
BAYESIAN ANALYSIS OF BIG DATA IN INSURANCE PREDICTIVE
MODELING USING DISTRIBUTED COMPUTING

BY

YANWEI ZHANG

ABSTRACT

While Bayesian methods have attracted considerable interest in actuarial sci-
ence, they are yet to be embraced in large-scaled insurance predictive modeling
applications, due to inefficiencies of Bayesian estimation procedures. The pa-
per presents an efficient method that parallelizes Bayesian computation using
distributed computing on Apache Spark across a cluster of computers. The dis-
tributed algorithm dramatically boosts the speed of Bayesian computation and
expands the scope of applicability of Bayesian methods in insurance modeling.
The empirical analysis applies a Bayesian hierarchical Tweedie model to a big
data of 13million insurance claim records. The distributed algorithm achieves as
much as 65 times performance gain over the non-parallel method in this appli-
cation. The analysis demonstrates that Bayesian methods can be of great value
to large-scaled insurance predictive modeling.

KEYWORDS

Bayesian, big data, distributed computing, predictive modeling, ratemaking,
Spark.

1. INTRODUCTION

Bayesian methods play a critical role in many areas of casualty actuarial sci-
ence, such as credibility theories (Bühlmann, 1967) and stochastic loss reserving
(Wüthrich and Merz, 2008). The predictive distribution from a Bayesian anal-
ysis is particularly useful for insurance forecasting and decision making under
uncertainties. However, application of Bayesian methods is still rare in practical
insurance predictive modeling (Frees et al., 2014), where insurers are increas-
ingly advancing the use of big data technology to utilize individual or transac-
tion level data. The major challenge in such large-scaled Bayesian analysis is
the vast computational time demanded by simulation-based algorithms, such

Astin Bulletin 47(3), 943-961. doi: 10.1017/asb.2017.15 C© 2017 by Astin Bulletin. All rights reserved.

https://doi.org/10.1017/asb.2017.15 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2017.15

944 Y. ZHANG

as Markov chain Monte Carlo (MCMC) used by Bayesian inference (Gelman
et al., 2003).

Various methods for accelerating Bayesian computation have been devel-
oped (Zhu et al., 2014; Green et al., 2015). One research stream focuses on
adjusting the simulation algorithm to improve sampling efficiency and con-
vergence speed. Examples of such research include Langevin drift (Roberts
and Tweedie, 1996), Hamiltonian Monte Carlo (Neal, 2013), adaptive MCMC
(Haario et al., 2001) and so on. In addition to fast convergence, Bayesian com-
putation methods need to have high scalability to cope with the computational
expenses introduced by the size of big data. Another stream of research focuses
on algorithm scalability and employs parallel processing to accelerate Bayesian
computation. The main parallelization strategies include parallel computation
of data likelihood (Agarwal and Duchi, 2012), stochastic approximation of gra-
dient (Welling and Teh, 2011) and parallel independent MCMC on data parti-
tions (Neiswanger et al., 2014; Wang and Dunson, 2016).

This paper extends the research on parallel MCMC to large-scaled Bayesian
analysis in insurance predictive modeling. We implement a distributed MCMC
algorithm across a cluster of computer nodes using Apache Spark (Zaharia
et al., 2010) and demonstrate the efficiency gain over non-parallel methods.
We show that distributed computing makes Bayesian analysis feasible in practi-
cal predictive modeling. We then apply a Bayesian hierarchical Tweedie model
(Zhang, 2013) to a large data set of personal auto bodily injury claims and
demonstrate the many advantages of Bayesian forecasting in such practical
problems as insurance ratemaking.

The main contributions of the paper are the following. First, we provide
a viable solution for large-scaled Bayesian analysis using distributed comput-
ing on Apache Spark. The main challenge in Bayesian posterior computa-
tion arises from the evaluation of the data likelihood. A logical method to
accelerate such evaluation is through parallel processing using multiple com-
puter cores (Agarwal and Duchi, 2012). That is, we compute the data like-
lihood efficiently by dividing the large task into smaller pieces that are pro-
cessed in parallel by a network of computers. We choose the parallelization
on data likelihood over other parallelization strategies because of its general
applicability — it does not rely on approximation or make additional assump-
tions of the posterior.1 We implement the parallelization in a distributed fash-
ion across a cluster of computer nodes on top of the Spark computing en-
gine. Spark is a highly scalable, fast and easy-to-use engine for distributed pro-
gramming (Zaharia et al., 2010), and thus is well suited for practical large-
scaled insurance problems. Our experiment shows that efficient parallelization
achieves 65 times performance gain over existing single-thread implementation
and even 8 times gain over state-of-the-art likelihood-based methods in one
application.

Second, this is the first research to study individual insurance claims using
the Bayesian hierarchical Tweedie model. The Tweedie distribution (Tweedie,
1984) is widely adopted tomodel insurance losses (e.g., Jørgensen and de Souza,

https://doi.org/10.1017/asb.2017.15 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2017.15

BAYESIAN ANALYSIS OF BIG DATA USING DISTRIBUTED COMPUTING 945

1994; Smyth and Jørgensen, 2002; Wüthrich, 2003; Shi, 2016). Recent research
has estimated Tweedie models in the Bayesian setting. Notably, Peters et al.
(2009) use the Bayesian Tweedie generalized linear model to study loss triangles
and Zhang (2013) proposes Bayesian methods for hierarchical Tweedie models.
These studies estimate their models on small samples of data. In contrast, ef-
ficient distributed computing enables us to estimate the Bayesian hierarchical
Tweedie model on large-scaled individual-level claim data with more than 13
million records.

