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Abstract
In Finance and Actuarial Science, the multivariate elliptical family of distributions is a famous and well-
used model for continuous risks. However, it has an essential shortcoming: all its univariate marginal
distributions are the same, up to location and scale transformations. For example, all marginals of the
multivariate Student’s t-distribution, an important member of the elliptical family, have the same num-
ber of degrees of freedom. We introduce a new approach to generate a multivariate distribution whose
marginals are elliptical random variables, while in general, each of the risks has different elliptical distribu-
tion, which is important when dealing with insurance and financial data. The proposal is an alternative to
the elliptical copula distribution where, in many cases, it is very difficult to calculate its risk measures and
risk capital allocation. We study the main characteristics of the proposed model: characteristic and density
functions, expectations, covariance matrices and expectation of the linear regression vector. We calculate
important risk measures for the introduced distributions, such as the value at risk and tail value at risk,
and the risk capital allocation of the aggregated risks.

Keywords: Elliptical distributions; Spherical distributions; Multi-spherical distributions; Risk measures; Tail value at risk;
Value at risk

1. Introduction
The elliptical family of distributions is well studied in the literature (Cambanis et al. 1981; Fang
et al. 1990; Landsman & Neslehova 2008; Ignatieva & Landsman 2015; Landsman et al. 2016;
2018) and commonly used by practitioners in fields ranging from Finance and Actuarial Science
to Engineering. One of the major disadvantages of the elliptical family is that for a multivariate
elliptical distribution, its univariate marginals are elliptical with the same characteristic or density
generator, that is, they preserve the same form up to the location and scale transformations. For
example, the marginal distributions of the multivariate normal and the multivariate Student’s
t-distributions are, respectively, the normal and the Student’s t-distributions with the same
degrees of freedom. Thus, there is no place for different types of marginals, which might be very
important when dealing with real data. Motivated by this problem, in this paper, we introduce
a novel multivariate family of distributions that captures the different behaviours of each of the
marginals but still preserves the symmetry inherent to the elliptical family and convenient geo-
metric representation. The elliptical copula is another candidate for the modelling of a random
vector with different elliptical marginals; however, it is relatively difficult for calculations when
dealing with risk measures.
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In section 2, we present the multi-spherical distribution, which is a natural extension of the
spherical distributions for spheres with different radii. In section 3, we extend the presented dis-
tributions into the family of multi-elliptical (ME) distributions that contain a vector of location
parameters and a scale matrix that leads to a specific covariance matrix of the family. Section 4 is
devoted to the special members of the proposed distributions and section 5 provides calculations
of risk measures in the context of this family as well as Tail Conditional Expectation (TCE) based
capital allocation. A numerical illustration is given in section 6. Section 7 offers a conclusion to
the paper.

Number of authors also suggested some generalisations of elliptical families. In the special
section 3.1, we discuss these generalisations and compare them with ME family of distributions.

2. Extension of the Multivariate Elliptical Distributions with Different Elliptical
Marginals

Let U(n) be n-variate random variable uniform on the unit sphere Sn−1 and r= (r1, ..., rn)T be a
vector of non-negative random variables.

Define

Z= r ◦U(n)=

⎛
⎜⎜⎜⎝
U1r1
U2r2
· · ·
Unrn

⎞
⎟⎟⎟⎠ (1)

where vectorsU(n) and r are supposed to be independent and symbol ◦ is the Hadamard product.
Notice that stochastic representation (1) is more general than that suggested in Fang et al. (1990),
equation (2), where it is supposed that all random variables r1, r2, ..., rn are equal. Further consid-
ering (1) we, without loss of generality, choose the first component r1 as a basis component and
we represent the other components of vector r as a scale mixture of the first as follows ri = r1 ri

r1 =
r1Vi i= 2, ..., n. Then,

Z=
(

r1
r1V

)
◦U(n) =

(
r1U1

r1V ◦U2

)
(2)

where V= (V1,V2, ...,Vn−1)T is a vector of (n− 1) non-negative random variables. Notice that
nor r1 neither V do not depend on vector U(n).

