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ABSTRACT

Modeling policyholders’ lapse behaviors is important to a life insurer, since
lapses affect pricing, reserving, profitability, liquidity, risk management, and
the solvency of the insurer. In this paper, we apply two machine learning
methods to lapse modeling. Then, we evaluate the performance of these two
methods along with two popular statistical methods by means of statistical
accuracy and profitability measure. Moreover, we adopt an innovative point
of view on the lapse prediction problem that comes from churn management.
We transform the classification problem into a regression question and then
perform optimization, which is new to lapse risk management. We apply the
aforementioned four methods to a large real-world insurance dataset. The
results show that Extreme Gradient Boosting (XGBoost) and support vector
machine outperform logistic regression (LR) and classification and regression
tree with respect to statistic accuracy, while LR performs as well as XGBoost in
terms of retention gains. This highlights the importance of a proper validation
metric when comparing different methods. The optimization after the trans-
formation brings out significant and consistent increases in economic gains.
Therefore, the insurer should conduct optimization on its economic objective
to achieve optimal lapse management.
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1. INTRODUCTION

Lapse risk is the most significant risk associated with life insurance when com-
pared with longevity risk, expenses risk, and catastrophe risk (EIOPA, 2011).
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Policyholders of life insurance may choose to surrender their policies at any
time for cash values or opt to stop paying premiums and leave policies to
become invalid eventually. Lapses have significant impacts on the profitabil-
ity, or even on the solvency, of a life insurer as many studies demonstrate. They
may reduce expected profits (Hwang and Tsai, 2018), let underwriting expenses
unrecovered (Tsai et al., 2009; Pinquet et al., 2011), impair the effectiveness of
an insurer’s asset–liability management (Kim, 2005a; Eling and Kochanski,
2013), and lead to liquidity threats as experienced by US life insurers in the late
1980s.

When lapse rates vary with interest rates as identified by Dar and Dodds
(1989), Kuo et al. (2003), Kim (2005b,c), and Cox and Lin (2006), they become
even more detrimental to life insurers (Tsai et al., 2009). Many papers argue
that the option to surrender a policy for the cash value might account for a
large proportion of the policy value, for example, Albizzati and Geman (1994),
Grosen and Jørgensen (2000), Bacinello (2003), Bauer et al. (2006), Gatzert and
Schmeiser (2008), and Consiglio and Giovanni (2010). The above reasoning
and findingmay be the reasons why the fifth Quantitative Impact Study (QIS5),
conducted by the European Insurance and Occupational Pensions Authority
(EIOPA) in 2011 regarding the implementation of Solvency II reports that
lapse risk accounts for about 50% of the life underwriting risks (EIOPA, 2011).

The significance of lapse risk draws attentions of scholars to study what
causes policyholders to lapse their policies. We may classify the literature
into being macro- or micro-oriented. Macro-oriented papers (e.g., Dar and
Dodds, 1989; Kuo et al., 2003; Kim, 2005b,c; Cox and Lin, 2006) focus on
how lapse rates (the proportion of lapsed policies to the total number of
sampled policies within a period of time) are affected by macroeconomic vari-
ables such as interest rates, unemployment rates, gross domestic product, and
returns in capital markets, as well as by company characteristics like size and
organizational form.

Micro-oriented papers secure data from insurers on individual policies to
investigate the determinants of the lapse propensities/tendencies. The identified
determinants including the characteristics of policyholders and the features of
life insurance products/policies (see Renshaw andHaberman (1986); Kagraoka
(2005); Cerchiara et al. (2009); Milhaud et al. (2011); Pinquet et al. (2011),
and Eling and Kiesenbauer (2014) among others.). Eling and Kochanski
(2013) and Campbell et al. (2014) provide extensive reviews of the literature
on lapses.1 More recently, Jamal (2017) apply machine learning algorithms
to identify groups with homogeneous lapse risks and Aleandri (2017) com-
pare the prediction results of logistic regression (LR) with those of a bagging
classification tree.

This paper extends the micro-oriented line of literature in three ways.
First, we introduce machine learning algorithms including Extreme Gradient
Boosting (XGBoost) and support vector machine (SVM) to lapse behav-
ior modeling. These two algorithms became popular recently because they
have good performance in (binary) classifications (Nielsen, 2016; Vafeiadis
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et al., 2015; Wainer, 2016). Their underlying theories differ from LR and
Classification and Regression Tree (CART) analysis that were used in the liter-
ature (e.g., Renshaw andHaberman, 1986; Milhaud et al., 2011). Furthermore,
they have not yet been applied to predicting lapses of life insurance.

Second, we adopt economic measures in addition to statistical accuracies
when evaluating the performance of different algorithms. What a life insurer
cares is not only how well the model predicts the insureds’ behaviors but also
how the predictions may generate profits. In that regard, Campbell et al. (2014)
highlight the fact that “very often actuaries are still more focused on ‘fitting a
curve’ to past experience, with less emphasis on the ‘why’ and ‘so what?’ aspects”
(page 14). The adoption of economic measures will reveal the comparative
benefits generated by alternative algorithms for the insurer.

Third, we transform the optimization objective from classification accu-
racy to economic gains to demonstrate the benefit of integrating modeling with
profit maximization. Such an integration can motivate a life insurer to improve
its customer management through taking preventive measures to reduce lapses
and retain more of the contractual service margin specified by International
Financial Reporting Standard (IFRS) 17. It also links us to the literature on
churn management and its impact on the customer lifetime value (CLV) (e.g.,
Lemmens and Croux, 2006, Lemmens and Gupta, 2017; Neslin et al., 2006).

The results from applying different algorithms to a large dataset consist-
ing of more than 600,000 life insurance policies show that XGBoost and SVM
outperform CART and LR with respect to statistical accuracies. The results
further show that XGBoost is the most robust across training samples.

Results are less straightforward when considering the economic measure of
retention gains. The retention gains take into account the costs of providing
incentives to policyholders to reduce their propensities toward lapses, the ben-
efits of retaining policies, and the costs of false alarm. While a good overall
accuracy logically leads to better performance, our assumed economic metrics
with different parameter settings favor algorithms with low false alarm rates
in many cases. We thus find that LR performs as well as XGBoost in terms of
retention gains. This highlights the importance of a proper validation metric
when comparing different models.

Last but not least, we find that economic gains can be further enhanced
when the optimization is done on a function linked to the gains rather than on
statistical accuracies. The retention gains increase about 20% from the models
having the best statistical accuracies in the two benchmark cases. The results
from sensitivity analyses on the parameters used in calculating retention gains
show that the optimization done on the gain function delivers higher reten-
tion gains than the best models on statistical accuracies by an average of 51%.
The increase is particularly significant when binary models deliver negative
retention gains.

The above findings highlight the importance of the right validation met-
ric and objective function. High statistical accuracies do not guarantee high
retention gains. The models aiming statistical accuracies may even end up
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with negative retention gains. Therefore, actuaries as well as scholars should
broaden their interests from new techniques and prediction accuracies to the
economic gains of the insurer or even to the overall gains of all stakeholders.
The insurer should conduct optimization on its economic objective to achieve
optimal lapse management.