Last, we demonstrate the values of the Bayesian methodology to insur-
ance ratemaking. Whereas there is a growing consensus that the Bayesian
methodology is ideal for aggregate loss reserving analysis (see, e.g., de Alba,
2002; Ntzoufras and Dellaportas, 2002; Zhang et al., 2012; Shi et al., 2012;
Zhang et al., 2012), Bayesian analysis has not attracted much attention
in insurance ratemaking (Bermudez and Karlis, 2011). Our study shows
that many of the advantages of Bayesian analysis are indeed of significant
value to insurance ratemaking. Among others, we highlight three such ad-
vantages. First, Bayesian predictive distributions facilitate loss cost forecast
under policy coverage modifiers, such as deductibles and/or limits, avoid-
ing complex numerical integration that would otherwise be needed. Second,
Bayesian predictive distributions produce uncertainty measures that appro-
priately account for group-level variations and uncertainties in model esti-
mation. Third, the Bayesian hierarchical Tweedie model provides a formal
mechanism to incorporate the core insight of actuarial credibility in insurance
ratemaking.

In the next section, we lay out the details of the Bayesian hierarchical model
and develop the distributed MCMC algorithm. We then estimate the model
on a large data set of insurance claims, compare the performance of the dis-
tributed algorithm to existing non-parallel algorithms, and discuss the benefits
of Bayesian ratemaking. Last, we provide concluding remarks.

2. THEORETICAL DEVELOPMENT

This section formulates the Bayesian hierarchical model and develops the
methodology for distributed Bayesian computing. The focus is on the hi-
erarchical Tweedie model, but other model types can be accommodated
similarly.

2.1. The hierarchical Tweedie model

Suppose our data can be abstracted as the tuple (gi , yi , xi) for the i th record.
yi is the response variable (insurance loss), xi is the vector of predictors (in-
cluding the intercept) and gi represents a categorical variable, such as the in-
sured identifier, vehicle type, territory identifier and so on, which partitions the
data into groups. Boldface is used to indicate vectors or matrices. The standard

https://doi.org/10.1017/asb.2017.15 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2017.15

946 Y. ZHANG

hierarchical Tweedie model makes the following assumptions:

yi ∼ Tw(μi , φ, p), (1)

η(μi) = xT
i β + ugi , (2)

u j ∼ N(0, σ 2). (3)

We use the notation Tw(μ, φ, p) to represent the Tweedie distribution. If y ∼
Tw(μ, φ, p), then it follows a Tweedie distribution with the following density:

fTw(y|μ, φ, p) = a(y, φ) exp
(
1
φ

(
y

μ1−p

1 − p
− μ2−p

2 − p

))
. (4)

In the above, μ is the mean, φ > 0 the scale parameter and p ∈ (1, 2) the index
parameter such that Var(y) = φμp. The quantity a(y, φ) is the normalizing
constant and is not analytically tractable. It can be approximated reasonably
well using numerical methods (Dunn and Smyth, 2005, 2008).

The mean is linked to the predictors through the function η, which is taken
as the logarithmic function in this paper. β is the vector of parameters associ-
ated with the predictors, and ugi is the group-level effect. If the i th record be-
longs to group j , i.e., gi = j , then u j represents the deviation of group j from
the population-level intercept. These group-level effects are assumed to follow a
normal distribution with mean zero and variance σ 2. The Bayesian model spec-
ification is completed by specifying the priors for all the other parameters, e.g.,
π(β, φ, p, σ 2). More details of the Bayesian hierarchical model can be found in
Gelman et al. (2003).

2.2. Posterior distribution

Inference of the parameters is typically carried out through the MCMC al-
gorithm. In particular, the Metropolis-within-Gibbs algorithm scheme sequen-
tially samples parameters from their lower dimensional full conditional distri-
butions over many iterations. The full conditionals are derived from the joint
posterior density. The logarithmic joint posterior density can be expressed as

� = log f (y, β, u, σ 2, φ, p)

=
∑

i

log fTw(yi |β, ugi , p, φ)

heavy computation

+
∑

j

log fN(u j |σ 2) + logπ(β, φ, p, σ 2)

light computation

. (5)

The first part of the logarithmic joint density is the familiar loglikelihood of the
data, which sums the logTweedie density of each observation. The second part is
the contribution from the group-level effects and parameters. This is generally
low dimensional and requires little computational effort. Most computations

https://doi.org/10.1017/asb.2017.15 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2017.15

BAYESIAN ANALYSIS OF BIG DATA USING DISTRIBUTED COMPUTING 947

FIGURE 1: Illustration of the parallel computing of the data loglikelihood. All likelihoods are on the
logarithmic scale.

occur in the loglikelihood part, and the computational complexity grows lin-
early with the size of the data. For vast amount of data, this evaluation becomes
a significant computational burden. TheMCMC algorithm generally runs for a
large number of iterations, each of which requires many evaluations of the log-
likelihood. Such an excessive number of loglikelihood evaluations essentially
makes the MCMC algorithm infeasible for big data analysis. We address this
issue using a distributed MCMC algorithm that computes the loglikelihood
efficiently by dividing the large task into smaller pieces that are processed in
parallel by a network of computers.

2.3. Parallel computation of posterior distributions

The standard approach to computing the data loglikelihood loops over each
record of the data sequentially. Parallel processing, on the other hand, divides
a large task into smaller splits that can be processed simultaneously by separate
computer processors. The use of a large number of processors allows the job to
be completed in much less time than the sequential approach requires (Grama
et al., 2003).

Figure 1 illustrates the computation of the loglikelihood using parallel pro-
cessing. First, the data is partitioned according to the number of splits a user
specifies (Data Split), and each data split is processed by a thread separately
from the others. The number of partitions determines the level of paralleliza-
tion. In general, more splits lead to higher level of parallelization and faster
processing time. But the performance gain will be overshadowed by the com-
munication overhead when too many splits result in few data for each split to
process. In practice, each split is best to hold at least some Megabytes of data.

Second, the loglikelihood of each data record is evaluated using the cur-
rent estimates of the parameters (Record Loglikelihood). The Tweedie density
is evaluated using numerical methods (Dunn and Smyth, 2005) when necessary.

https://doi.org/10.1017/asb.2017.15 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2017.15

948 Y. ZHANG

FIGURE 2: Illustration of the parallel computing of the data loglikelihood by group. All likelihoods are on the
logarithmic scale.