Let �n be a class of functions ψ(t): [0,∞)→R such that function ψ(
∑n

i=1 t2i ) is an
n-dimensional characteristic function (Fang et al. (1990); Landsman &Valdez (2003); and others).
It is clear that

�n ⊂�n−1 · ·· ⊂�1

Function from the introduced class we call characteristic generator.
Emphasise again that we have chosen the first component as a basis component arbitrarily and

that in a special case when vector V is the vector of (n− 1) ones, that is,

Z∗ = r1U(n) =
(
r1U1
r1U2

)
we conclude that Z∗ has a characteristic function:

ϕZ∗ (λ)=E

(
exp
{
iλTZ∗})=ψ(λTλ)

where λ is a vector in R
n. We can say that Z∗ has a spherical distribution with characteristic

generatorψ(t) and write Z∗ ∼ Sn(ψ). In fact, the random radius r1 acts on all components ofU(n)

equally.
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Another picture can be observed with Z, defined by (2). The components of vector U(n)

are multiplied by different random radii ri = r1Vi−1, i= 2, ..., n, where the random variables
Vi, i= 1, ..., n− 1 may be independent, dependent, or may even coincide with a constant.

Definition 1 The distribution of Z, having the stochastic representation (2), is called a multi-
spherical distribution with characteristic generator ψ and denoted by Z∼ MSn(ψ , fV), where fV is
the density of vector V.

Theorem 1 The characteristic function of the multi-spherical distribution Z∼ MSn(ψ , fV) takes the
following explicit form:

ϕZ (λ)=EV
(
ψ
(
λT�Vλ

))
where�V is a diagonal matrix:

�V = diag
(
1,V2

1 , ...,V
2
n−1
)

Proof.Using the properties of the conditional expectation and taking into account that ψ(t) is the
characteristic generator of the elliptical random vector Z∗, we can write

ϕZ (λ)=E

(
exp
{
iλTZ
})

=E

(
exp
{
iλT(U1r1,U2r1V1, ...,Unr1Vn−1)T

})
=EV
(
E

[
exp
[
iλT (Z|V)

]])
=EV
(
E[ exp
[
iλT

VZ∗])
=EV
(
ψ
(
λT
VλV
))

where

λV = (λ1, λ2V1, ..., λnVn−1)
T

which leads to the equality λT
VλV = λT�Vλ, with the diagonal matrix �V = diag(1,

V2
1 , ...,V

2
n−1). Finally, we conclude that ϕZ (λ)=EV

(
ψ
(
λT�Vλ

))
.

If the density generator g(n) of Z∗ exists and moreover, if the condition∫ ∞

0
xn/2−1g(n)(x)dx<∞

holds, the pdf of Z∗ is given by:

fZ∗ (z)= cng(n)
(
1
2
zTz
)

where

cn = � (n/2)
(2π)n/2

[∫ ∞

0
xn/2−1gn(x)dx

]−1
(3)

For more details, please see Landsman & Valdez (2003). So, fZ(z|V)= cng(n)(zT�−1
V z)/

n−1∏
i=1

Vi,

where�−1
V = diag(1,V−2

1 , ...,V−2
n−1). Then, the density is given by:
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fZ (z)=EV

⎛
⎜⎜⎜⎜⎜⎝

cn
n−1∏
i=1

Vi

g(n)
(
1
2
zT�−1

V z
)
⎞
⎟⎟⎟⎟⎟⎠

and we write Z∼ MSn(g(n), fV).

Theorem 2Assume Z∼ MSn(ψ , fV). Then, the first component Z1 is independent of the Z−1 =
(Z2, ..., Zn) iff ψ(t)= exp (− ct), c> 0. This implies that Z1 is normal. In the latter case, if
V1, ...,Vn−1 are independent, the vector Z consists of independent components.

