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Merging of a row of plumes or jets with an
application to plume rise in a channel
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first published online 17 April 2015)

The physical interpretation of velocity potential is used to propose a model of
the mean flow boundary of a row of plumes or jets. Generalised plume equations
incorporating the plume area and net entrainment are closed with an entrainment
assumption. The resulting model is shown to approach the appropriate limiting
similarity solutions above and below the merging height in an unstratified environment.
The virtual origin of the far-field flow is hence predicted. An application to plume
rise in channels of varying aspect ratio shows that the model may be used to predict
the depth of the outflow along the channel.
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1. Introduction

The merging of buoyant jets from proximate sources is a common occurrence in the
atmosphere and the ocean, likewise the motion of a plume in a restricted environment.
These flows have a common feature in that external influences interrupt the free rise
of buoyant fluid from a localised source. The merging problem has been the subject
of several studies, for pairs and rows of plumes as well as other configurations (Kaye
& Linden 2004; Cenedese & Linden 2014, and references therein). In particular, Lai
& Lee (2012) have developed a semi-analytical method whereby the interaction of
the buoyant-jet core and entrainment fields is used to predict the flow trajectory and
merging properties. For a long row of plumes, the external flow field would not be
expected to cause a deflection of the axes of plumes far from the end points, provided
that the symmetry is not broken. Significant symmetry breaking in this arrangement
does not seem to have been reported.

Here, a method is developed to model a long row of plumes, as follows. In § 2,
an argument is made for the identification of the plume–ambient boundary with the
velocity-potential contours of the entrainment flow field. In § 3, this entrainment flow
is modelled as that induced by a row of line sinks with spacing a. On an interval of
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FIGURE 1. A sketch of the half-plume flow under consideration, in a domain spanning
−a/2 6 x 6 a/2. A horizontal section of the half-plume has area A and top-hat vertical
velocity w, and only entrains along a portion of the plume boundary, of length `. Entrained
fluid crosses the boundary with speed q.

length a with a line sink at its centre, the model is used to derive the area bounded by
contours of velocity potential, and the flux across them. This interval forms the basis
for modelling one plume (or jet) as the repeating unit in an infinite row, see figure 1.
In § 4, a model of a plume with arbitrary boundary shape is described, and the results
derived previously are used to apply this to the repeating plume unit, and to develop
an entrainment closure. The equations are solved numerically for the particular cases
of rows of plumes and jets in an unstratified environment in §§ 5 and 6 respectively.
Finally, an application of the model to flow in a channel is presented in § 7.

2. The entrainment flow field and plume boundary

The complex potential of a line sink of strength −m(z) at the origin is

Ω =− m
2π

ln Z, (2.1)

where Z = x + iy. This differs from the complex potential of a line vortex by only
a factor of i. Kaye & Linden (2004) used a line sink to represent the converging,
horizontal and irrotational flow exterior to a plume which is induced by plume
entrainment (see also Taylor 1958).

The real part of the complex potential corresponds to the velocity potential. For a
fluid of density ρ, Batchelor (1967, § 6.10) proposes a physical interpretation of the
velocity potential as (1/ρ) times the pressure impulse required to set up, or bring to
rest, the irrotational velocity arising from the potential. In this sense, contours of equal
velocity potential may be interpreted as connecting points at which an equal pressure
impulse must be applied to bring about a given irrotational motion. Furthermore,
the equations for mean plume motion are consistent with the assumption that the
horizontal pressure gradient within the plume is neglected (Turner 1973, § 6.1.2), and
thus the plume body is approximately isobaric at any given height.

Hence, contours of equal velocity potential may be used to approximate the mean
plume boundary at different stages (i.e. heights) in the evolution of single or multiple
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Merging of a row of plumes or jets

plumes. An additional feature of velocity-potential contours is that the flow is normal
to the contours at all points, which would be expected of plume entrainment flow.

The total complex potential of an array of plumes, represented by line sinks,
inherently incorporates the interaction of the flow fields induced exterior to the
plumes.