The organization of the paper is as follows. Section 2 contains explanations
about XGBoost and SVM, followed by brief descriptions on CART and LR.
In Section 3, we delineate the two performance metrics to be used. One is the
commonly seen accuracy, that is, a statistical validation metric, while the other
one is an economic metric considering the expected profits and costs of lapse
management. We describe the data obtained from a medium-sized life insurer
in Section 4. Section 5 displays the comparison results across the four algo-
rithms in terms of the statistical and economic metrics. We explain how to inte-
grate algorithms with the profit maximization goal at the beginning of Section 6
and then compare the results from optimizing profits with those from optimiz-
ing statistical accuracies. In Section 7, we summarize and conclude the paper.

2. BINARY CLASSIFICATION ALGORITHMS

The problem that we want to tackle is detecting whether a policyholder will
lapse her/his policy or not, that is, yi ∈ {0, 1}, by the end of the sampling period.
Popular predictive models are LR and CARTmodels.More advancedmachine
learning models that we introduce in this paper are SVM and XGBoost.2

2.1. XGBoost

In this subsection, we first describe the gradient boosting technique. Then, we
explain stochastic gradient boosting and XGBoost. We describe how we tune
the hyperparameters of XGBoost at the end.

2.1.1. Gradient boosting
Gradient boosting was introduced by Friedman (2001). Boosting builds models
in an iterative way from individuals called “weak learners,” and the gradient
is used to minimize a loss function. More specifically, the gradient boosting is
an ensemble method, that is, multiple weak learners h are combined to become
a strong learner F in order to achieve a better predictive performance. In this
study, we employ the gradient tree boosting that is a specific case of gradient
boosting in which weak learners are decision trees. The following descriptions
are summarized from Friedman (2002).

Given a training sample {yi, xi}N1 where xi ∈R
n and yi ∈ {0, 1}, one would

like to find a strong learner F∗(x) which minimizes a loss function �(y, F(x)):

F∗(x) =arg min
F(x)

Ey,x [�(y, F(x))]. (2.1)
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The strong learner is an additive expansion of M weak learners h(x, {Rlm}L1 ,
ylm) that will be a L-terminal node regression tree in our case:

FM(x) =
∑M

m=0
βmh

(
x, {Rlm}L1 , ylm

)=
∑M

m=0

∑L

l=1
βmylm1(x ∈Rlm) , (2.2)

where {Rlm}L1 and ylm are the L-disjoint regions and the corresponding response
values determined by the mth regression tree, respectively, and βm are named
as the expansion coefficients since Equation (2.2) approximates Equation (2.1)
by an additive expansion form.

This strong learner is approximately estimated through a stage-wise method
that begins with an initial guess F0(x). Then the pseudo-residuals for m=
1, 2, . . . , M are computed:

ỹim = −
[
δ�(yi, F(xi))

δF(xi)

]
F(x)=Fm−1(x)

, (2.3)

and the optimal value of βm can be determined by the following equation:

βm = arg min
β

∑N

i=1
�
(
yi, Fm−1 (xi) + βh

(
x, {Rlm}L1 , ylm

))
, (2.4)

given the function h.
The regions {Rlm}L1 are obtained by estimating the mth L-terminal node

regression tree on the sample {ỹim, xi}N1 . The product βmylm = γlm is set to
optimize the loss function �:

γlm = arg min
γ

∑
xi∈Rlm

�(yi, Fm−1 (xi) + γ ). (2.5)

At the final stage, the approximation of the strong learner is updated:

Fm(x) = Fm−1(x) + ν.γlm1(x ∈Rlm) , (2.6)

where ν ∈ (0, 1] is a shrinkage parameter that controls how much information
is used from the new tree.

The gradient tree boosting method may be summarized as the following
algorithm extracted from Friedman (2002).

Algorithm 1: Gradient_TreeBoost
1 F0(X)= argminγ �N

i=1�(yi, γ )

2 For m= 1 toM do:

3 ỹim = −
[

∂γ (yi ,F(Xi ))
∂F(Xi )

]
F(X)=Fm−1(X)

, i = 1,N

4 {Rlm}L1 =L− terminal nodetree({ỹim,Xi}N1 )
5 γ lm= argminγ

∑
Xi∈Rlm �(yi, Fm−1(Xi)+ γ )

6 Fm(X)= Fm−1(X)+ ν · γ lm1(X ∈Rlm)
7 endFor
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2.1.2. Extensions to gradient boosting
Inspired by previous works on statistical learning, many extensions to the gra-
dient (tree) boosting method have been developed. For instance, training each
ensemble on a subset of the training set can help improve generalizability of
the model. This extension is called the stochastic gradient boosting technique.
More specifically, the stochastic gradient boosting technique (Friedman, 2002)
is based on the same principle as the bagging technique (Breiman, 1996). It
introduces randomness in the observation: given a random permutation π of
the integers {1, . . . ,N} and Ñ <N, the new weak learner tree is estimated on
the random subsample {ỹπ (i)m, xπ (i)}Ñ1 .

Another way to inject randomness that has been popularized by Breiman
(2001), that is, random forest, is randomly selecting a subspace of the explana-
tory variables. More specifically, given a random permutation π∗ of integers
{1, . . . , n} and ñ< n, the new weak learner tree is estimated on {ỹim,P∗(x)i}N1 in
which P∗(x)= {xπ∗(1), . . . , xπ∗(ñ)}.

To avoid overfitting, some extensions follow the general idea of the ridge
regression (Hoerl and Kennard, 1970) and lasso regression (least absolute
shrinkage and selection operator regression; Tibshirani, 1996) and adopt the
penalized optimization point of view. Instead of optimizing a loss function
�(y, F(x)), the problem is modified as the optimization on an “objective”
function O that is the sum of a loss function � and a regularization term �:

O(y, F(x)) = �(y, F(x)) + �(F). (2.7)

2.1.3. XGBoost
XGBoost stands for Extreme Gradient Boosting. It may be regarded as
a specific implementation of the gradient boosting method in which more
accurate approximations are used to find the best tree model. In particular,
XGBoost takes account of the second-order gradients, that is, the second par-
tial derivatives of the loss function. This provides more information about the
direction of gradients and how to get to the minimum of the loss function.
XGBoost further adopts advanced regularization to improve model general-
ization. XGB can be trained fast and be parallelized/distributed across clusters,
which provides additional advantages.

Therefore, the XGBoost system (Chen and Guestrin, 2016) has become
the most popular due to its flexibility and computing performances (Nielsen,
2017). The system includes stochastic gradient descent, bagging, random for-
est, tree pruning, regularization, parallel processing, etc. The broad collection
of statistical learning tools allows users to better tackle the bias–variance issue
that is one of the main issues in machine learning. Furthermore, the corre-
sponding parameters are made easily adaptable by the packages. XGBoost
thus has become the most popular machine learning algorithm in data science
challenges such as Kaggle for structured data (Nielsen, 2016).
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We list the main parameters that need to be tuned in implementing
XGBoost, using the R package’s terminology (Chen et al., 2015) and the
notation of Friedman (2002), as follows:

(i) nrounds is the number of trees to grow:M;
(ii) eta is the shrinkage parameter: ν;3

(iii) gamma is the regularization parameter which is used in �;
(iv) max_depth is the number of nodes of a tree: L;
(v) min_child_weight is the minimal number of observations in a node and

minl,m
∑N

i=1 1 (xi ∈Rlm) should be higher than this value;
(vi) subsample is the relative size of the random subsample used in the case of

a stochastic gradient boosting: Ñ/N;
(vii) colsample_bytree is the relative size of the random subspace of explana-

tory variables selected at each new tree: ñ/n.