Proof. As λT�Vλ= λ21 +	n
j=2V

2
j−1λ

2
j , we have

ψ
(
λ2
1 +	n

j=2V
2
j−1λ

2
j

)
=ψ
(
λ2
1
)
ψ
(
	n

j=2V
2
j−1λ

2
j

)
(4)

iff Z1 is independent of Z−1. On the other hand, equation (4) is the well-known second
Cauchy functional equation, which has the only continuous solution ψ(t)= exp (± ct), c> 0
(see Efthimiou 2010, Section 5.2) but as ψ( ct

2

2 ) is a characteristic function, |ψ( ct22 )| ≤ 1 and so
ψ(t)= exp (− ct), that is, Z1 is normally distributed. Now assume that ψ(t)= exp (− ct) and
V1, ...,Vn−1 are independent, then

EV
(
ψ
(
	n

j=2V
2
j−1λ

2
j

))
=EV

⎛
⎝ n∏

j=2
ψ
(
V2
j−1λ

2
j

)⎞⎠=
n∏
j=2

EV
(
ψ
(
V2
j−1λ

2
j

))

2.1 Marginal characteristic functions and density distributions
The marginality of multivariate distributions is an essential property that should be consid-
ered. For example, it is well known that the marginal of a normal distribution is also a
normal distribution. To obtain a marginal one-dimensional characteristic function, consider
λ = (0, ...0, λ, 0, ..., 0)T , where λ stands in the i-th place. Then,

ϕZ (λ)= ϕZi (λ)=EVi−1

(
ψ
(
V2
i−1λ

2)) , i= 1, ..., n− 1,V0 = 1

We observe that the characteristic function of Zi depends on λ2, that is, Zi is a unidimensional
spherical distribution, but its characteristic generator depends on the distribution of Vi−1. The
density of Zi, which is recall a marginal of vector Z, is equalled

fZi (z)= c1EVi−1

(
V−1
i−1g

(1)

(
1
2

z2

V2
i−1

))

where g(1) is the density generator of a one-dimensional elliptical variable corresponding to the
density generator g(n) and c1 can be obtained from (3) setting n= 1. From these expressions, it
follows that one-dimensional marginal random variables are elliptical but have different char-
acteristic and density generators, being the scale mixtures of the primary marginal elliptical
distributions.
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3. The ME Family of Distributions
Let	 be positive definite matrix. Taking the scale and location transformation of the standardMS
random vector Z:

X= μ +	1/2Z (5)

the characteristic function and the pdf of X take the following forms, respectively:

ϕX (λ)= eiλ
Tμ

EV
(
ψ
(
λT	1/2�V	

1/2λ
))

(6)

and

fX (x)=EV

⎛
⎜⎜⎜⎜⎜⎝

cn

|	|1/2
n−1∏
i=1

Vi

g(n)
(
1
2
(x−μ)T 	−1/2�−1

V 	−1/2 (x−μ)

)
⎞
⎟⎟⎟⎟⎟⎠ (7)

where μ ∈R
n, and |	| is the determinant of matrix	.

Definition 2 Distribution of vector X having characteristic function (6) and density function (7)
is called a ME distribution and denoted by X∼ MEn(μ,	V,ψ , fV) (in terms of characteristic gen-
erator) or X∼ MEn(μ,	V, g(n), fV) (in terms of density generator). Here 	V =	1/2�V	1/2 and
fV is the pdf distribution of vector V.

Theorem 3 The linear transformation of a ME random vector X is again a ME random vector, that
is, this property exhibited by the elliptical family is preserved also for ME family.

Proof. Let X∼ MEn(μ,	V,ψ , fV). Then, its characteristic function has the form (6), and thus for
Y= BX+ b, where B ism× n rectangular matrix and b is am-dimensional vector:

ϕY (λ)= exp (iλTb)ϕX
(
BTλ
)

= exp (iλT(Bμ + b))EV
(
ψ
(
λTB	1/2�V	

1/2BTλ
))

This implies that

BX+ b∼ MEm
(
Bμ+ b, B	VBT ,ψ , fV

)
or, in the term of the density generator:

BX+ b∼ MEm
(
Bμ+ b, B	VBT , g(m), fV

)
(8)

Define by�0 a diagonal matrix of expectations of vector V:

�0 = diag
(
1,EV2

1 , ...,EV
2
n−1
)

Theorem 4 The expectation and covariance matrix of X∼ MEn(μ,	V,ψ , fV) are given by:

E (X)= μ

and

cov (X)= −2ψ ′(0) ·	1/2�0	
1/2

respectively.
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Proof. From the expressions of the characteristic and density functions of X provided in (6) and
(7), it follows that E (X|V)=μ, and cov(X|V)= −2ψ ′(0) ·	1/2�V	1/2. Taking the expectation
with respect to random V provides

cov (X)= −2ψ ′(0)EV
(
	1/2�V	

1/2)= −2ψ ′(0)	1/2
EV(�V)	1/2

and concludes the proof.