Since each data split is processed separately from the others, the computation
time of this step is the maximum of the processing time of each split, as opposed
to the summation of the processing time of each record in sequential processing.

The last stage is the reduction of the individual loglikelihoods to the to-
tal loglikelihood. This is also operationalized in a parallel fashion. Each split
of the individual loglikelihoods is first combined and aggregated into the
“Split Loglikelihood”, independently of the other splits, and then the combined
loglikelihoods are reduced and aggregated into the “Total Loglikelihood”.

This is the general scheme for computing the data loglikelihood in parallel. A
slight deviation from this approach can further speed up the computation for the
group-level effects u. In the appendix, we show that the posterior distribution
of the group-level effects can be partitioned, that is, the posterior distribution of
one group is entirely independent of that of another. This factorization property
implies that one sweep through the data enables us to derive the posterior density
for all group-level parameters. In contrast, we must perform a complete sweep
through the data for each component of β because each posterior depends on
all data. Figure 2 illustrates the parallel processing scheme for the group-level
effects.

Different from the general scheme, the result of the map phase is a set of key-
value pairs (Record Loglikelihood). The key is the group identifier and the value
is the associated loglikelihood. The reduce phase aggregates the values by the
key. Such reduction is first performed within each split, that is, values with the
same key are combined (Split/Group Loglikelihood). This step does not incur
network communication cost since all data reside in the same computer node.
The final step takes the key-value pairs from the combiner and aggregates the

https://doi.org/10.1017/asb.2017.15 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2017.15

BAYESIAN ANALYSIS OF BIG DATA USING DISTRIBUTED COMPUTING 949

values by key to form the group-level loglikelihood (Group Loglikelihood). Be-
cause the data splits could sit in multiple computer nodes, this last step generally
involves shipping of data among computers in the network, a process generally
known as shuffling.

2.4. Method of parallel processing

When it comes to implementation of the parallel processing scheme, several
technologies are available, which offer different values in terms of computation
performance, coding complexity and scalability. We briefly discuss some of the
prominent technologies and more details can be found in Grama et al. (2003)
and Reyes-Ortiz et al. (2015).

One popular parallel processing method is shared memory programming,
such as POSIX Threads and OpenMP. They are fairly easy to use and work well
with multiple cores/processors. However, they generally run on a single machine
and are therefore not scalable.

Message passing (MPI) is anotherwell-knownmethod for high-performance
computing. It is highly scalable since it can work with a cluster of computer
nodes. Parallel computing based on a network of computers is often referred to
as distributed computing. The performance of optimized C/C++ program using
MPI is often hard to beat. However, creating parallel tasks at scale using MPI
could be very challenging. For this reason, it is not popular among practitioners
and rarely used in commodity data centers.

This research chose Apache Spark as the distributed computing engine (Za-
haria et al., 2010). It is the state of the art for high-performance distributed
computing, designed to effectively perform iterative procedures that operate
on the same data set. Spark runs on a cluster of computer nodes and is thus
highly scalable to deal with huge amount of data. It has become the standard
for large-scaledmachine learning, andmany insurance companies have adopted
this technology.

3. EMPIRICAL ANALYSIS

In this section, we implement the distributedMCMCalgorithm and compare its
performance with standard single-thread algorithms. We also test the Bayesian
hierarchical Tweedie model using a real data set and demonstrate the benefits
of Bayesian ratemaking.

3.1. Data

Weuse a public data set from theAllstate claim prediction challenge.2 It includes
13.2 million samples of vehicle-level claim information from the bodily injury
coverage of personal auto insurance. About 99% of the records do not observe a
payment, which justifies the use of the Tweedie distribution. There are about 30

https://doi.org/10.1017/asb.2017.15 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2017.15

950 Y. ZHANG

variables containing various characteristics of the insured vehicle aswell as some
non-vehicle characteristics. Both the names and the values of most variables are
masked and we cannot infer their meanings. Two labeled fields relevant to this
analysis are the vehicle’s make and model. We specify vehicle make and vehicle
model level effects and analyze how loss propensity varies by vehicle make and
model. There are 75 unique vehicle makes and 1,303 unique vehicle models. In
addition to the group-level effects, we include nine predictors selected through
standard variable selection procedures based on data samples.

The final data set consisting of only the relevant variables amounts to about
1.1 GB. While this may not seem a “big data” based on size alone, it is in fact
very “big” in the domain of Bayesian analysis where, due to the use of computa-
tionally intensive algorithms, data size of Megabytes could be considered large.
Indeed, this data size resembles the magnitude of the real data that insurers,
especially commercial insurers, deal with, which is typically in the order of GBs.

3.2. Implementation

In the hierarchical Tweedie model, we include an intercept and the nine selected
variables as predictors, where the intercept is allowed to vary by vehicle make
and vehicle model. We specify standard non-informative priors for parameters
in the model and derive the full MCMC simulation scheme in the appendix.

We implemented the simulation algorithms in Scala, “Scalable Language”,
an object-oriented and functional programming language that is used to cre-
ate Spark. We spun up a cloud cluster of 5 computer nodes running the Linux
system, each equipped with 50 cores and about 100 GB memory.

3.3. Performance analysis

We ran both the distributed and the single-thread MCMC algorithm and com-
pared their performances on the data. An additional larger data set (2.2 GB)
created by stacking two replicates of the real data set was also used for the test.
In the distributed algorithm, the heavy-computing job was divided into 100 par-
allel tasks for the real data set and 200 parallel tasks for the artificial data set.
In the single-thread algorithm, the job was executed using a single core, which
is the default of most computing software.