Since we are interested in a binary classification in this paper, we use the
logistic loss function:

�(y, F(x)) =
∑N

i=1
[yiln (pi) + (1− yi) ln (1− pi)], (2.8)

where pi = 1
1+e−F(xi) is the probability score, that is, the sigmoid function applied

to the output of the model F(xi).
For the cross-validation metric, we retain the error function:

error
(
y, ŷ

)=
∑N

i=1 1
(
yi �= ŷi

)
N

, (2.9)

where ŷi =
{
1 if FM(xi) > 0.5

0 if FM(xi) ≤ 0.5
and FM(xi) is the output of the XGBoost model,

that is, a probability.
The tuning method that we adopt consists of two nested cross-validations.

We first determine the best nrounds through a fivefold cross-validation up to
200 for every possible set of parameters of the retained grid values which are
reported in Appendix A. Then we perform grid searches on the parameters with
a twofold cross-validation.4

2.2. SVM

The theory of SVM was introduced in the 1990s by Boser et al. (1992)
and Cortes and Vapnik (1995). The underlying idea, as will be described
in this section, is substantially different from regression or tree-based mod-
els. It has become a popular algorithm for classification problems and for
churn prediction in particular (e.g., Zhao et al., 2005; Xia and Jin, 2008). Its
predictive power is rather good compared to other classification algorithms
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(e.g., Vafeiadis et al., 2015; Wainer, 2016). Despite of its good performances in
binary classifications, SVM has never been applied to life insurance lapses.

The SVM algorithm can be described by geometrical terms. The main idea
is to find a hyperplane that separates the observation space into two homoge-
neous subspaces that is as far apart from each other as possible. This solution
is defined as the maximum-margin hyperplane. To deal with misclassifications,
a soft margin (i.e., a penalty determined by the user) is imposed upon the SVM.
Another way to deal with classification errors is to project the data to a higher-
dimensional space through a kernel function. A more complete geometrical
description of SVM can be found in Noble (2006).

In the following, we adopt a formula-based description of the SVM using
the notation of Hsu et al. (2003). Given a training sample {yi, xi}N1 in which
xi ∈R

n and yi ∈ {+1,−1}, the SVM algorithm is the solution of the following
optimization problem:

min
ω,b,ξ

1
2
ωTω +C

∑N

i=1
ξi, (2.10)

with the constraint:

yi
(
ωTφ(xi) + b

)≥ 1− ξi, ξi ≥ 0. (2.11)

The separating hyperplane is determined by the orthogonal vector ω and con-
stant b. The soft margin penalty cost is denoted as C. The data may be
projected to a higher dimension space by the function φ, and the underlying
kernel function is defined by K(xi, xj)= φ(xi)

T
φ(xj).

In our case, we choose to consider the radial basis function kernel that is
the most commonly used in practice and determined by:

K
(
xi, xj

)= exp
(−γ ‖xi − xj‖2

)
, (2.12)

with γ > 0 being the kernel parameter.5

Then we use the “e1071” R package (Meyer et al., 2015) to implement the
SVM algorithm. To tune the SVM parameters (C, γ ), we perform a grid search
on a twofold cross-validation and adopt the misclassification error function as
the validation metric.6 The grid of values is reported in Appendix B.

2.3. CART

CART was first introduced by Breiman (1984) and was used by Milhaud et al.
(2011) to model lapse behavior. The underlying idea is straightforward: defin-
ing a class by following a list of decision rules on the explanatory variables.
To determine these rules, the data space is iteratively separated by binary split
into disjoint subspaces. At each step or node of this top-down construction, the
explanatory variable and the dividing point are chosen to minimize a defined
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loss function. Since we are interested in a binary classification, we choose the
Gini impurity of the node as the loss function.

More specifically, given a node l of Nl observations of response yi ∈ {0, 1}
with i ∈ l, the proportion of observations of response type 1 in the node is
defined by pl = 1

Nl

∑
i∈l yi. Then, one may use an algorithm to partition the

parent node into two nodes lL and lR by maximizing

IG(l) − [IG(lL) + IG(lR)] , (2.13)

where IG is the Gini impurity of the node and computed by

IG(l) =Nlpl(1− pl) . (2.14)

This split estimation can be applied up to obtaining a node for every sample.
The obtained tree is called the saturated model. Although fitting the response
on the training sample perfectly, the saturated model generally leads to low
predictive performance when applied to new samples. Hence, the tree needs to
be pruned, that is, the number of final nodes needs to be reduced to increase its
predictive power.

Many criteria can be used to prune the tree, for example, the minimum
number of samples in a final node. We estimate L, the number of termi-
nal nodes that minimizes the misclassification error as defined by Equation
(2.9), by a 10-fold cross-validation methodology. Lastly, we use the “rpart” R
package (Therneau et al., 2018) to implement CART.

2.4. Logistic regression (LR)

The LR is a special case of the generalized linear models (Nelder and
Wedderburn, 1972) obtained with the Bernoulli distribution. It was employed
by Renshaw and Haberman (1986) and Milhaud et al. (2011) to identify prod-
uct and policyholder characteristics relating to lapses. The goal is to model the
probability of a binary event such as the lapse probability pi of the policyholder
i. Given a training sample {yi, xi}N1 in which x ∈R

n and yi ∈ {0, 1}, the regression
model is specified as:

ln
pi

1− pi
= β0 + xTi β. (2.15)

The parameters (β0, β) ∈R×R
n can be estimated by the maximum-likelihood

method:

L=
∏N

i=1

(
ex

T
i β+β0

1+ exTi β+β0

)yi (
1

1+ exTi β+β0

)1−yi
. (2.16)
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When applying the estimated LR model to a classification problem, it
does not directly lead to labeled responses but to estimated probabilities. To
determine the forecasted class, we choose a threshold th ∈ (0, 1) so that:

ŷ∗
i =

{
1 if ŷi > th;

0 if ŷi ≤ th.
(2.17)

To obtain the optimal threshold th, we conduct a fivefold cross-validation
method on the training set according to the error function.

