e., beliefs such that the
order in which different outcomes occur over time is irrelevant). Exchange-
ability not only rules out elementary laws such as “1 until period t and 0 af-
terward,” it is also a critical assumption on the data and, hence, an assump-
tion on how past and future must relate to each other. In contrast, in the
Pragmatic Induction Theorem, confidence on limited, but successful, induc-
8. See de Finetti (1970), chaps. 11.1.5 and 11.2.1. For de Finetti’s perspective on induc-
tion, see also de Finetti (1970, 1972).

86/696386 Published online by Cambridge University Press

https://doi.org/10.1086/696386


308 LUCIANO POMATTO AND ALVARO SANDRONI

https://doi.org/10.1086/69638
tive inference about the future holds without assumptions on how the past
and the future must relate to each other. The conclusions about the future de-
pend on the data, but there is no restriction on the data-generating process
itself.

7. Extensions. This article dealt with some inductive inference problems
but left others unexamined. Perhaps the most basic limitation in this article
is that the data-generating processes are deterministic. A natural extension
could go as follows: the Blackwell-Dubins theorem extends proposition 1
to stochastic data-generating processes. Let us say that there are countably
many (possibly stochastic) data-generating processes P1, P2, P3, . . . , and
Bob’s belief (a prior over {P1, P2, P3, . . .}) assigns, ex ante, strictly positive
probability to each of them. If all probabilities are j-additive, then Bob’s pre-
dictions eventually will become indistinguishable from the data-generating
process, no matter which one.

In spite of the power of the Blackwell-Dubins theorem, new difficulties
arise in the case of stochastic data-generating processes. For example, if
two processes are identical in all but the first period, then it may be impos-
sible to empirically determine which process runs the data. This determina-
tion is not relevant for predicting the future after period 1 (see Lehrer and
Smorodinsky [1996] and Acemoglu, Cherzonukov, and Yildiz [2016] on this
problem). Other difficulties may prove currently intractable. The Blackwell-
Dubins theorem relies heavily on j-additivity. For general coherent views,
there are some conceptual advances, and some analytical methods for Bayes-
ian learning were developed in Pomatto, Al-Najjar, and Sandroni (2014).
With some effort, these techniques can be applied to prove a version of the
Pragmatic Induction Theorem for stochastic data-generating processes. The
Complete Humean Induction and the Separation theorems are existence re-
sults and so still hold when the set of data-generating processes is expanded.
Themain hurdle is the Structure Theorem. For a counterpart of that result, one
must find an algebra onwhich induction is equivalent to j-additivity when the
data-generating processes can be stochastic. This is a (very) difficult problem.
Appendix

Proof of the Separation Theorem.Wenow provide examples of views that
are inductive in the sense of Hume but not in the sense of Goodman or are
inductive in the sense of Goodman but not in the sense of Hume. Fix a j-
additive measure Pj 5 oq∈Abqdq, where each dq is the measure putting prob-
ability 1 on a pathq and bq are strictly positiveweights such thatoq∈Abq 5 1.
Being j-additive, it is inductive by proposition 1.
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We start with the following result.
86/6963
Lemma 1. There exists a finitely additive probability S satisfying the fol-
lowing two properties:

S qtð Þ 5 Pj qtð Þ for every qt;

S Að Þ 5 0:
So, any finite history has the same probability under S as under P. However,
under S almost every path will eventually cease to follow a pattern.
Proof of Lemma 1. Let F be the algebra generated by all finite histories.
Consider the algebra A generated by F and the set A. As proved in Łoś
and Marczewski (1949), a set E ⊆ Q belongs to A if and only if it is of
the form E 5 (F1 \ A) [ (F2 \ Ac), where F1, F2 belong to F . Let M
be defined as

M F1 \ Að Þ [ F2 \ Acð Þð Þ 5 Pj F2ð Þ,

for every set (F1 \ A) [ (F2 \ Ac) inA. It can be easily verified thatM is a
well-defined probability measure onA. Let S be any measure extendingM
fromA to Σ (see, e.g., Łoś and Marczewski [1949] for a proof that such an
extension exists). By construction, S satisfies the desired properties. QED
The mixture Q 5 (1=2)Pj 1 (1=2)S satisfies assumptions 1 and 2. It is
inductive in the sense of Goodman but not in the sense of Hume. The intu-
ition for why S is inductive in the sense of Goodman is as follows: when
conditioning on A the measureQ reduces to the j-additive measure Pj, which
is inductive. Formally, because S(A) 5 0 then for every q ∈ A we have