Table 1 reports the average execution time based on five independent runs
of each algorithm for 100 iterations. Several patterns are noteworthy. First, we
notice a striking difference between the running time of the two algorithms on
each data set. The distributed algorithm achieved about 40 and 65 times per-
formance gain, respectively, compared to the standard single-thread algorithm.
This speed improvement is of significant importance because it makes practical
applications of Bayesian methods possible. To put it into perspective, it would
take 25.5 days to run 20,000 iterations of the standard single-thread MCMC
algorithm on the real data set. This effectively renders the Bayesian methods
infeasible. In contrast, the same job using the distributed algorithm took only

https://doi.org/10.1017/asb.2017.15 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2017.15

BAYESIAN ANALYSIS OF BIG DATA USING DISTRIBUTED COMPUTING 951

TABLE 1

PERFORMANCE COMPARISON OF THE SINGLE-THREAD AND THE DISTRIBUTED MCMC ALGORITHM FOR
100 ITERATIONS.

Real Data (1.1 GB) Artificial Data (2.2 GB)

Algorithm Time (min) Improvement Time (min) Improvement

Single-thread 183.5 – 375.3 –
Distributed 4.6 40 times 5.8 65 times

Single−thread MCMC MLE Distributed MCMC

25.5 days

4.8 days

0.6 days

FIGURE 3: Computation time of different algorithms on the claim data. The MCMC algorithms were run for
20,000 iterations to get reliable posterior inference. The maximum likelihood estimation (MLE) was based on

Laplace approximation, implemented as a single-thread C program.

14 hours to finish. Such a job could be run over night, causing little disruption to
other analytical work. In addition, we also estimated the model using the state-
of-the-art likelihood-based method (Zhang, 2013), implemented using a single-
thread C program. Interestingly, this direct optimization took 116 hours, or 4.8
days, to finish. This is more than 8 times slower than the distributed MCMC,
although still significantly faster than the single-thread MCMC. Figure 3 com-
pares the computation times of these methods graphically.

The second important observation is that the distributed algorithm is highly
scalable, thanks to the capability of Spark to scale to large tasks. When the size
of the data was doubled, the processing time of the single-thread method was
roughly doubled. In comparison, the processing time of the distributed method
was only increased by 26%, due to the use of additional computational resource
(the number of cores was doubled).

https://doi.org/10.1017/asb.2017.15 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2017.15

952 Y. ZHANG

0 100 200 300 400 500

−
0.

10
−

0.
06

−
0.

02

iteration

β1

0 100 200 300 400 500

59
.5

60
.5

61
.5

62
.5

iteration

φ

0 100 200 300 400 500

1.
69

5
1.

69
7

1.
69

9

iteration

p

0 100 200 300 400 500

0.
05

0.
10

0.
15

0.
20

iteration

σ

FIGURE 4: The simulated values in the first 500 iterations for four parameters: the parameter for one predictor
β1, the scale parameter of the Tweedie distribution φ, the power (index) parameter of the Tweedie distribution

p and the vehicle make-level variation σ . The dashed line indicates the posterior mean in each figure.

3.4. Bayesian ratemaking

We carried out a full run of the distributed MCMC algorithm to simulate all
parameters from the posterior distributions. We ran one chain for 20,000 itera-
tions, which finished within 14 hours as a scheduled overnight job. In the first
5,000 iterations, we adjusted the variance of the Gaussian proposal distribution
for each parameter to get reasonable empirical acceptance rates (Browne and
Draper, 2006). At the end of the tuning phase, the acceptance rates of most pa-
rameters were between 40% and 60%, which indicate properly tuned proposal
distributions for univariate Metropolis simulations (Gelman et al., 2003). The
samples drawn during the adaptive phrase were discarded. The tuned proposal
variances were used in simulations that followed the adaptive phase without any
adjustment. To reduce auto-correlation, we used every fifth iteration of the sim-
ulation. This resulted in 3,000 simulated draws for each parameter. Figure 4
shows the simulated values for four representative parameters in the model.
These mixing patterns show strong evidence that the chain reached approximate
convergence after the tuning phase. Indeed, the potential scale reduction factors
(Gelman et al., 2003) were below 1.1 for all parameters.
Predictive Distribution. The fundamental metric to forecasting problems is the
predictive distribution given the observed data, which provides the full pic-
ture of the forecasted values. Suppose y is all observed historical data and
θ = (β, u, p, φ, σ) contains all parameters in the model. A new risk is rep-
resented by the tuple (gnew, xnew, ynew), where xnew and gnew are the observed
predictors and group indicator, and ynew is the unobserved future loss to be

https://doi.org/10.1017/asb.2017.15 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2017.15

BAYESIAN ANALYSIS OF BIG DATA USING DISTRIBUTED COMPUTING 953

y (1M)
0 0.5 1.0 1.5

p(y=0)=99.25%

z (1M)
0 0.1 0.2 0.3(u)

p(z=0)=99.32%
p(z=u)=0.14%

FIGURE 5: The predictive distribution (histogram) of positive losses for a new risk. Zero losses are not
included in the histogram due to the disproportionally large frequency. The probability of zero loss is reported

at the top. The left plot is the predictive distribution of the ground-up loss. The right plot is the predictive
distribution of the loss with a 1,000 deductible and 300,000 limit.

predicted. The predictive distribution of the new risk given the historical data is

f (ynew|y) =
∫

θ

f (ynew|θ) f (θ |y)dθ . (6)

That is, the parameters in the conditional distribution f (ynew|θ) are integrated
out with respect to their posterior distributions given the data. In the Bayesian
setting, this predictive distribution can be computed naturally, by simulat-
ing the loss of the new risk based on each posterior draw of the parameters.
That is, for the sth posterior draw θ (s), we simulate the new loss as y(s)

new ∼
Tw(μ

(s)
new, φ(s), p(s)) for s = 1, . . . , S. These simulated values come from the

desired predictive distribution and can be used to derive other quantities of in-
terest. The left plot of Figure 5 shows the predictive loss distribution for a new
risk.
Predictive Distribution for Modified Loss. In practice, insurance policies are is-
sued with coveragemodifiers, such as deductibles and policy limits. These policy
clauses lead tomodified loss distributions. For example, the loss for a new policy
with limit u is ynew∧u = min(ynew, u), and the loss under deductible d and limit
u is znew = (ynew ∧ u) − (ynew ∧ d). The derivation of the predictive distribution
of the modified loss variable is straightforward throughMonte Carlo sampling.
For each predictive draw of the ground-up loss y(s)

new, we apply the deductible and
limit to obtain the modified loss z(s)

new. The right plot of figure 5 shows the pre-
dictive loss distribution for a new risk that has $1,000 deductible and $300,000
limit.