3. VALIDATION METRICS

For each policy, the observed lapse yi and the forecasted lapse ŷi are binary
variables: (yi, ŷi) ∈ {0, 1}2. The four different outputs of a binary classification
model are named true positive (1, 1), true negative (0, 0), false positive (0, 1)
and false negative (1, 0) respectively, while the number of each case is usually
laid out in the so-called confusion matrix. DenoteN( j, k) as the numbers of the
confusion matrix in which j ∈ {0, 1} stands for the observed lapse indicator and
k ∈ {0, 1} for the predicted lapse indicator. Given a set of response variables
{yi, ŷi}N1 , we calculate N( j, k) as:

N( j, k) =
∑N

i=1
1
(
yi = j, ŷi = k

)
. (3.18)

3.1. Statistical metric

Based on the confusion matrix, different metrics can be developed. We first
focus on an accuracy metric, the ratio of correctly classified predictions over
the total number of predictions:

accuracy
(
y, ŷ

)= N(1, 1) +N(0, 0)
N

= 1− error
(
y, ŷ

)
. (3.19)

We are aware that other statistical metrics can be used to compare one binary
classification model with another. Nevertheless, our study is to introduce eco-
nomic metric rather than merely comparing alternative statistical measures.
We adopt the above accuracy metric for its simplicity and its widespread use in
binary classification applications.

3.2. Economic metric

Although we adopt mathematical algorithms to predict lapses, the risk is an
economic issue after all. We thus would like to analyze and compare the classi-
fication algorithms by an economic metric. More specifically, we will evaluate
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the impacts of different classification results on the expected profits from poli-
cies that are also called customer lifetime values (CLVs). In order to do so, we
plan to adopt an economic model inspired by Neslin et al. (2006) and Gupta
et al. (2006).

Suppose that policy i stays �i years in the portfolio (�i ∈ N). The prof-
itability ratio at time t can be represented by pi,t and the face amount by Fi,t.
The lifetime value for policy i is computed as:

CLVi =
∑�i

t=0

pi,tFi,t
(1+ dt)

t , (3.20)

where dt is the discount rate.
Further assuming a deterministic time horizon T(T ∈ N), we define the

(T + 1)-dimensional real vectors pi, F i, ri , and d for profitability ratios, face
amounts, retention probabilities, and discount rates, respectively. Given the
four vectors, the CLV is

CLVi

(
pi, F i, ri, d

)=
∑T

t=0

pi,tFi,tri,t
(1+ dt)

t . (3.21)

The lapse management strategy is modeled by the offer of an incentive δi ∈
R
T+1 to policyholder i who is contacted with a cost c. The incentive is accepted

with the probability γi, and the acceptance will change the vector of the prob-
abilities of staying in the portfolio from ri to r∗i ∈R

T+1. We further make the
following simplifying assumptions:

(i) pi are the same for all policies and denoted as p hereafter;
(ii) δi are the same for all contacted policies and denoted as δ hereafter;
(iii) pi,t, Fi,t, and dt remain constant across time;
(iv) ri equals to rlapse or rstay in which rstay = (1, 1, . . . , 1) and rlapse is estimated

using the dataset and will be given in Section 5.2;
(v) if ri = rstay, the incentive is accepted with probability γi=1 and r∗i = rstay;
(vi) if ri = rlapse, the incentive is accepted with probability γi=γ and r∗i = rstay.7

Policyholders who reject the offers (with probability = 1- γ ) will lapse
their policies, that is, r∗i = rlapse.

The application of a classification algorithm to the tested samples pro-
duces two confusion matrices: one with respect to number of policies, while
the other in term of face amount. For the latter matrix, we denote F( j, k)
as the coefficients of the matrix with regard to face amount, where j stands
for the indicator of the policyholder’s lapse in real life, k the indicator by the
algorithm’s prediction, and ( j, k) ∈ {0, 1}2. More specifically,

F( j, k) =
∑N

i=1
Fi.1

(
yi = j, ŷi = k

)
, (3.22)

while N is defined in Equation (3.18).
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We define the reference portfolio value (RPV) as the CLV of all policies if
no customer relationship management about lapses are carried out to be

RPV =CLV
(
p, F(0, 0) + F(0, 1) , rstay, d

)
+CLV

(
p, F(1, 0) + F(1, 1) , rlapse, d

)
. (3.23)

Given a classification algorithm, we compute the lapse managed portfolio value
(LMPV) by:

LMPV(δ, γ , c) = CLV
(
p, F(0, 0) , rstay, d

)+CLV(p, F(1, 0)

+ (1− γ ) F(1, 1) , rlapse, d
)+CLV(p-δ, F(0, 1)

+ γF(1, 1) , rstay, d
)− c(N(0, 1) +N(1, 1)) . (3.24)

Then, we define the economic metric of the algorithm as the retention gain:

RG(δ, γ , c) =LMPV(δ, γ , c) − RPV , (3.25)

that can be simplified as:

γ
[
CLV

(
p – δ, F(1, 1) , rstay, d

)−CLV
(
p, F(1, 1) , rlapse, d

)]
−CLV

(
δ, F(0, 1) , rstay, d

)− c(N(0, 1) +N(1, 1)) . (3.26)

4. DATA

Our data come from a medium-sized life insurance company in Taiwan that
had total assets over 15 billion US dollars at the end of 2013. The data con-
tain 629,331 life insurance policies sold during the period from 1998 to 2013.
The data-providing insurer tracked changes in the statuses of policies including
death and lapse. The last tracking date is 8/31/2013, and 243,152 policies out
of all samples were lapsed.8 The prediction is to detect whether a policyholder
will lapse her/his policy within the limited time window of data starting from
the inception of individual policies to the end of policy lives or 2013 whichever
is earlier.

We specify several variables based on the literature and the data provided
by the insurer as input to the algorithms of Section 2. First, we are able to
identify the age, gender, and occupation of an insured at the time when the
policy was issued. Female is designated as 1, while male as 0 for the dummy
variable Gender. Then we designate the dummy variable Occupation as 1 for
the occupations that the insurers in Taiwan would undertake extra screen-
ing/underwriting. The data also record whether the insured is required to have
a physical examination when purchasing life insurance and how many non-life
policies (health and long-term care) an insured has.

The data contain the inception date and face amount of each policy.
There are three types of policies. The most popular type is conventional
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policies like term life, whole life, and endowment. Investment-linked and
interest-adjustable types of products appeared in 2000s. We are also able to
identify whether a policy is a single-premium one or not. There are three
cases with regard to participation: mandatory participation, non-participation,
and participation. It was not until 2004 that insurers were allowed to sell
non-participating policies. The policies sold before the end of 2003 are thus
designated as Mandatory Participating. Starting from 2004, policies may
be classified into participating and non-participating. Most policies sold in
Taiwan are dominated in New Taiwan Dollar (NTD); there are some policies
dominated in other currencies.

We further set up two nominal variables. First, we categorize distribution
channels as Tied Agents (denoted by TA), Direct Marketing (DM), and Banks
(BK)9. Second, premium paying methods are classified into three ways: col-
lected by the personnel of the insurer (denoted as Insurer), automatic transfers
from banks or payments by credit cards (B&C),10 and going to the post office
or convenient stores in person (P&C).

Table 1 presents the descriptive statistics of the above explanatory vari-
ables. About 20% of the insureds work in riskier occupations that call for
extra underwriting. Most insureds (over 96%) were not required to go through
physical examination in purchasing life insurance. The most popular way of
paying premiums is through automatic/recurring transfers from bank accounts
or credit cards (71%). Since post offices and convenient stores providing
money transferring services are conveniently around, about 10% of our sam-
ples have premiums paid in places like these. And 46.6% of samples are
mandatory-participating policies, while 37.2% are non-participating ones.