3. Infinite row of line sinks

For an infinite array of parallel line sinks at positions na (n ∈ Z), i.e. at intervals
of length a along the real line, the total complex potential is

Ω =− m
2π

ln
(

sin
πZ
a

)
+Π, (3.1)

derived as in the vortex-street summation, e.g. Acheson (1990, § 5.7), where Π is an
arbitrary constant. The velocity potential is

φ = Re(Ω)

= − m
2π

ln
∣∣∣∣sin

πZ
a

∣∣∣∣+Π
= − m

2π
ln
∣∣sin x′ cosh y′ + i cos x′ sinh y′

∣∣+Π, (3.2)

where x′ + iy′ = πZ/a and hence x′/π = x/a, etc. The velocity components u and v
may be obtained from the complex derivative, dΩ/dZ = u− iv. In this case,

dΩ
dZ
=− m

2a
cot

πZ
a
=− m

2a

(
sin 2x′ − i sinh 2y′

cosh 2y′ − cos 2x′

)
. (3.3)

The flow speed is given by q= |dΩ/dZ|, hence

q2 = m2

4a2

sin2 2x′ + sinh2 2y′

(cosh 2y′ − cos 2x′)2
= m2

4a2

cosh2 2y′ − cos2 2x′

(cosh 2y′ − cos 2x′)2
. (3.4)

From (3.2), the contours of equal velocity potential are given by∣∣∣∣sin
πZ
a

∣∣∣∣= p, (3.5)

where p is constant, or in terms of x′ and y′,

cosh 2y′ = 2p2 + cos 2x′. (3.6)

Hence,
y′ = 1

2 ln(2p2 + cos 2x′ + [(2p2 + cos 2x′)2 − 1]1/2). (3.7)

Figure 2 shows this solution plotted for a range of p. It is periodic in x′ with period
π, has roots at x′=±(1/2) cos−1(1− 2p2) for 06 p6 1, and tends to a constant value
of ln 2p as p tends to infinity. Its maximum value in the domain −π/2 6 x′ 6π/2 is
y′0 = (1/2) ln(2p2 + 1+ 2[p2(p2 + 1)]1/2) at x′ = 0. The area under (3.7) is

A′ =
∫ x′+

x′−
y′dx′, (3.8)
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FIGURE 2. Contours of velocity potential. The corresponding values of p are those in
table 1 in the range 0.05 6 p 6 5. The domain spans −π/2 6 x′ 6 π/2. The contour p=
0.05 is dotted, and p= 5 is dot-dashed. The contour p= 1 is the thicker solid line which
extends into the lower corners of the plot.

where

x′± =
{
±(1/2) cos−1(1− 2p2), 0 6 p< 1,
±π/2, p > 1; (3.9)

A′ is a function of p only, and is related to the actual area A by A′ =π2A/a2.
From (3.4) and (3.6), the flow speed at points along a particular velocity-potential

contour satisfies

q2 = m2

4a2

p2 + cos 2x′

p2
= m2

4a2

cosh 2y′ − p2

p2
. (3.10)

The flow is directed towards the origin.
The contour length is not used directly in the plume analysis; however, its

calculation is a model for the calculation of the entrainment flux, which follows.
It is also of interest to observe its evolution alongside the other derived quantities.
First, (3.6) may be differentiated to obtain

sinh2 2y′
(

dy′

dx′

)2

= sin2 2x′, (3.11)

and hence (
dy′

dx′

)2

= sin2 2x′

(2p2 + cos 2x′)2 − 1
= 1− (cosh 2y′ − 2p2)2

sinh2 2y′
. (3.12)

The length of the contour in the upper half-plane is

`′ =
∫ x′+

x′−
d`′, (3.13)
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Merging of a row of plumes or jets

where d`′2 = dx′2 + dy′2. For p> 1, the length is given by

`′ =
∫ x′+

x′−

(
1+ sin2 2x′

(2p2 + cos 2x′)2 − 1

)1/2

dx′. (3.14)