The availability of the predictive distribution greatly facilitates the assess-
ment of new risks with policy coverage modifiers. Various characteristics of
the risk distribution can be summarized through sample statistics. One impor-
tant statistic is the mean predicted loss cost which is the core component of
the premium. It can be estimated as E(znew|y) ≈ 1

S

∑S
s=1 z(s)

new. In contrast,

https://doi.org/10.1017/asb.2017.15 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2017.15

954 Y. ZHANG

derivation of the truncated or limited expected loss inmany non-Bayesianmeth-
ods typically involves numerical integrations. For example, the expected loss un-
der policy limit u is E(y∧u) = ∫ u

0 S(y)dy, where S(y) is the survival function of
the underlying loss variable (Klugman et al., 2012). In the case of the Tweedie
loss distribution, the survival function has no closed-form solution. Numerical
approximations are necessary to approximate this integral.

Remark 1. Bayesian predictive distributions facilitate loss cost forecast under pol-
icy coverage modifiers, such as deductibles and policy limits.

Bayesian Uncertainty Measures. Uncertainty measures of forecasts are impor-
tant for insurance risk management. The Bayesian approach has many advan-
tages for measuring forecast uncertainty in insurance ratemaking. First, it is a
great challenge to derive uncertainty measures of truncated or limited losses
using numerical methods. In comparison, risk measures such as the standard
deviation, credible interval and value-at-risk can be constructed readily through
the sample statistics of the simulated modified losses from the Bayesian model.

Second, it is difficult to accurately estimate the group-level variation in
a hierarchical model. Likelihood-based methods generally underestimate the
group-level variation and Bayesian methods have been shown to provide more
accurate estimates (Browne and Draper, 2006; Zhang, 2013).

Third, an important source of uncertainty when making predictions arises
from the uncertainty of model parameters. The Bayesian risk measures inher-
ently take into account the uncertainty in estimating all parameters, as a re-
sult of the integration over the posterior distribution of the parameters. Vari-
ous methods have been proposed to account for the estimation uncertainty in
making insurance forecasting. In the area of loss reserving, England and Ver-
rall (1999) developed both analytical and bootstrapping methods to assess the
predictive uncertainty. However, these methods face great difficulties when ap-
plied to insurance ratemaking. First, it is not clear how the analytical approach,
derived via Taylor’s approximation, can be adapted to policies with deductibles
and limits. Second, the bootstrapping method needs to estimate a large number
of Tweedie mixed models to get the sampling distribution of the parameters.
However, the estimation of one single model using the likelihood-based method
took about 5 days on the current data. Third, bootstrapping cannot resolve the
issue of downwardly biased estimate of the group-level variation.

Remark 2. Bayesian predictive distributions produce uncertainty measures that
appropriately account for group-level variations and uncertainties in model esti-
mation.

Credibility Estimates. The actuarial profession has relied on the credibility
weighting procedure to make robust estimation when there is insufficient infor-
mation from the historical data. In this regard, the Bayesian hierarchical model
is a very appealing approach to insurance ratemaking, as it provides a formal
mechanism for generating rates that incorporate actuarial credibility. Indeed,
Frees et al. (1999) demonstrate that various actuarial credibility methods can

https://doi.org/10.1017/asb.2017.15 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2017.15

BAYESIAN ANALYSIS OF BIG DATA USING DISTRIBUTED COMPUTING 955

Vehicle Make

E
st

im
at

e

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2

Vehicle Model

E
st

im
at

e

−
0.

5
0.

0
0.

5

FIGURE 6: The posterior mean and 50% credible interval for the vehicle make-level and vehicle model-level
effects. Red dots represent the posterior mean and the gray vertical line corresponds to the 50% interval. A

randomly selected 200 vehicle makes are shown to avoid clustered plot.

be expressed as special cases of hierarchical models with Gaussian errors. The
Bayesian hierarchical Tweedie model thus extends the core concept of actuar-
ial credibility to insurance ratemaking based on individual loss data. Figure 6
shows the estimated vehicle make-level and vehicle model-level effects, along
with the 50% credible intervals. Many of these effects are distributed around
zero as a result of shrinking the individual estimates.

Remark 3. Bayesian hierarchical Tweedie model provides a formal mechanism to
incorporate the core insight of actuarial credibility in insurance ratemaking.

4. CONCLUSIONS AND DISCUSSIONS

The rise and rapid growth of big data analytics undoubtedly brings opportu-
nities to improve information extraction from insurance data, but it also cre-
ates a unique set of challenges. One challenge is how to make probabilistic
forecasts that can be utilized in business decision making. Another challenge
is how to overcome the computational burden and process large volumes of
data efficiently. The paper suggests that Bayesianmethods, implemented via dis-
tributedMCMC, are well suited for large-scaled insurance predictive modeling.
The empirical analysis demonstrates that when applied to insurance ratemak-
ing, Bayesian methods excel in several ways. In particular, Bayesian methods
facilitate loss cost forecast reflecting policy coverage clauses, produce coherent
uncertainty measures and provide a formal mechanism to incorporate the core
insight of actuarial credibility through hierarchical modeling.

While rapidly growing, the development of big-data analysis is still in the
early stage. For practical implementation of large-scaled Bayesian ratemaking,
we recommend the following three-step strategy.

https://doi.org/10.1017/asb.2017.15 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2017.15

956 Y. ZHANG

beta p phi u

−0.1 0.0 0.1 0.2 1.685 1.690 1.695 1.700 57 60 63 66−1.0 −0.5 0.0 0.5

parameter value

de
ns

ity

Sample data Full data

FIGURE 7: The posterior distributions of four representative parameters estimated using a sample of data
and the full data, respectively.