Many insureds are associated with multiple non-life policies, so that the
average number of non-life policies a person are listed as the insured is 1.2.
There is a person who is listed as the insured for 33 non-life policies.11 The face
amount of the sampled policies has an average of 17,165 US dollars12 with big
variations: the largest policy reaches 2 million dollars, the smallest one is only
333 dollars,13 and the standard deviation is about 28,000 dollars.

5. RESULTS WITH RESPECT TO STATISTICAL AND ECONOMIC METRICS

We are interested in seeing the predictive performance of different algorithms
under alternative metrics and thus conduct out-of-sample tests using the fol-
lowing procedure. First, we randomly split the dataset D into 10 subsamples
{D1, . . . ,D10} of equal size and then train an algorithm onDk , k ∈{1,. . . ,10}.14
The estimated model is subsequently applied to other subsamples (D−Dk) to
obtain forecasts ŷ of lapses. In the last step, we compare these predictions with
the observed lapses y by the validation metric ρ(y, ŷ) to measure the predictive
performance of the algorithm. Repeating this on k ∈ {1, . . . ,10}, we obtain 10
observations on out-of-sample prediction performance. This procedure enables
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TABLE 1

DESCRIPTIVE STATISTICS OF EXPLANATORY VARIABLES.

Nominal variables

Gender Female Male
48% 52%

Occupation Tier one
Requiring extra
underwriting

80.5% 19.5%

Physical
examination

Exempted Required

96.4% 3.6%

Distribution
channel

TA BK DM Others

93.9% 3.4% 2.4% 0.3%

Premium
payment

Single premium Non-single premium

3.1% 96.9%

Premium
paying Insurer B&C P&C

method 18.8% 70.8% 10.4%

Participation Non-participating Participating Mandatory
Participating

37.2% 16.2% 46.6%

Product type Interest-adjustable Investment-linked Conventional
1.7% 1.2% 97.1%

Currency
domination

NTD Others

88.1% 11.9%

Metric variables

Standard
Mean Medium deviation Minimum Maximum

Age 28.3 27 16.8 0 80

# of non-life policies 1.2 0 2 0 33

Inception date 06/06/2005 21/04/2005 4.8(years) 01/01/1998 31/07/2013

Face amounts (in USD) 17,165 10,000 28,050 333 2,000,000

us to make sure that every observation is used, at some point of an algorithm,
as both training and testing samples.

The underlying idea of the above procedure is similar to the k-fold cross-
validation technique in which the training subsample is composed of D−Dk
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TABLE 2

CROSS-VALIDATED STATISTIC ACCURACIES.

LR CART SVM XGB

Mean accuracy 77.07% 77.15% 77.82% 78.88%
Standard deviation 0.03% 0.10% 0.08% 0.03%

FIGURE 1: Box plot of statistic accuracies estimated on the test sets.

and the testing subsample is set to Dk. We use the k-fold cross-validation to
tune parameters in training some of the algorithms.

5.1. Results with respect to the statistical metric

The mean accuracy computed using the above cross-validation procedure is
displayed in Table 2 and Figure 1 for each binary classification algorithm. As
expected, the more sophisticated the model is, the more accurate the predic-
tions will be. XGBoost ranks number one, followed by SVM, CART, and LR.
XGBoost surpasses LR by 1.81% on average, which represents an improve-
ment of 10,236 correctly classified policies. Moreover, the smallest standard
deviation of accuracy of XGBoost, 0.03%, indicates that XGBoost is less prone
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TABLE 3

(A) AVERAGE CONFUSION MATRIX OF XGB. (B) AVERAGE CONFUSION MATRIX OF SVM. (C)
AVERAGE CONFUSION MATRIX OF CART. (D) AVERAGE CONFUSION MATRIX OF LR.

Predicted

Stay Lapse

Actual
Stay

309,111 38,450
54.6% 6.8%

Lapse
81,177 137,660
14.3% 24.3%

Predicted

Stay Lapse

Actual
Stay

310,258 37,303
54.8% 6.6%

Lapse
88,339 130,498
15.6% 23.0%

Predicted

Stay Lapse

Actual
Stay

296,320 51,241
52.3% 9.0%

Lapse
78,209 140,628
13.8% 24.8%

Predicted

Stay Lapse

Actual
Stay

315,184 32,377
55.6% 5.7%

Lapse
97,486 121,351
17.2% 21.4%

to the sample splits done for conducting out-of-sample tests. This is visible in
the box plot of Figure 1.

Looking at the entire confusion matrices in Tables 3a-d, we find that CART
predicts the most lapses (191,869 = 51,241 + 140,628) from which it identifies
the most lapses correctly but also signals the most false alarms. LR predicts
the most stays (415,670 = 315,184 + 97,486) in which it identifies the most
stays correctly while produces the most false security cases. On the other hand,
XGBoost and SVM are more robust: they do not suffer from a high rate of
false alarm nor a high rate of false securities. XGBoost outperforms SVM in
capturing the to-be-lapsed policies.

5.2. Results with respect to the economic metric

To evaluate the algorithms by the economic metric, we first need to specify
the parameters of the cash flows model. Since no data are available for us to
estimate these parameters, we have to make assumptions. We had conducted
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sensitivity analyses to be shown in section 5.3. The comparison results remain
the same in general.

The time horizon T is set to be 12 years according to the length of the
sampling period. We estimate the retention probability vector rlapse from the
dataset and obtain

Year t 0 1 2 3 4 5 6 7 8 9 10 11 12
Retention
probability

0.96 0.87 0.67 0.37 0.27 0.21 0.15 0.12 0.1 0.08 0.06 0.05 0.04

Other parameters are set as follows:

– the profitability ratio p= 0.5%;
– the discount rate d = 2%;
– the cost to contact a policyholder c= 10 USD.

We propose two different incentive strategies: a strong one and a moderate
one. The incentive vectors as percentage discounts on premiums are defined as
below:

Year 0 1 2 3 4 5 6 7 8 9 10 11 12

Strong Incentive 0% 0% 0.030% 0.030% 0.060% 0.060% 0.090% 0.090% 0.120% 0.120% 0.150% 0.150% 0.180%

Moderate Incentive 0% 0% 0.015% 0.015% 0.030% 0.030% 0.045% 0.045% 0.060% 0.060% 0.075% 0.075% 0.090%

We further assume that the probabilities for policyholders to accept incentives
and maintain the validity of policies are γ1 = 20% and γ2 = 10%, respectively.15

The results from comparing different classification algorithms by the eco-
nomic metric with the strong incentive strategy are displayed in Table 4 and
Figure 2. There is no clear winner. CART underperforms significantly, while
XGBoost, SVM, and LR generate similar retention gains.

Notice that the differences across algorithms are wider in terms of the
economic metric than the statistical metric. The accuracies of alternative algo-
rithms are between 77.07% and 78.88%, which means an improvement ratio of
2.3%. The retention gains, on the other hand, range from 2.68 and 5.33 million
USD, indicating an enhancement of 99%. Therefore, choosing a good algo-
rithm is more important in terms of economic reality (dollar amount) than by
statistical accuracy.