For ψ(t)= exp (− 1
2 t), we have a normal distribution of X|V, and 2ψ ′(0)= −1. In Landsman

& Valdez (2003), the authors observed that −ψ ′(0)= σ 2
Z∗
1
is the variance of univariate marginal

of the elliptical vector Z∗. There, the authors provided σ 2
Z∗
1
for many different members of an

elliptical family. Suppose now that X is partitioned, that is, XT = (XT
1 XT

2 ), where XT
1 and XT

2 are
subvectors of XT . Then, vector μT = (μT

1 ,μT
2 ) and matrix:

	v =
(
	v,(11) 	v,(12)

	v,(21) 	v,(22)

)

have the corresponding partitions. AlthoughME family does not preserve the regression property
as elliptical family does, however, the properties of ME family based on its representations allow
to have an attractive form for the regression expectation vector.

Theorem 5 For linear regression vector, the expectation is given by:

E(X1|X2 = x2)= μ1 +
∫
Rn−1+

	v,(12)	
−1
v,(22)fV(v)dv · (x2 − μ2)

where Rn−1+ = [0,∞)× · · · × [0,∞) n-1 times.

Proof. Define R D=X1|X2 = x2. Then, from Theorem 2.18 (Fang et al. 1990) follows that

E( exp
(
iλT

1 R|V=v
)

= exp
(
iλT

1 μ1

)
exp
(
iλT

1	v,(12)	
−1
v,(22) (x2 − μ2)

)
ψq(x2)
(
λT
1	v,(11.2)λ1

)
where q(x2)= (x2 − μ2)T	−1

v,(22)(x2 − μ2), where the definition of ψa2 ( · ) can be found in equa-
tion (2.5) on p. 29 of the cited book. See also the relevant discussion given after equation (2.42),
p. 45 of this book. Then, the characteristic function of R is given:

ϕR(λ1)=
∫
Rn−1+

E( exp
(
iλT

1 R|V=v
)
fV(v)dv

= exp
(
iλT

1 μ1

) ∫
Rn−1+

exp
(
iλT

1	v,(12)	
−1
v,(22) (x2 − μ2)

)
ψq(x2)
(
λT
1	v,(11.2)λ1

)
fV(v)dv

From this immediately follows that

∇ϕR(λ1)= iμ1 exp
(
iλT

1 μ1

)
+ i
∫
Rn−1+

	v,(12)	
−1
v,(22) (x2 − μ2) exp

(
iλT

1	v,(12)	
−1
v,(22) (x2 − μ2)

)
×ψq(x2)

(
λT
1	v,(11.2)λ1

)
fV(v)dv

+ λ1

∫
Rn−1+

	v,(11.2) exp
(
iλT

1	v,(12)	
−1
v,(22) (x2 − μ2)

)
(9)

×ψ ′
q(x2)

(
λT
1	v,(11.2)λ1

)
fV(v)dv
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Then, we can write

E(X1|X2 = x2)= E(R)= 1
i
�ϕR(λ1)|λ1=0 = μ1 +

∫
Rn−1+

	v,(12)	
−1
v,(22) fV(v)dv · (x2 − μ2)

We note that neither μ1 nor μ2 do not depend on v.

Remark 1 Sometimes instead of transformation (5) it is better to use transformation X= μ +
LZ, where instead of square root of matrix 	 one uses the lower triangular matrix of Cholesky
decomposition of matrix	, that is,

	 = LLT (10)

This may be explained by the fact that performing the Cholesky decomposition is easier than the
square root decomposition. The previous results can be easily corrected as follows:

ϕX (λ)= eiλ
Tμ

EV
(
ψ
(
λTL�VLTλ

))
,

fX (x)=EV

⎛
⎜⎜⎜⎜⎜⎝

cn

|	|1/2
n−1∏
i=1

Vi

g(n)
(
1
2
(x−μ)T (L−1)T�−1

V L−1 (x−μ)

)
⎞
⎟⎟⎟⎟⎟⎠

where we take into account that |L| = |LT | = |	|1/2.