1. Single-thread non-Bayesian analysis using sample data. Take a representa-
tive random sample from the big data and analyze the sample data using
standard data analysis and modeling techniques without parallel process-
ing. This helps to gain initial insights from the data and design preliminary
modeling strategies quickly.

2. Distributed non-Bayesian analysis using full data. Test the data transforma-
tion and modeling strategies on the full data. This step requires a big-data
platform such as Spark to efficiently implement data manipulation and sta-
tistical learningmethods. Run additional analyses such as pattern and trend
detection, variable selection, model comparison, out-of-sample validation
and so on to finalize the model structure.

3. Distributed Bayesian analysis using full data. Formulate the chosen model
into the Bayesian setting and run distributed MCMC on the full data to
obtain parameter estimates as posterior samples.

We recommend starting the analysis using a sample of data. This will help gain
initial understanding of the data quality, the necessary variable transformations
and so on. However, the modelers must be aware that patterns from the sample
may be different from those in the full data due to sampling variations. To illus-
trate this, we also estimated a model using only 10% of our data and compared
the estimated distributions of some representative parameters to those in the full
model in Figure 7. Notably, the posterior distribution using the full data is more
dense than that using the sample data, because of the use of 10 times more data.
This is particularly important for the group-level effect, the shrinkage of which
depends on the number of observations in each level. We see that in Figure 7, it
can be hard to identify a significant group deviation in small samples of sparse
data like insurance loss. The availability of big data provides the opportunity to
find more signals in the data.

We recommend running distributed non-Bayesian analysis because many
classic learning algorithms are already implemented on major distributed

https://doi.org/10.1017/asb.2017.15 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2017.15

BAYESIAN ANALYSIS OF BIG DATA USING DISTRIBUTED COMPUTING 957

platforms (no support for distributed hierarchical model on Spark at the mo-
ment). The full-blown Bayesian analysis typically produces estimates consistent
with those from the classical counterparts, but has the additional advantage of
getting the full posterior distribution of parameters that is valuable for measur-
ing and managing insurance risks.

Beyond ratemaking, large-scaled Bayesian analysis also provides value in
other areas of insurance predictive modeling. For example, in individual loss
reserving, the Bayesian predictive distribution can be used to derive ranges for
both individual and aggregate reserves. In particular, with the arise of usage-
based and ride-sharing insurance, actuaries have the opportunity to perform
reserving analysis for each trip, namely a driver going from point A to point
B. Trip-level characteristics can be leveraged to infer the likelihood that an acci-
dent has occurred on the trip for the purpose of booking the incurred but not re-
ported claims. Another potential application is in targeted insurance marketing,
such as customer acquisition or customer retention. The individual-level pre-
dictive distribution is critical for successful marketing strategies and targeting
decisions, given that the individual-level densities are likely to be non-symmetric
or heavy tailed (Rossi et al., 1996).

We believe that Bayesian methods are valuable in many areas of insurance
analytics. The current paper brings a viable solution for practical application of
Bayesian methods. We hope this will spur the application of Bayesian analysis
in insurance predictive modeling, which has the potential to transform the way
that actuaries assess and manage insurance risks.

NOTES

1. In contrast, another noteworthy strategy is to partition the data and run independent
MCMC in parallel on each data partition (Ormandi et al., 2015; Wang and Dunson, 2016). This
method works when the posterior can be factored as products of the individual posterior from each
partition. Such a condition, however, is not satisfied for the variance component in the hierarchical
model we consider in this paper.

2. https://www.kaggle.com/c/ClaimPredictionChallenge

REFERENCES

AGARWAL, A. andDUCHI, J.C. (2012) Distributed delayed stochastic optimization. InProceedings
of the IEEE 51st Annu. Conf. Decision and Control (CDC), IEEE, vol. 83, pp. 5451–5452.

BERMUDEZ, L. and KARLIS, D. (2011) Bayesian multivariate Poisson models for insurance
ratemaking. Insurance: Mathematics and Economics, 48, 226–236.

BROWNE, W.J. and DRAPER, D. (2006) A comparison of Bayesian and likelihood-based methods
for fitting multilevel models. Bayesian Analysis, 1(3), 473–514.

BÜHLMANN, H. (1967) Experience rating and credibility. ASTIN Bulletin, 4(3), 99–207.
DE ALBA, E. (2002) Bayesian estimation of outstanding claims reserves. North American Actuarial

Journal 6(4), 1–20.
DUNN, P.K. and SMYTH, G.K. (2005) Series evaluation of Tweedie exponential dispersion models

densities. Statistics and Computing, 15, 267–280.
DUNN, P.K. and SMYTH, G.K. (2008) Evaluation of Tweedie exponential dispersion model densi-

ties by Fourier inversion. Statistics and Computing, 18, 73–86.

https://doi.org/10.1017/asb.2017.15 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2017.15

958 Y. ZHANG

ENGLAND, P.D. and VERRALL, R.J. (1999) Analytic and bootstrap estimates of prediction errors
in claims reserving. Insurance: Mathematics and Economics, 25, 281–293.

FREES, E.W., DERRIG, R.A. ANDMEYERS, G. (2014) Predictive Modeling Applications in Actuarial
Science, vol. 1. New York: Cambridge University Press.

FREES, E.W., YOUNG, V.R. and LUO, Y. (1999) A longitudinal data analysis interpretation of cred-
ibility models. Insurance: Mathematics and Economics, 24(3), 229–247.

GELMAN, A., CARLIN, J.B., STERN, H.S. and RUBIN, D.B. (2003) Bayesian Data Analysis, 2nd ed.
Boca Raton, FL: CRC Press.

GRAMA, A., KARYPIS, G., KUMAR, V. and GUPTA, A. (2003) Introduction to Parallel Computing,
2nd ed. Harlow: Pearson.

GREEN, P.J., LATUSZYNSKI, K., PEREYRA, M. and ROBERT, C.P. (2015) Bayesian computation: A
summary of the current state, and samples backwards and forwards. Statistics and Computing,
25, 835–862.