It appears that CART produces the lowest retention gain: $2,680,012. This
is mostly because CART has the highest false alarm rate (cf. Table)) which
means offering the incentive to many policyholders who have no intention to
lapse their policies. Furthermore, CART leads to the highest contacting cost
since it predicts the highest lapses. The profits are thus reduced. In contrast, LR
has the lowest false alarm rate and predicts the lowest lapses. It thus generates
the highest retention gain: $5,327,911.
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TABLE 4

CROSS-VALIDATED RETENTION GAINS WITH THE STRONG STRATEGY.

LR CART SVM XGB

Mean retention gain 5,327,911 2,680,012 5,028,737 5,243,913
Standard deviation 149,000 209,220 139,102 115,415

FIGURE 2: Box plot of retention gains with the strong strategy estimated on the test sets.

Then, we look at algorithms’ performances when the incentive strategy is
moderate and leads to lower acceptance probabilities. The results are displayed
in Table 5 and Figure 3. We first notice that LR, SVM, and XGBoost signif-
icantly outperform CART again. Second, we observe that the improvement
ratio of the best algorithm over the worst is smaller but remains to be signif-
icant (56%). Third, retention gains are significantly lower with the moderate
incentive strategy. For instance, XGB achieves a gain of 5.2 million dollars
with the strong incentive strategy, but the gain reduces to 3.3 million dollars
when incentives offered to policyholders are moderate. Under our assump-
tions, the company should adopt the strong incentive strategy to optimize its
gains. In practice, one would need more comprehensive sensitivity studies on
the incentives to be offered and the corresponding acceptance probabilities to
fully optimize the lapse management.
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TABLE 5

CROSS-VALIDATED RETENTION GAINS WITH THE MODERATE STRATEGY.

LR CART SVM XGB

Mean marketing gain 3,178,087 2,085,599 3,113,900 3,261,029
Standard deviation 60,255 85,184 54,169 45,928

FIGURE 3: Box plot of retention gains with the moderate strategy estimated on the test sets.

In summary, we first observe that XGB and SVM outperform CART and
LR by accuracy metrics. Then, we see that LR levels up to XGB and SVM
when we switch to economic metrics. This is because our economic metric set-
tings tend to favor a low false alarm rate upon which LR has the best result.
The performance rank changes highlight the importance of choosing a proper
metric. A “naïve” actuary who limits himself/herself on a statistical point of
view will keep pursuing advanced algorithms like XGB; a more “pragmatic”
risk manager would have a broader view than merely statistical accuracy and
leads to more robust results.

5.3. Sensitivity analyses

We are aware that the above results may be sensitive to the assumption that we
make. We thus conduct sensitivity analyses on all parameters, except for the
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retention probability vector since it is estimated on empirical data, and present
the results in Table 6.

The sensitivity analyses on the profitability ratio (p) indicate that a lower p
will increase the importance of low false alarm rate and thus enlarge the out-
performance of LR over XGB (becoming -$942,888 vs. -$1,958,561 in Table 6
from the case of $5,327,911 vs. $5,243,913 in Table 4). This is because the
incentives offered to the policyholders that have no intentions to lapse their
policies are wasted. When expected profits are low, these “wasted” incentives
would reduce retention gains by a significant portion or even result in negative
gains. The algorithm that generates a low false alarm rate would have good
performance as a result. This reasoning also implies that the significance of the
false alarm rate would be reduced by p, and we do see from Table 6 that XGB
and SVM outperform LR when p is raised to 1% from 0.5% ($23,250,096 and
$22,111,997 vs. $21,004,909).

Stronger incentive strategies will also increase the importance of low false
alarm rate. When an insurer offers larger incentives to insureds for not laps-
ing their policies, offering these incentives to “wrong” insureds (i.e., those who
have no intentions to lapse their policies in the first place) increases costs but
generates no benefits. We therefore see that LR outperforms XGB (-$546,631
vs. -$2,090,205) when an aggressive incentive strategy (starting from 0.05%
in the second year and then increase 0.05% every 2 years up to year 12) is
adapted; LR would underperform XGB if a weak incentive strategy (starting
from 0.01%) is used ($11,202,453 vs. $12,578,031).

A higher probability of accepting the offer to keep the policy implies a more
effective incentive without raising the cost. This reduces the importance of a
low false alarm and vice versa. We thus observe from Table 6 that XGB outper-
forms LR when the probabilities of accepting the incentives for a would-lapse
policyholder (γ ) increase to 25% and underperform LR when γ decreases to
15%, given the strong incentive strategies.

A higher cost of contacting the policyholder (c) would increase the
importance of a low false alarm rate. We therefore see that LR outper-
forms/underperforms XGBwhen c = $50/$1. The discount rate d merely affects
the present value of a future cash flow. A larger or smaller value therefore does
not alter the ranking of alternative algorithms as we observe from Table 6.

6. OPTIMIZATION ON PROFITABILITY INSTEAD OF CLASSIFICATION

It is obvious that insurers would not seek to optimize the classification accu-
racy but focus on economic gains that result from the classification algorithms
when forming a lapse management strategy. When our aim is to maximize the
profitability of the lapse management strategy, binary classifications might be
unsuitable since they are not designed to meet such a need. Ascarza et al. (2018)
emphasize the difference between the at-risk population (e.g., customers with
high churn probabilities) and the targeted population (e.g., customers that the
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TABLE 6

RETENTION GAINS WITH ALTERNATIVE PARAMETERS.

Incentive
Profitability (second Probability Cost Discount
(p) year) (gamma) (c) rate (d) LR CART SVM XGB

0.30% 0.03% 20% 10 2.0% −942,888 −4,746,915 −1,804,567 −1,958,561
1.00% 0.03% 20% 10 2.0% 21,004,909 21,247,328 22,111,997 23,250,096
0.50% 0.05% 20% 10 2.0% −546,631 −6,632,394 −1,888,940 −2,090,205
0.50% 0.01% 20% 10 2.0% 11,202,453 11,992,418 11,946,414 12,578,031
0.50% 0.03% 25% 10 2.0% 8,331,308 6,237,135 8,301,545 8,693,534
0.50% 0.03% 15% 10 2.0% 2,324,515 −877,111 1,755,929 1,794,291
0.50% 0.03% 20% 50 2.0% −821,181 −4,994,768 −1,683,291 −1,800,463
0.50% 0.03% 20% 1 2.0% 6,711,457 4,406,837 6,538,943 6,828,897
0.50% 0.03% 20% 10 5.0% 4,268,910 2,177,299 4,039,478 4,214,841
0.50% 0.03% 20% 10 1.0% 5,741,453 2,864,649 5,412,485 5,642,858
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company should focus her retention campaign on in order to optimize her
profits) from an economic point of view. Along this line of churn literature,
Lemmens and Gupta (2020) modify the usual loss function into a profit-based
function to optimize economic gains. They obtain a significant increase in the
expected profit of a retention campaign. Learning from the churn literature,
we transform the above classification problem into a regression question in
this section.