Q qf gjA \ qtð Þ 5 1=2ð ÞPj qf g \ Að Þ
1=2ð ÞPj A \ qtð Þ 1 1=2ð ÞS A \ qtð Þ 5 Pj qf gjqtð Þ,

for each t. The measure Pj is j-additive hence inductive, so Pj(fqgjqt) con-
verges to 1 for every q ∈ A. Hence,Q is inductive in the sense of Goodman.
To see that it is not inductive in the sense ofHume, notice that for everyq ∈ A,
we have

Q Ajqtð Þ 5 Pj A \ qtð Þ 1 S A \ qtð Þ
Pj qtð Þ 1 S qtð Þ 5

Pj A \ qtð Þ
2Pj qtð Þ 5

1

2
:

Hence, Q(Ajqt) remains equal to 1/2 no matter how large t is. So, Q is not
inductive in the sense of Hume.
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We now construct an example of a measure inductive in the sense of
Hume but not in the sense of Goodman. As implied by assumption 3, we
can fix a path �q ∈ A with the property that for every t we can find another
path �qt ∈ A distinct from �q such that �qt

t 5 �qt (so �qt and �q coincide on the
first t outcomes but differ on some later outcome). As is well known, there
exist finitely additive probability measures that assign probability 0 to each
single path but probability 1 to the whole set f�q1, �q2, :::g (see, e.g., Rao and
Rao 1983). Let R be such a measure. We consider the mixture

P 5
1

2
Pj 1

1

2
R:

It satisfies assumptions 1 and 2. In addition,

P Ajqtð Þ 5 Pj A \ qtð Þ 1 R A \ qtð Þ
Pj qtð Þ 1 R qtð Þ 51,

since Pj(A) 5 R(A) 5 1. To see that P is not inductive in the sense of Good-
man, consider the finite history �qt. Bayes’s rule implies

P �qf gjA \ �qtð Þ 5 Pj �qf gð Þ
Pj �qtð Þ 1 R �qtð Þ:

By definition the measure R assigns probability 0 to every finite set of paths.
Hence, R(f�qk : k ≥ 1, �qk ∈ �qtg) 5 R(f�qk : k ≥ 1g) for every t, so that
R(�qt) 5 1. Therefore,

P �qf gjA \ �qtð Þ 5 Pj �qf gð Þ
Pj �qtð Þ 1 1

:

As t→∞, j-additivity implies that Pj(�qt) converges to Pj(f�qg), so
P(f�qgjA \ �qt) converges to 1/2. Hence, P is inductive in the sense of Hume
but not in the sense of Goodman.

Proof of the Complete Humean Induction Theorem. The proof follows
the same argument in the second part of the proof of the Separation Theorem.
Let Pj and R be defined as in the above proof, and let ~q be a path such that
~q ∉ A and ~q1 ≠ �q1 (since A is countable, such a path exists). Consider the
mixture P 5 (1=3)Pj 1 (1=3)R 1 (1=3)d~q. As shown above, we have
P(Ajqt)→ 1 as t→∞ for every path q ∈ A. Given the path ~q, we have that
for every t > 1,

P Acj~qtð Þ 5 Pj Ac \ ~qtð Þ 1 R Ac \ ~qtð Þ 1 1

Pj ~qtð Þ 1 R ~qtð Þ 1 1
,
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since ~qt ≠ �qt, then R(~qt) 5 R(f�qk : �qk ∈ ~qtg) 5 0. Therefore,

P Acj~qtð Þ 5 Pj Ac \ ~qtð Þ 1 1

Pj ~qtð Þ 1 1
,

since ~q ∉ A, then Pj(~qt)→ 0, so P(Acj~qt)→ 1. Therefore, P is completely
inductive in the sense of Hume. To see that P is not j-additive, notice that for
every n, we have

P �qk : k ≥ nf gð Þ 5 1

3ok≥nPj �qkf gð Þ 1 1

3
R �qk : k ≥ nf gð Þ:

Because R assigns probability 0 to every finite set of paths, we have
R(f�qk : k ≥ ng) 5 1 for every n. Hence, P(f�qk : k ≥ ng) ≥ 1=3 for every
n, even if \n f�qk : k ≥ ng 5 ∅. Hence, P is not j-additive.