HAARIO,H., SAKSMAN, E. andTAMMINEN, J. (2001) An adaptivemetropolis algorithm.Bernoulli,
7, 223–242.

JøRGENSEN, B. and DE SOUZA, M.C. (1994) Fitting Tweedie’s compound Poisson model to insur-
ance claims data. Scandinavian Actuarial Journal, 1, 69–93.

KLUGMAN, S.A., PANJER, H.H. andWILLMOT, G.E. (2012) Loss Models: From Data to Decisions.
Hoboken, NJ: Wiley.

NEAL, R. (2013) MCMC using Hamiltonian dynamics. In Handbook of Markov Chain Monte
Carlo (eds. S. Brooks, A. Gelman, G. Jones and X.L. Meng), pp. 113–162. Boca Raton, FL:
Chapman and Hall.

NEISWANGER, W., WANG, C. and XING, E. (2014) Asymptotoically exact, embarassingly parallel
MCMC. In UAI’14 Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelli-
gence, pp. 623–632. Arlington, VA: AUAI Press.

NTZOUFRAS, I. and DELLAPORTAS, P. (2002) Bayesian modelling of outstanding liabilities incor-
porating claim count uncertainty. North American Actuarial Journal, 6(1), 113–128.

ORMANDI, R., YANG,H. and LU, Q. (2015) Scalable multidimensional hierarchical Bayesianmod-
eling on spark. JMLR: Workshop and Conference Proceedings, 41, 33–48.

PETERS, G. W., SHEVCHENKO, P.V. and WÜTHRICH, M.V. (2009) Model uncertainty in claims re-
serving within Tweedie’s compound Poisson models. ASTIN Bulletin, 39(1), 1–33.

REYES-ORTIZ, J.L., ONETO, L. and ANGUITA, D. (2015) Big data analytics in the cloud: Spark on
hadoop vs mpi/openmp on beowulf. Procedia Computer Science, 53, 121–130.

ROBERTS, G. and TWEEDIE, R. (1996) Geometric convergence and central limit theorems for mul-
tidimensional hastings and metropolis algorithms. Biometrika, 83, 95–110.

ROSSI, P.E., MCCULLOCH, R.E. and ALLENBY, G.M. (1996) The value of purchase history data
in target marketing. Marketing Science, 15(4), 321–340.

SHI, P. (2016) Insurance ratemaking using a copula-based multivariate Tweedie model. Scandina-
vian Actuarial Journal, 3, 198–215.

SHI, P., SANJIB, B. and MEYERS, G. (2012) A Bayesian log-normal model for multivariate loss
reserving. North American Actuarial Journal 16(1), 29–51.

SMYTH, G.K. and JøRGENSEN, B. (2002) Fitting Tweedie’s compound Poisson model to insurance
claims data: dispersion modelling. ASTIN Bulletin, 32, 143–157.

TWEEDIE, M.C.K. (1984) An index which distinguishes between some important exponential fam-
ilies. In Statistics: Applications and New Directions, Proceedings of the Indian Statistical Insti-
tute Golden Jubilee International Conference (eds. J.K.Gosh and J. Roy), pp. 579–604. Calcutta:
Indian Statistical Institute.

WANG, X. and DUNSON, D.B. (2016) Parallelizing MCMC via weierstrass sampler. Working Paper
http://arxiv.org/pdf/1312.4605.

WELLING, M. and TEH, Y. (2011) Bayesian learning via stochastic gradient langevin dynamics.
In Proceedings of the 28th International Conference on Machine Learning (ICML), pp. 681–
688.

WÜTHRICH,M. (2003) Claims reserving using Tweedie’s compound Poissonmodel. Astin Bulletin,
33, 331–346.

WÜTHRICH,M.V. andMERZ,M. (2008) Stochastic Claims Reserving Methods in Insurance. Hobo-
ken, NJ: Wiley.

https://doi.org/10.1017/asb.2017.15 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2017.15

BAYESIAN ANALYSIS OF BIG DATA USING DISTRIBUTED COMPUTING 959

ZAHARIA, M., CHOWDHURY, M., FRANKLIN, M.J., SHENKER, S. and STOICA, I. (2010) Spark:
Cluster computing with working sets. In HotCloud’10 Proceedings of the 2nd USENIX Con-
ference on Hot Topics in Cloud Computing, p. 10. Berkeley, CA: USENIX Association.

ZHANG, Y. (2013) Likelihood-based and Bayesian methods for Tweedie compound Poisson linear
mixed models. Statistics and Computing, 23(6), 743–757.

ZHANG, Y., DUKIC, V. and GUSZCZA, J. (2012) A Bayesian non-linear model for forecasting in-
surance loss payments. Journal of the Royal Statistical Society: Series A, 175(2), 637–656.

ZHU, J., CHEN, J. and HU,W. (2014) Big learning with Bayesian methods. National Science Review
nwx044. doi:10.1093/nsr/nwx044.

YANWEI ZHANG (Corresponding author)
Uber Technologies
1455 Market Street
San Francisco, CA 94103, USA
E-Mail: actuary zhang@hotmail.com

APPENDIX: DERIVATION OF THE
MCMC ALGORITHM

We derive the Metropolis-within-Gibbs sampler used to simulate samples from the posterior
of the parameters. In particular, we derive the sampling scheme for the model specified in
(1)–(3). Other variations of the hierarchical structure including nested or crossed effects can
be derived likewise. The posterior distribution is proportional to the joint distribution of the
data and the priors. In the Metropolis-within-Gibbs sampler, we sequentially sample each
parameter from its full conditional distribution given all the other parameters and the data.
If the full conditional cannot be easily simulated from, we resort to theMetropolis algorithm.
The logarithmic joint posterior density corresponding to this model is

� = log f (y,β, u, σ 2, φ, p)

=
∑

i
log fTw(yi |β, ugi , p, φ)

data likelihood

+
∑

j
log fN(u j |σ 2)

group-level distribution

+ logπ(β, φ, p, σ 2)

prior distribution

.