6.1. Methodology

Let the new response variable zRji represents the retention gain or loss that
results from proposing the incentive j ∈ {1, 2} (cf. Section 5.2) to policyholder
i. More specifically, we define zRji as:

zRji =
{−CLV(δj, Fi, rstay, i)− c if yi = 0,

γj.
[
CLV

(
p-δj, Fi, rstay, i

)−CLV
(
p, Fi, rlapse, i

)]− c if yi = 1;
(6.27)

Then, we may apply the XGBoost algorithm to {zRji , xi}
N

1 and use the mean
squared error as the loss function:

�
(
zRj , ẑRj

)
= 1
N

N∑
i=1

[
zRji -ẑRj i

]2
, (6.28)

and as the metric for cross-validation.
In the last step, ŷi is forecasted if the estimated gain is positive:

ŷi =
{
1 if ẑRj i > 0

0 if ẑRj i ≤ 0
, (6.29)

By this way, we apply the same metrics described in previous sections. Here, ŷi
is better to be understood as whether offering an incentive to the policyholder
i would be profitable to the insurer or not rather than the forecast on whether
a policyholder would lapse or not.

The two new classifications are denoted as XGB_R1 and XGB_R2, respec-
tively, for applying XGBoost to zR1 and zR2 . The tuning method that we use to
estimate the parameters is described in Appendix C.

6.2. Results

Table 7 and Figure 4 display the prediction accuracies. Table 7 shows that
XGB_R1 and XGB_R2 produce relatively low mean accuracy of 76.7% and
75.7%, respectively. They are the worst models in term of accuracy. These
seemingly unsatisfied results are understandable, since neither XGB_R1 nor
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TABLE 7

CROSS-VALIDATED ACCURACY.

LR CART SVM XGB XGB_R1 XGB_R2

Mean accuracy 77.07% 77.15% 77.82% 78.88% 76.67% 75.71%
Standard deviation 0.03% 0.10% 0.08% 0.03% 0.07% 0.06%

FIGURE 4: Box plot of cross-validated accuracy estimated on the test sets.

XGB_R2 are designed to predict whether a policy would be lapsed or not.
What they aim for are economic gains.

The numbers in Tables 8a and 8b tell us more about why XGB_R1 and
XGB_R2 do not perform well in statistical accuracies. They result in the small-
est correct identifications on lapses (104,889 and 99,432, respectively) and
produce the most false sense of security (113,948 and 119,405). However, we
will see in the following that XGB_R1 and XGB_R2 stand out when we switch
focus to retention gains.

Table 9 and Figure 5 show that XGB_R1 generates a significantly larger
average retention gain with the strong incentive strategy ($6,586,357) than
other algorithms as well as a significantly lower standard deviation ($53,460).
The increase in retention gain is 24% (1.3 million USD) higher than that gen-
erated by LR (the second-best algorithm) and 146% (3.9 million USD) better
than that produced by CART. Looking back to Table 8a, we see that XGB_R1
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TABLE 8

(A) AVERAGE CONFUSION MATRIX OF XGB_R1. (B) AVERAGE CONFUSION MATRIX OF XGB_R2.

Predicted

Stay Lapse

Actual
Stay 329,357 18,204

Lapse 113,948 104,889

Predicted

Stay Lapse

Actual
Stay 329,413 18,149

Lapse 119,405 99,432

TABLE 9

CROSS-VALIDATED RETENTION GAINS WITH THE STRONG STRATEGY.

LR CART SVM XGB XGB_R1

Mean retention gain 5,327,911 2,680,012 5,028,737 5,243,913 6,586,357
Standard deviation 149,000 209,220 139,102 115,415 53,460

FIGURE 5: Box plot of retention gains the strong strategy estimated on the test sets.
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TABLE 10

CROSS-VALIDATED RETENTION GAINS THE MODERATE STRATEGY.

LR CART SVM XGB XGB_R2

Mean marketing gain 3,178,087 2,085,599 3,113,900 3,261,029 3,852,782
Standard deviation 60,255 85,184 54,169 45,928 39,163

FIGURE 6: Box plot of retention gains the moderate strategy estimated on the test sets.

reduces the number of false alarms (18,204) in optimizing the retention gain
even if this also reduces the correct detection (104,889). The good results of
XGB_R1 in achieving retention gain demonstrate the benefit of integrating the
algorithm with the goal to be achieved. The objective function for XGB_R1 to
minimize, Equation (6.28), is about predicting retention gains. XGB_R1 there-
fore would naturally perform the best when compared with other algorithms
optimizing other objectives (such as classification accuracies).

We expect that the benefit of integrating the algorithm with the goal is
robust across incentive strategies. This is confirmed by the results in Table 10
and Figure 6. XGB_R2 generates retention gain of 3.9 million dollars that is
nearly 600 thousand dollars more than that achieved by the second place XGB.
The increase in retention gains is 18%. The increase with respect to the CART
reaches 85%.
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TABLE 11

IMPROVEMENTS OF XGB_R OVER THE BEST OF BINARY MODELS.

Profitability Incentive Probability Discount Best of binary Percentage
(p) (2nd year) (gamma) Cost (c) rate (d) models XGB_R Increase of increase

0.30% 0.03% 20% 10 2.0% -942,888 1,642,720 2,585,608 157%
1.00% 0.03% 20% 10 2.0% 23,250,096 23,634,878 384,782 2%
0.50% 0.05% 20% 10 2.0% -546,631 3,213,095 3,759,725 117%
0.50% 0.01% 20% 10 2.0% 12,578,031 13,272,649 694,618 5%
0.50% 0.03% 25% 10 2.0% 8,693,534 9,477,878 784,344 8%
0.50% 0.03% 15% 10 2.0% 2,324,515 3,995,017 1,670,502 42%
0.50% 0.03% 20% 50 2.0% -821,181 3,424,200 4,245,380 124%
0.50% 0.03% 20% 1 2.0% 6,828,897 7,782,795 953,898 12%
0.50% 0.03% 20% 10 5.0% 4,268,910 5,311,218 1,042,308 20%
0.50% 0.03% 20% 10 1.0% 5,741,453 7,104,433 1,362,981 19%
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We conduct more sensitivity analyses on the parameters used in calculating
retention gains and present the results in Table 11.

We see from Table 11 that XGB_R delivers higher retention gains than
the best of the binary models (LR or XGB) across alternative parameter set-
tings. The increase in retention gains ranges from 2% to 157% with an average
of 51%. The increase is particularly significant when binary models deliver
negative retention gains. This highlights the importance of the right objective
function. High statistical accuracies do not guarantee high retention gains. The
models aiming statistical accuracies may end up with negative retention gains.

The results in this section demonstrate the benefit of having a right objec-
tive. If senior managers of an insurer are able to specify an objective consistent
with the value and/or mission of the company (e.g., maximizing retention gain),
the staff can then apply an advanced or robust algorithm like XBG or LR
to such an objective to achieve the optimum. The enhanced gain relative to
the case having no specific objective other than classification accuracy can be
substantial.

7. CONCLUSIONS

Lapse risk is the most significant risk associated with life insurance. Lapses may
cause losses, reduce expected profits, lead to stringent liquidity, result in mis-
pricing, impair the risk management, or even pose solvency threats. Employing
a good algorithm to model policyholder lapse behavior is therefore valuable.