For p< 1, numerical evaluation of `′ is complicated by the divergence of dy′/dx′ at
x′±, and it is convenient to split the integral into pieces. Defining

x′±/2 = 1
2 x′± =± 1

4 cos−1(1− 2p2) (3.15)

and y′+/2 as the value obtained by substituting for x′+/2 into (3.7), then

`′ =
∫ x′+/2

x′−/2

(
1+ sin2 2x′

(2p2 + cos 2x′)2 − 1

)1/2

dx′

+ 2
∫ y′+/2

0

(
1+ sinh2 2y′

1− (cosh 2y′ − 2p2)2

)1/2

dy′. (3.16)

For p= 1, the length may be evaluated as

`′ =
∫ x′+

x′−

(
4+ 4 cos 2x′

4+ 4 cos 2x′ − sin2 2x′

)1/2

dx′. (3.17)

Given the orthogonality of streamlines and velocity-potential contours, the flux E
across the plume–ambient boundary in the upper half-plane is simply

E=
∫ x+

x−
qd`= mI

2π
, (3.18)

where

I =
∫ x′+

x′−

2aq
m

d`′. (3.19)

Like A′, I is a function of p only. It may be evaluated in a similar manner to `′ using
(3.10). Values of the main variables for a range of values of p are shown in table 1.

4. Generalised plume equations

To make use of the results from the previous section, it is convenient to write
equations for flow in a half-plume. This will also simplify the later application. The
half-plume (Boussinesq) equations may be written in a general form

A
d
dz

(
1
2

w2

)
= Ag′ −wE, (4.1a)

d
dz
(Aw)= E, (4.1b)

d
dz
(Awg′)=−AwN2, (4.1c)
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G. G. Rooney

p y′0/π x′+/π A′/π2 `′/π I I/`′

0.05 0.01591 0.01592 0.00040 0.05863 3.68413 20.00259
0.10 0.03178 0.03188 0.00159 0.11727 3.68602 10.00512
0.20 0.06325 0.06409 0.00637 0.23468 3.69370 5.00986
0.40 0.12415 0.13099 0.02552 0.47115 3.72509 2.51669
0.60 0.18106 0.20483 0.05794 0.71473 3.78073 1.68378
0.80 0.23322 0.29517 0.10594 0.98210 3.87181 1.25489
0.90 0.25747 0.35643 0.13839 1.14295 3.94430 1.09848
0.95 0.26915 0.39892 0.15841 1.24452 3.99858 1.02271
0.99 0.27829 0.45495 0.17851 1.36584 4.07470 0.94961
1.00 0.28055 0.50000 0.18561 1.18013 3.14159 0.84736
1.01 0.28280 0.50000 0.19270 1.13215 3.14158 0.88327
1.05 0.29166 0.50000 0.21294 1.08721 3.14156 0.91978
1.10 0.30250 0.50000 0.23333 1.06255 3.14159 0.94113
1.20 0.32339 0.50000 0.26737 1.03812 3.14160 0.96328
1.50 0.38030 0.50000 0.34553 1.01341 3.14159 0.98677
2.00 0.45952 0.50000 0.44001 1.00401 3.14160 0.99601
5.00 0.73607 0.50000 0.73290 1.00010 3.14159 0.99990

10.00 0.95436 0.50000 0.95357 1.00001 3.14159 0.99999
15.00 1.08299 0.50000 1.08263 1.00000 3.14159 1.00000

TABLE 1. Values of the main variables described in § 3, for different values of p.

where w is the vertical velocity, g′ is the reduced gravity and N2 is the buoyancy
frequency of the environment. The configuration is shown in figure 1. Equation (4.1a)
is a combination of the usual volume-flux and momentum-flux equations. In this form
it emphasises that the plume acceleration is a combination of buoyancy acting on the
plume body and drag from entrainment acting on the plume boundary. The plume
shape determines the relative strengths of these (Cenedese & Linden 2014).

Equations (4.1) revert to the (top-hat) axisymmetric (Morton, Taylor & Turner
1956) or two-dimensional (Lee & Emmons 1961; Stothers 1989) plume equations
upon substituting the usual forms for the area and entrainment in those cases,

A= 1
2πb2, E=πbαw, (4.2a,b)

A= ad, E= aαw, (4.2c,d)

where α is an entrainment constant, b is the plume radius in the axisymmetric case
(4.2a,b), d is the plume half-width in the two-dimensional case (4.2c,d) and a in this
limit becomes an arbitrary length along the line plume (which cancels out).