Remark 2 Unlike the elliptical-based copula approach, in which we have elliptical marginals, the
proposed approach given in this paper provides important properties much similar to the stan-
dard elliptical family of distributions such as the closeness to affine transformations and gives a
natural extension of the elliptical family into a multivariate symmetric distribution with different
elliptical density generators. We point out that there is no direct link between the copula approach
and the ME distributions, since the distribution function of the later one is based on expectations
of the elliptical density function, unlike copula, which is a function of the elliptical distribution
functions.

Remark 3 Multivariate elliptical distribution can be simulated straightforwardly. First given den-
sity fV, we simulate the realisation of random vectorV= (V1, ...,Vn−1)T . Further given realisation
of V, we simulate the realisation of elliptical vector X∼ En(μ,	V, g(n)). Repeating this process N
times, we obtain N realisations of ME vector MEn(μ,	V, g(n), fV).

3.1 A brief review of existed generalisations of the elliptical families
Frahm (2004) introduces the generalised elliptical distributions which take the traditional form:

X d= μ + R�U(k) ∈R
n, n≥ 1

where unlike elliptical distribution, the random R may also obtain negative values. Here U(k) is a
k-variate, 1≤ k≤ n, random vector that is uniformly distributed, and� is some n× k real matrix.
Note that Frahm’s generalised elliptical distributions have the same disadvantages as the classical
elliptical distributions: its marginal distributions preserve the same form up to the location and
scale transformations.

In Fang et al. (2002), the authors introduced the meta-elliptical distributions, which are defined
by a copula of elliptically distributed random variables that generates, for example, multivariate
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non-symmetric distributions. We note that the ME distributions essentially differ from meta-
elliptical distributions. The latter uses the copula approach and is notoriously cumbersome and
does not preserve the geometric representation inherent for elliptical distributions. In particu-
lar, meta-elliptical distributions do not preserve the important properties of elliptical distribution
such as, for example, the linear transformation (see Theorem 3) preserving by ME distributions
but not preserving by meta-elliptical.

In Ollila & Koivunen (2004), the authors introduce complex random vectors that possess
elliptical distributions, extending the standard elliptical random vectors into the complex plane.

In Gomez et al. (2007), the authors extend the multivariate slash normal distribution into the
multivariate slash elliptical distributions, which is defined by a stochastic representation as to the
scale mixture of elliptically distributed random variables with respect to the power of a uniform
random variable. In particular, an n-variate random vector X has a slash elliptical distribution if
it can be represented by Y = μ +	1/2 Z

ζ 1/q
where ζ ∼ exp (2), q> 0 and Z is an n-variate spheri-

cal random vector with density generator g(n). The slash elliptical distributions are an interesting
generalisation of the normal distribution. However, unlike the proposedME distribution, the slash
elliptical distribution is not closed under affine transformation. They also possess the same disad-
vantage of elliptical distribution: they preserve the same form of univariate marginal distributions
up to the location and scale transformations.

For arranging the flexible tail behaviour of anymultivariate radial direction, an interesting gen-
eralisation of elliptical distribution was suggested in the paper by Kring et al. (2009). However, this
distribution also does not preserve the linear transformation (see Theorem 3), which is important
when dealing with financial returns and risks.

Comparing the proposed ME family of distributions with other extensions of the elliptical
family of distributions, we observe that our proposal provides a suitable scheme for modelling
loss distributions since while dealing with symmetric loss marginal distributions, which appeared
quite often in financial losses, we also have multivariate symmetric distribution unlike the previ-
ous suggested families such as the generalised elliptical distributions that also includes skewed
distributions such as the asymmetric Student’s t-distribution. Moreover, our proposed family
of distributions is obtained explicitly by knowing the marginal distributions, without additional
assumptions about their dependence structure, as appearing in copulas or copula-like distribution
functions. We suggest an alternative approach that has some convenient properties allowing to
obtain explicit formulas for the tail value at risk (TVaR) of the components and their sum. In this
paper, we introduce a multivariate family of distributions that captures the different behaviours of
each of the marginals but still preserves the symmetry inherent to the elliptical family and conve-
nient geometric representation. The proposal is based on a different distribution of radius of each
elliptical component.