In this study, we adopt innovative viewpoints on lapse management in
addition to introducing machine learning algorithms to lapse prediction. First,
applying XGBoost and SVM to predicting whether a policyholder will lapse
her/his policy is new to the literature. Second, we adopt not only a statistical
metric in evaluating algorithms’ prediction performance but also an economic
metric based on CLV and retention gains.

The goal of classification accuracy has no direct link to the insurer’s costs
and profits. It thus might lead to a biased strategy (Powers, 2011). Following
the churn literature, we define a specific validation metric based on the eco-
nomic gains. This constitutes our third contribution: we are the first to set up a
profit-based loss function so that we may directly optimize the economic gains.
More specifically, we change the usual statistical idea of classification to a gain
regression in which profits are to be maximized.

We are aware that the calculations on economic gains in this paper are
based on subjective assumptions. This research constraint can be released as
soon as an insurer caring about economic gains gathers data to estimate rel-
evant parameters. More specifically, the aim of our paper is to provide the
methodological keys of calculating economic gains and the potential impact of
such calculations on lapse risk management rather than to estimate the results
of empirical applications. The insurance company interested in economic
metrics can estimate relevant parameters based on its in-house data and explore
the impact on benefits through an A/B testing methodology.
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The two machine learning algorithms, XGBoost and SVM, perform a little
bit better than classic CART and LR in terms of statistical accuracy on a large
dataset consisting of more than 600,000 life insurance policies with informa-
tion on policy terms and policyholders’ characteristics. XGBoost has another
advantage over other algorithms: it is less dependent on the choice of training
samples.

Nevertheless, the introduction of retention gains tempers the advantages
of XGBoost and SVM over the common LR. Indeed, our retained economic
metrics significantly favor models with low false rate. Thus, LR leads to similar
profits performance to XGBoost or SVM, emphasizing the importance of the
validation measure used when comparing machine learning algorithms.

In the last section, we demonstrate that the economic gains can be further
enhanced when the optimization is done on a function linked to economic
gains rather than on statistic accuracies. The results show that the retention
gains with a strong incentive strategy resulted from XGB_R1 is 126% of those
from applying XGBoost to pursuing classification accuracies, in particular by
reducing the false alarm rates. An insurer should therefore apply advanced
machine learning algorithms like XGB to its economic objective, so that lapse
management can really be optimized.
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NOTES

1. There are some papers on the subject of modeling early terminations that do not fit our
macro-micro classification on empirical, explanatory studies. They impose specific assumptions
on the transition probabilities to early terminations (Buchardt et al., 2015), the early terminations’
intensity (Barsotti et al., 2016), or the early termination rates (Loisel andMilhaud, 2011;Milhaud,
2013).

2. There exist other binary classification models that may be applied to lapse predictions (see,
e.g., Wainer (2016) for an extensive quantitative comparison of binary classification algorithms).
On the other hand, the main purpose of our paper is to introduce an economic point of view for
the lapse risk management. We thus choose to limit our study to four models.

3. In the exposition, we follow the notation of Friedman (2002) so that the reader may go
back to Friedman (2002) for more details. eta is the terminology used in the R package.

4. We are aware that the twofold cross-validation is unusual although the fivefold or 10-fold is
more a practice than a proven theory. We chose twofold cross-validation to keep computational
times reasonable, since we tested a large number of hyperparameters on large training samples
(around 60k observations). The good news about a large dataset is that it reduces the variance of
cross-validated estimations and the need of a large number of folds.
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5. We indeed tested the polynomial kernel and linear SVM. The linear one had poorer
predictive power, and the polynomial was not significantly different from the radial basis.

6. For dataset of more than 1k observations, Wainer and Cawley (2017) show that a twofold
procedure is appropriate for SVM’s parameter tuning.

7. These simplifications assume that the profitability ratio, the incentive, and the probability
to accept the incentive is the same across policyholders, respectively. Upon the availability of
data, we may compute an expected profitability ratio for each policy. The incentive offered to
each policyholder can then be set as a function of the policy’s profitability. The probability of
accepting the offer can also be a function of the incentive, but such a function is difficult to esti-
mate in practice. Face amount may be variable for some products, which increases the difficulty
in estimating the expected profitability ratio. The retention probabilities may change with time,
and this calls for a dynamic model of lapse propensities.

8. This represents 39% of the entire sample. We thus do not suffer from the accuracy paradox
of unbalanced data.

9. Few policies are sold by independent agents or brokers; we put them into the TA category.
10. Paying premiums by automatic transfers from bank accounts or by recurring payments of

credit cards is indifferent to policyholders.We thus regard these two automatic/recurring payment
methods as one.

11. We are aware of the few extreme values such as an 80-year-old insured and one insured
listed for 33 non-life policies. The samples with such extreme values are so few relative to our
sample size that they will not affect our results in later sections.

12. The exchange rate used in the paper is 30 NTD/1 USD.
13. This policy is a whole life insurance with a 1-year-old insured and the death benefit of

10,000 NTD (a little over 300 USD). There are other small policies with death benefits smaller
than 3000 USD. These policies constitute less than 1% of our samples.

14. Since our dataset contain over 600,000 policies, while XGBoost and SVM have hyper-
parameters to be tuned, training an algorithm on a one-tenth of the large dataset seems to be a
balanced choice: sufficient to train the models while maintaining reasonable computational time.

15. We are aware of the subjectivity of these assumptions, but they will not impede compar-
isons across classification algorithms. Furthermore, these parameters can be estimated empirically
by the insurer who is interested in economic gains.
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APPENDICES

APPENDIX A: XGBOOST TUNING – BINARY
CLASSIFICATION

The values of the parameters tested in the grid search for the tuning of XGBoost are as
follows:

– eta: 0.05, 0.1, 0.15;
– gamma: 0, 5, 10;
– max_depth: 10, 15, 20, 25, 30;
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– min_child_weight: 15, 20, 25;
– subsample: 1;
– colsample_bytree: 0.4, 0.5, 0.6.

The values of the grid search are chosen by a previous sensitivity study in which we apply
the same methodology on a subsample of the whole database but with a coarser grid. Then,
we focus on a finer grid to obtain better results within a reasonable time period. In addition,
the fact that we only test subsample with the value of 1 means that we do not adopt the
stochastic gradient boosting of Friedman (2002).

APPENDIX B: SVM TUNING

The values of the parameters tested in the grid search for the tuning of SVM are as follows:

– Cost: 0.5, 1, 2, 5, 10;
– gamma: 0.25, 0.5, 0.75, 1, 1.25.

Similar to the XGBoost tuning explained in Appendix A, the values of the grid search are
chosen by a previous sensitivity study in which we apply the same methodology on a sub-
sample of the whole database but with a coarser grid. Then, we focus on a finer grid to obtain
better results. This is necessary, so that the computing can be done within a reasonable time
period.

APPENDIX C: XGBOOST TUNING – PROFITABILITY

We adopt the values of most parameters generated by a previous sensitivity study as:

– eta = 0.005;
– gamma = 1;
– max_depth = 15;
– min_child = 15;
– subsample = 0.7;
– colsample = 0.8.

Then, we determine the best nrounds through a fivefold cross-validation with this parameter
tested up to 1000.
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