From (3.10), the speed of entrained fluid at the centreline of the domain (x′= 0) is

q0 = m
2a
(p2 + 1)1/2

p
. (4.3)

One possible form of entrainment closure in the general case is to assume q0 = αw.
This is the same as the conventional entrainment assumption in the limiting
axisymmetric and two-dimensional cases, where the entrainment flow speed is uniform
along the plume perimeter. The strength of the line sink is then determined from the
plume velocity w and the value of p as

m= 2aαw
p

(p2 + 1)1/2
. (4.4)
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Merging of a row of plumes or jets

Finally, it may be observed that, at any given height, if A and a are known, then the
value of p may be determined by inverting (3.8), e.g. by root finding. That is, the 1:1
relationship between p and A′ means that any function of p only can be represented
equivalently as a function of A′ only. Thus, m and I can be obtained from the values
of A, a, α and w. The entrainment assumption is therefore sufficient to close the
general equations (4.1).

5. Merging plumes in an unstratified environment

In an unstratified environment, (4.1c) may be integrated to obtain the conserved
half-plume buoyancy flux, B= Awg′. Using (3.18) and (4.4), the remaining equations
become

dw
dz
= B

Vw
− aα

π

w2

V
f , (5.1a)

dV
dz
= aα

π
wf , (5.1b)

where V = Aw is the half-plume volume flux and

f = p
(p2 + 1)1/2

I (5.2)

is a function of p only. Non-dimensionalising (5.1) using

w=
(α

π

)−1/3
B1/3a−1/3w̄, V =

(α
π

)−1/3
B1/3a5/3V̄, z=

(α
π

)−1
az̄ (5.3a−c)

yields the equivalent equations in dimensionless variables, denoted by an overbar ·̄,
dw̄
dz̄
= 1

V̄w̄
− w̄2

V̄
f , (5.4a)

dV̄
dz̄
= w̄f . (5.4b)

Requiring that Ā= V̄/w̄ then implies Ā= A/a2 = A′/π2.
For small values of p, the plume is expected to be approximately axisymmetric. In

the axisymmetric case, the parameter describing the departure from the pure-plume
similarity solution in the near-source region is

Γ (z)= 5
8π1/2α

(2B)(2V)2

(2M)5/2
= 5

25/2π3/2
Ā−1/2w̄−3 (5.5)

(Hunt & Kaye 2005; Devenish, Rooney & Thomson 2010), where M = Vw is the
half-plume momentum flux. Thus, Γ = 1 for a plume in which the fluxes are in
balance with the similarity solution, while Γ → 1 as z→∞ for plumes with arbitrary
source conditions. Initial conditions for the integration of (5.4) can be generated by
first choosing a small value of p (here 0.05) and hence the corresponding value of Ā.
Choosing a value of Γ0=Γ (0) then sets the initial value of w̄ using (5.5), and hence
also V̄ . Solutions can then be compared for initial conditions of pure, forced or lazy
plumes (respectively Γ0 = 1, Γ0 = 0.1, Γ0 = 10.0).
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FIGURE 3. Results of integrating the unstratified plume equations (5.4). Pure (Γ0 = 1),
forced (Γ0 = 0.1) and lazy (Γ0 = 10) initial conditions are represented by solid, dashed
and dot-dashed lines respectively. The solid straight lines show the similarity scalings for
axisymmetric (p < 1) and line (p > 1) plumes. The dotted vertical lines mark z̄ = 0.088,
where p is closest to 1 for the pure plume.

Equations (5.4) were integrated upward in the range 0.00036 6 z̄ 6 0.72 using the
fourth-order Runge–Kutta method with step size 1z̄ = 0.00036. The value of p is
obtained from the half-plume area at each height step, for input to the next increment
calculation.