4. The Normal-ME Distribution
Assume g(n)(u)= e−u, the characteristic function is

ϕX (λ)= eiλ
Tμ

EV

(
exp
(

−1
2
λT	1/2�V	

1/2λ

))
and the pdf is given by:

fX (x)=EV

⎛
⎜⎜⎜⎜⎜⎝

1

(2π)n/2|	|1/2
n−1∏
i=1

Vi

exp
(

−1
2
(x−μ)T 	−1/2�−1

V 	−1/2 (x−μ)

)
⎞
⎟⎟⎟⎟⎟⎠ (11)
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Then,

ϕX1
(λ)= eiλ1μ1 exp

(
−1
2
σ11λ

2
)

meaning that X1 ∼N(μ1, σ11). The first univariate marginal distribution is normal. However, the
other univariate marginals have different distributions that are distinct from the normal. The
characteristic function of Xi, i= 2, .., n is

ϕXi
(λ)= eiλμiEVi−1 exp

(
−1
2
σiiV2

i−1λ
2
)

and the pdf is

fXi(x)=EVi−1

(
1√

2π√
σiiVi−1

exp

(
−1
2
(x−μi)2

σiiV2
i−1

))
(12)

It can be seen from (12) the distribution of each marginal Xi is elliptical with the density generator
that is a scale mixture of a normal density generator, and the mixing distributions are different for
any i= 2, ..., n. It can be also noticed that the class of such mixtures is rather rich.

The normal-ME family of distribution has an attractive representation of its density by the
moment generating function (mgf) of some (n− 1)-variate vector of positive components. To
show this consider (n− 1)-variate vector U= (V−2

1 , ...,V−2
n−1)

T = (U1, ...,Un−1)T with density of
the form:

fU(u1, ..., un−1)= c√√√√n−1∏
i=1

ui

fU∗(u1, ..., un−1) (13)

where fU∗( · ) is some n− 1 variate density function such that∫ ∞

0
· · ·
∫ ∞

0︸ ︷︷ ︸
n−1

1√√√√n−1∏
i=1

ui

fU∗(u1, ..., un−1)du1 · · · dun−1 = 1/c<∞

Theorem 6 Suppose, for simplicity, μ = 0,	 = In, where In is n−dimensional identity matrix.
Then,

fZ (z1, .., zn)= 1√
2π

exp
(

−1
2
z21
)

c
(2π)(n−1)/2MU∗

(
−1
2
(z−1 ◦ z−1)

)
where z−1 = (z2, ..., zn)T , and MU∗( · ) is a mgf of vector U∗.

Proof. From (7), we write

fZ(z1, .., zn)= 1
(
√
2π)

exp
(

−1
2
z21
) ∫ ∞

0
· · ·
∫ ∞

0︸ ︷︷ ︸
n−1

1
(2π)(n−1)/2

×
√√√√n−1∏

i=1
ui exp
(

−1
2
(z−1 ◦ z−1)

T un−1

)
fU (un−1) dun−1

= 1√
2π

exp
(

−1
2
z21
)

c
(2π)(n−1)/2MU∗

(
−1
2
(z−1 ◦ z−1)

)
(14)

where un−1 = (u1, ..., un−1)T , dun−1 = du1 · · · dun−1.
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4.1 Themulti-Student family of distributions
Let us demonstrate the n-variateME distribution in which the first univariate marginal is a normal
and the other univariate marginals are Student’s t-distributions with different degrees of freedom.