Proof of the Structure Theorem. We denote by F the algebra generated
by all finite histories. Hence, F ⊆ �Σ ⊆ Σ. A result related to the next lemma
appears in Al-Najjar et al. (2014).
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Lemma 2.A set E belongs to �Σ if and only if there exists a set F belonging
to F such that the symmetric difference EDF is finite and included in A.

Proof. Let E be the collection of sets E for which there exists a set F ∈ F
such that the symmetric difference EDF is finite and included in A. We
prove that F ⊆ �Σ. Let E and F ∈ F be such that EDF is finite and included
in A. Because EnF is finite and included in A and �Σ is an algebra containing
each singleton {q} for paths inA, thenF [ (EnF) ∈ �Σ. Similarly, FnE ∈ �Σ,
and so E 5 (F [ (EnF))n(FnE) ∈ �Σ. We now show that �Σ ⊆F . It fol-
lows from the definition that E satisfies F ⊆ E and fqg ∈ E for each q ∈
A. We now prove that E is an algebra. Let E ∈ E be such that EDF is fi-
nite and included in A for someF ∈ F . Because EcDFc 5 EDF and Fc ∈ F ,
it follows that Ec ∈ E. Now let E1, E2 ∈ E, and fix F1, F2 ∈ F such that
E1DF1 and E2DF2 are finite and included in A. Let E 5 E1 [ E2 and F 5
F1 [ F2. Then, EDF ⊆ (E1DF1) [ (E2DF2). Hence, EDF is finite and satis-
fies EDF ⊆ A. Thus, E is closed under union and complementation. There-
fore, E is an algebra. So, �Σ ⊆ E. Thus, �Σ 5 E. QED
We can now proceed with the proof. Let P be j-additive. As shown in,
for instance, Shiryaev (1996, 134), j-additivity implies that P must satisfy
P(qt)→ P(fqg) as t→∞, for every q ∈ A. Therefore, P(fqgjqt) 5
P(fqg)=P(qt)→ 1 whenever P(fqg) > 0. So, by remark 2, P is inductive
in the sense of Hume and in the sense of Goodman. Conversely, suppose
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P is inductive in both senses. We now show it is j-additive on �Σ. Let m be the
restriction ofP onF . Themeasure m is j-additive onF (see the discussion in
Rao and Rao [1983], example 10.4.2). So, by Carathéodory’s theorem it ad-
mits a j-additive extension Pm on the j-algebra generated by F . In order
to show that P is j-additive (on �Σ), we prove that Pm(E) 5 P(E) for every
E ∈ �Σ.

Let E ∈ �Σ and choose a set F ∈ F such that EDF is finite and included in
A. By additivity, any measure Q satisfies

Q Eð Þ 5 Q Fð Þ 1 o
q∈E2F

Q qf gð Þ 2 o
q∈F2E

Q qf gð Þ: (A1)

By construction, Pm and P coincide on F . Hence, P(F) 5 Pm(F). Since P is
inductive, for every q ∈ A, by remark 2 it satisfies P(fqgjqt) 5 P(fqg)=
P(qt)→ 1; that is, P(fqg) 5 limt  P(qt). The j-additivity of Pm and the fact
P and Pm coincide on F imply

Pm qf gð Þ 5 lim
t
 Pm qtð Þ 5 lim

t
 P qtð Þ 5 P qf gð Þ,

for every q ∈ A. In particular, this holds for every q ∈ EDF. We can there-
fore conclude from (A1) that

Pm Eð Þ 5 Pm Fð Þ 1 o
q∈E2F

Pm qf gð Þ 2 o
q∈F2E

Pm qf gð Þ

5 P Fð Þ 1 o
q∈E2F

P qf gð Þ 2 o
q∈F2E

P qf gð Þ

5 P Eð Þ:
Because E is arbitrary, it then follows that P and Pm coincide on �Σ. Hence, P
is j-additive on �Σ.

Proof of the Pragmatic Induction Theorem. Endow Q with the product
topology, and let B be the Borel j-algebra generated. Let F be, as before,
the algebra generated by all finite histories. Given any coherent view of the
world P (satisfying, as usual, assumptions 1 and 2) consider the restriction m
of P onF . Following the proof of the Structure Theorem, the measure m ad-
mits a j-additive extension Pj on B.