Results are shown in figure 3. From the height at which the value of p is closest to
unity, the pure, forced and lazy plumes begin to merge at z̄= 0.088, 0.084 and 0.090
respectively. These results do not include an adjustment for the virtual source, which
is discussed further in § 7.

Taking α = 0.1 indicates that the pure-plume row begins to merge at z/a ≈ 2.76.
This is approximately 30 % lower than the height for full merging observed for two
equal plumes by Kaye & Linden (2004). However, it appears to be comparable with,
or perhaps higher than, the height at which merging was observed to begin for two
plumes, from the example in figure 13 of Kaye & Linden (2004).

Figure 3 shows that the solutions approach the similarity predictions for axisym-
metric plumes and line plumes below and above the merging height respectively. The
lazy-plume solution shows that p may vary non-monotonically with z̄, in this case
because of flow contraction above the lazy-plume source. Fitting a line to the V̄ data
for 0.5 6 z̄ 6 0.72 and extrapolating backward indicates that the line-plume virtual
origin is above the source in all cases, with values of z̄= 0.038, 0.033 and 0.040 for
the pure, forced and lazy cases respectively.
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Merging of a row of plumes or jets
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FIGURE 4. Results of integrating the unstratified jet equation (6.2). The solid straight lines
show the similarity scalings for axisymmetric (p < 1) and line (p > 1) jets. The dotted
vertical lines mark ẑ= 0.052, where p is closest to 1 for the jet.

6. Merging jets in an unstratified environment

Where the source and the environment are both of the same density, then B= 0 and
the equations represent the merging of jets. Equations (5.1) combine to show that M
is now constant and (5.1b) becomes

dV
dz
= aαM

π

f
V

(6.1)

or
dV̂
dẑ
= f

V̂
(6.2)

upon non-dimensionalising using

V =M1/2aV̂, z=
(α

π

)−1
aẑ. (6.3a,b)

If w=M1/2a−1ŵ and V̂/ŵ= Â= A/a2, then conservation of M implies that Âŵ2 = 1,
and hence a choice of p= 0.05 is sufficient to set the initial conditions in this case. It
should be noted that Â= Ā, and ẑ= z̄ apart from differences in the value of α between
the plume and jet cases.

The jet solution is shown in figure 4, and predicts a merging height of ẑ= 0.052.
Fitting a line to the V̂2 data for 0.5 6 ẑ 6 0.72 and extrapolating backward indicates
that the line-jet virtual origin is also above the source, at ẑ= 0.035.

7. Plume rise in a channel

Bush & Woods (1998, figure 2) present experimental results on the depth of a two-
dimensional outflow, resulting from plume rise from a source at the centre of the floor
of a non-rotating channel. The experimental configuration is shown in figure 5. It is
shown that as the channel becomes relatively narrower, the scaled depth of the outflow
decreases. This is attributed to the reduction in plume entrainment associated with the
influence of the channel walls on the plume flow.
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z
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h

y

FIGURE 5. The experimental configuration of Bush & Woods (1998). The diagram shows
a section along one half of the saltwater channel, of depth H and width (into the page)
a. The position y= 0 marks the channel halfway point. The freshwater plume source is at
the origin in the centre of the channel floor, and the plume produces currents flowing in
both the positive and negative y directions. Measurements of current depth h were made
at positions y>H, but always at distances greater than a from the end of the channel.

In the present notation, the predicted outflow depth scale for a wide channel is
derived by Bush & Woods (1998) by assuming that continuity implies VH = uah
and taking u ∼ (g′Hh)1/2, where VH is the half-plume volume flux at the top of the
channel of height H, a is the channel width, and u, g′H and h are the outflow speed,
reduced gravity and depth respectively. Combining these with the axisymmetric-plume
similarity solution prediction of VH ∼ B1/3H5/3 and g′H ∼ B2/3H−5/3 yields the
wide-channel depth prediction of

h
H
=C1

(
H
a

)2/3

, (7.1)

where C1 is a dimensionless constant determined experimentally. As the channel
narrows, the plume flow departs from the similarity solution and entrains less. The
experimental data show the depth to take the general form

ha2/3

H5/3
= r, (7.2)

where r is an unknown decreasing function of the aspect ratio H/a.
The model of the previous sections may be applied to this case, since the ‘plume

in an infinite row of plumes’ is also a representation of plume rise in a channel using
the method of images. This again assumes an absence of symmetry breaking by small
perturbations, and neglects any boundary-layer effects from the channel walls which
may act as a drag on the entrainment flow at the edges.