We now describe in detail the random-walkMetropolis algorithm for the kth component
of β, denoted βk. First, we propose a new sample from a normal distribution with the current
value βk as the mean and a pre-specified proposal variance σ 2

p .
Second, we compute the log joint density �new and �old using the newly sampled value and

the value from the last iteration, respectively. In this step, the data loglikelihood is computed
in parallel across multiple cores from a network of computer nodes.

Last, we decide whether to accept the new sample. Let A = exp(�new − �old). If A > 1, we
accept the new sample. Otherwise, we accept it with probability A. This finishes one simula-
tion for βk, and we continue the Gibbs step and move to βk+1. This algorithm is summarized
in Algorithm 1.

The simulation of φ and p follows the above algorithm similarly. However, the simulation
is based on transformations of these parameters. Specifically, we simulate on the scale of
log(φ) and logit(p − 1). These transformations are made so that the new variables span the

https://doi.org/10.1017/asb.2017.15 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2017.15

960 Y. ZHANG

Initialize: �new = 0, �old = 0, and the proposal variance σ 2
p

1 Module updateBetak: // function to update βk

2 Set βold = β; // store current value

3 Simulate new sample βk ← N(βk, σ
2
p); // simulate new value & update

4 parallel for i : // parallel computation

5 �new ← �new + log f (yi ,β, u, σ 2, φ, p); // update new loglikelihood

6 �old ← �old + log f (yi ,βold, u, σ 2, φ, p); // update old loglikelihood

7 �new ← �new + logπ(β) ; // prior contribution

8 �old ← �old + logπ(βold) ; // prior contribution

9 Set A = exp(�new − �old);
10 if A > 1 then return β; // accept new sample

11 else
12 if Uni f (0, 1) < A then return β; // accept new sample

13 else return βold; // reject new sample

14 end

Algorithm 1: Simulation of the kth element of β

real line, enabling the use of the random-walk Metropolis algorithm. Otherwise, truncated
Normal distributions could be chosen as the proposal.

For the simulation of the group-level effects u, we notice that the full conditional of each
component is independent. For example, the full conditional of u j is

∑
i :gi = j

log fTw(yi |β, ugi , p, φ) − 1
2

u2
j /σ

2.

That is, the part of loglikelihood calculation only involves observations in group j . The
Metropolis step can be simplified as follows. First, given the current values uold, simulate
unew ∼ N(uold, τ I), where τ is a pre-specified proposal variance. Second, compute in parallel
the by-group logarithmic joint density �new and �old using unew and uold, respectively. These
logarithmic joint densities are now vectors. Third, let A = exp(�new − �old), and for each
component of A, apply the Metropolis decision rule as above.

Finally, the sampling of the variance component is straightforward. The posterior distri-
bution of the variance component σ 2 is an inverse-Gamma distribution

σ−2 ∼ Gamma
(

J
2

+ C1,
1
2

∑J

j=1
u2

j + C2

)
,

if we specify a conjugate inverse Gamma prior with C1 and C2 as the shape and scale param-
eter, and J is the number of groups.

Below, we summarize some additional implementation details.

• The prior distributions we used are βk ∼ N(0, 1002), log(φ) ∼ N(0, 1002), logit(p − 1) ∼
N(0, 1002) and σ−2 ∼ Gamma(0.01, 0.01).

• Note that the full conditionals of φ and p depend on the normalizing quantity a(y, φ)

in (4). We implement the numerical approximation method in Dunn and Smyth (2005) in
Scala to calculate this quantity. The code is provided below. It is also to be noted that this

https://doi.org/10.1017/asb.2017.15 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2017.15

BAYESIAN ANALYSIS OF BIG DATA USING DISTRIBUTED COMPUTING 961

approximation is not needed for the other parameters because their full conditionals do
not depend on the normalizing quantity.

• To avoid numerical issues, we operate on the logarithmic scale. Standard procedure is ap-
plied when calculating the log sum of exponentials to avoid overflow/underflow issues.
This is implemented in the Tweedie density evaluation below.

/**
* Compute the log density for the Tweedie compound Poisson distribution.
*
* @param y the observation
* @param mu the mean parameter
* @param phi the dispersion parameter
* @param p the index parameter
*
*/
def dtweedie(y: Double, mu: Double, phi: Double, p: Double): Double = {

val TWEEDIE_DROP = 37.0
val TWEEDIE_INCRE = 5
val TWEEDIE_NTERM = 20000
val p1: Double = p - 1.0
val p2: Double = 2.0 - p

if (y == 0.0) return(-pow(mu, p2)/(phi * p2))

val a: Double = -p2/p1
val a1: Double = 1.0/p1
val jmax = max(1.0, pow(y, p2)/(phi * p2))
val logz = -a * log(y) - a1 * log(phi) + a * log(p1) - log(p2)

val cc = logz + a1 + a * log(-a) // locate upper bound
val w = a1 * jmax
var j: Double = jmax + TWEEDIE_INCRE
while (j * (cc - a1 * log(j)) >= (w - TWEEDIE_DROP))
j += TWEEDIE_INCRE

val jh = ceil(j);

j = jmax - TWEEDIE_INCRE // locate lower bound
while (!((j < 1 || j * (cc - a1 * log(j)) < w - TWEEDIE_DROP)))
j -= TWEEDIE_INCRE

val jl = max(1, floor(j))
val jd = jh - jl + 1;

val nterms = min(jd, TWEEDIE_NTERM).toInt
var ww = Array.fill(nterms)(0.0)
for (k <- 0 until nterms){
j = k + jl ;
ww(k) = j * logz - lgamma(1 + j) - lgamma(-a * j);

}
val ww_max = ww.reduceLeft(_ max _)
val sum_ww = ww.map(x => exp(x - ww_max)).sum //overflow
return(-y/(phi * p1 * pow(mu, p1)) - log(y) + log(sum_ww)

+ ww_max -pow(mu, p2)/(phi * p2))
}

https://doi.org/10.1017/asb.2017.15 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2017.15