We now show that P is pragmatically inductive. For each q ∈ A we
have Pj(fqg) > 0. To see this, notice that j-additivity implies Pj(fqg) 5
limt  Pj(qt). For each t, we have Pj(qt) 5 P(qt) ≥ P(fqg) > 0. Hence,
Pj(fqg) > 0. Therefore, by j-additivity, Pj(fqgjqt)→ 1 as t→∞. Since
Pj(qt1K jqt) ≥ Pj(fqgjqt), we conclude that Pj(qt1Kjqt)→ 1 as t→∞. Be-
cause Pj(qt1K jqt) 5 P(qt1K jqt) for every t, we conclude that P is pragmat-
ically inductive.
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The result that P is pragmatically completely inductive in the sense of
Hume can be proved as a consequence of the following general principle:
for every set U ∈ U and every history qt, we have

P U j qtð Þ ≥ Pj U j qtð Þ:
We now prove this claim. The collection U of unions finite histories forms a
base for the topology. Since the product topology is separable, each U ∈ U
can be written as U 5 [∞

n51  hn, where each hn is a finite history. For each m,
we have that [m

n51hn belongs to F ; hence,

P Uð Þ ≥ P [m
n51

hn

� �
5 Pj [m

n51
hn

� �
:

Since [m
n51hn ↑ U as m→∞, j-additivity implies Pj([m

n51hn) ↑ Pj(U ) as
m→∞. Therefore, P(U ) ≥ Pj(U ). For each t and path q, the set U \ qt

is open, and the same argument as above implies that P(U \ qt) ≥ Pj(U \
qt). Because Pj and P coincide on F , we also have P(qt) 5 Pj(qt). Hence,
P(U  j  qt) ≥ Pj(U  j  qt), as claimed.

Because Pj is j-additive, it is completely inductive in the sense of Hume.
So, if A ⊆U and Ac ⊆ V , then Pj(U jqt)→ 1 for every q ∈ A, and P(V jqt)→
1 for P-almost every path q ∈ Ac. Since P(U jqt) ≥ Pj(U jqt) and P(V jqt) ≥
Pj(V jqt), it then follows that P is pragmatically completely inductive in the
sense of Hume.
Proof of Other Results in the Text
86/6963
Proof of Remark 1. The proof of this result is standard and included only
for the sake of completeness. LetD 5 fq : P(fqg) > 0g be the set of paths
to which P attaches strictly positive probability. The additivity of P implies
that for each positive integer k, the set Dk 5 fq : P(fqg) > k21g must be
finite. Hence, D 5 [∞

k51  Dk is countable. QED

Proof of Remark 2. Assumptions 1, 2, and 3 imply that for each q and t, the
conditional probabilities P(�jqt) and P(�jqt \ A) are well defined. In addi-
tion, by the law of total probability, for each q ∈ A we have

P qf gjqtð Þ 5 P qf gjqt \ Að ÞP Ajqtð Þ,
for each q ∈ A. Hence, as t→∞, it follows that P(fqgjqt)→ 1 if and only
if P(fqgjqt \ A)P(Ajqt)→ 1. That is, if and only if P(fqgjqt \ A)→ 1
and P(Ajqt)→ 1. QED
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Proof of Proposition 3. Let ε ∈ (0, 1), and let Pj be a j-additive measure
that satisfies assumptions 1–3. Using lemma 1, let S be a probability mea-
sure that satisfies S(qt) 5 Pj(qt) for every history, but S(A) 5 0. Let P 5
εPj 1 (1 2 ε)S. Then, for every q ∈ A and every t, we have

P Ajqtð Þ 5 εPj A \ qtð Þ 1 1 2 εð ÞS A \ qtð Þ
Pj qtð Þ 5

εPj A \ qtð Þ
Pj qtð Þ ≤ ε:

QED
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