Thus, the equivalent model here takes VH = uah and u ∼ (g′Hh)1/2 as above, and
substitutes g′H = B/VH to obtain (h/a)∝ VH/(B1/3a5/3) or

ha2/3

H5/3
=C2

(α
π

)4/3 V̄H

H̄5/3
, (7.3)

where, following (5.3c),

H̄ =
(α

π

) H
a

(7.4)
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FIGURE 6. Comparison of the model output with the data of Bush & Woods (1998). The
solid line shows the pure-plume model with a proportionality constant of C2 = 1.4. The
dashed line shows the same model with an optimal virtual-origin correction incorporated.
The symbols ∗, ♦, +,A,@ and × correspond to scaled outflow-depth measurements in
channels of width 4, 6, 9, 10, 12 and 15 cm respectively. Bush & Woods (1998) indicate
an experimental error of approximately ±0.013 in the scaled depths.

and C2 is a dimensionless constant to be determined. Hence, plotting ha2/3/H5/3

against H/a for the data of Bush & Woods (1998) is equivalent to plotting
C2(α/π)

4/3V̄/z̄5/3 against z̄(α/π)−1 from the (pure) plume integration. The comparison
is shown in figure 6, where a typical value of α = 0.1 has been assumed. It may be
seen that taking C2 = 1.4 produces a satisfactory fit to the data (solid line).

Figure 6 also shows that the current-depth equivalent from the model data diverges
at very small values of z/a rather than tending to the wide-channel limit. This
divergence may be attributed to the departure of the pure-plume numerical solution
from the similarity scaling at small values of z̄, which is mainly due to the lack
of virtual-origin correction. The numerical model has an initial ‘radius’ b0 given
by b0/a ≈ 0.0159 (see table 1) at the first model level z̄1 = 0.00036. From the
axisymmetric pure-plume similarity solution b = 6αz/5 (Morton et al. 1956), the
depth of the virtual origin z̄v would be given by

z̄v + z̄1 = 5
6π

b0

a
, (7.5)

hence z̄v ≈ 0.0039. The optimal value for convergence at small z̄ is found to be z̄v ≈
0.0034, approximately 87 % of the theoretical axisymmetric-plume value (and 4 % of
the pure-plume merging height). The model data with this correction (i.e. z̄ replaced
by z̄ + z̄v) are plotted as the dashed line in figure 6. The model now tends to a
wide-channel value of approximately 0.13, which is also the best estimate of C1 by
Bush & Woods (1998). Virtual-origin correction is not discussed by Bush & Woods
(1998), so it is possible that similar issues are responsible for some of the spread in
the experimental data at low values of H/a.
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8. Conclusion

A model has been presented whereby the physical interpretation of the velocity
potential of plume entrainment flow is used to define contours of the plume–ambient
boundary. This has been applied to the case of an infinite row of plumes, represented
by line sinks, in which the velocity potential is of a known form. The plume equations
have been written in a generalised form for a boundary of arbitrary shape, and it
has been shown that an entrainment assumption is sufficient to close the resulting
equations.

Integration of the model shows it to approach the limiting forms of axisymmetric
and two-dimensional plume or jet flow below and above the merging height. The
derived merging heights are found to be lower than those observed in the merging of
two equal plumes. The model also predicts the virtual-source position of the far-field
flows. An application of the model to the case of plume rise in a channel shows that
it can be used to predict the depth of the resulting horizontal outflow satisfactorily,
for a range of channel widths and aspect ratios.

The model has been solved here using an assumption of constant α. It would also
be possible to use a more sophisticated entrainment assumption relating α to the
curvature of the plume–ambient boundary. This may be appropriate if the turbulence
structure, and hence entrainment strength, can similarly be related.
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