We choose U∗ having the multivariate gamma-type distribution which was introduced in
Krishnamoorthy & Parthasarathy (1951), Section 4. This distribution has mgf:

MU∗(s)=
n−1∏
i=1

(1− si)−vig(β1, ..., βn−1)−v (15)

where v1> 0, ..., vn−1 > 0, v> 0, βi = si/(1− si), i= 1, .., n− 1 and g(β1, ..., βn−1) is determinant:

g(β1, ..., βn−1)= det

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −ρ12β2 · · · −ρ1n−1βn−1

−ρ12β1 1 · · · −ρ2n−1βn−1
· · · ·
· · · ·
· · · ·

−ρ1n−1β1 −ρ2n−1β2 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎠ (16)

constructed by ρij, i, j= 1, .., n− 1, being elements of some (n− 1)× (n− 1) correlation matrix.
From expression (15), it immediately follows that mgf of univariate vector is

MU∗
i
(si)= (1− si)−vi (17)

that is, the marginal element U∗
i actually has a gamma distribution with a shape parameter vi. In

the following Theorem, we clarify the role of coefficients ρij, i, j= 1, ..., n− 1, of matrix in (16).

Theorem 7 The correlation between elements U∗
i ,U∗

j is equal:

corr
(
U∗
i ,U

∗
j

)
= vρ2ij√vivj

, i, j= 1, ..., n− 1 (18)

Proof. We recall the well-known Leibniz formula for calculating the determinant of matrix
A= (aij)n−1

i,j=1:

det (A)=
∑
α∈Sn−1

sign(α)
n−1∏
i=1

aiαi

where the sum is computed over all permutations α of the set {1, ..., n− 1}. Applying this formula
to the matrix in (16), we can write that

g(β1, ..., βn−1)= 1−
n−1∑
i,j=1
i<j

ρ2ijβiβj − c1ρ12ρ13ρ23β1β2β3 (19)

± · · · ± ρ21,n−1ρ
2
2,n−1 · · · ρ2n−2,n−1β1β2 · · · βn−2

Recalling that βi = si/(1− si), we can write from (19) that

∂2g(β1, ..., βn−1)
∂si∂sj

|s1 = 0, ..., sn−1 = 0 = −ρ2ij (20)

i, j= 1, ..., n− 1, i �= j
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Then, using equality (20):

cov(U∗
i ,U

∗
j )=

∂2

∂si∂sj
lnMU∗(s) |s1 = 0, ..., sn−1 = 0

= vρ2ij
Taking into account that it follows from (17) that Var(U∗

i )= vi, i= 1, ..., n− 1, and we immedi-
ately obtain (18).

Let us now return to calculating the normal-multi-Student density based on the dependence
structure generated by multivariate distribution of vectorU∗. Substituting (15) into equation (14)
of Theorem 6, we obtain

fZ(z1, .., zn)= 1√
2π

exp
(

−1
2
z21
)

× c
(2π)(n−1)/2

n∏
i=2

(
1+ 1

2
z2i
)−vi

g

(
1
2z

2
2

1+ 1
2z

2
2
, ...,

1
2z

2
n

1+ 1
2z2n

)−v

(21)

One can see that Z1 is a normal random variable, which is independent on (Z2, ..., Zn)T , and
(Z2, ..., Zn)T is a (n− 1)-variate dependent random vector with univariate marginals having
Student’s t-distributions with m1 = 2v2 − 1, ..., mn−1 = 2vn − 1 degrees of freedom, respectively.
The statement about marginal distribution of Zi follows after substituting − 1

2z
2
i into the marginal

mgf of U∗ given in (17) for any i= 2, ..., n, respectively. When all ρij = 0, i, j= 1, .., n− 1, Z2, ...,
Zn are independent.

4.1.1 Special case, n= 3
The determinant in (16) is

g(β1, β2)= det

(
1 −ρ12β2

−ρ12β1 1

)
= 1− ρ212β1β2 (22)

and themoment generating function of a generalised bivariate gamma-type distribution from (15)
has a form:

MU∗(s)= (1− s1)−v1 (1− s2)−v2

(
1− ρ212s1s2

(1− s1)(1− s2)

)−v

recall v1, v2, v> 0. From Theorem 7, it follows that the correlation coefficient:

corr
(
U∗
1,U∗

2
)= vρ212√v1v2

This distribution was considered in Van Dan Berg et al. (2013). Now from (21) and (22), we can
write the three-variate symmetric density of Z:

fZ (z1, z2, z3)= 1√
2π

exp
(

−1
2
z21
)

× c
2π

(
1+ 1

2
z22
)−v1 (

1+ 1
2
z23
)−v2
(
1− ρ212z

2
2z

2
3

4
(
1+ 1

2z
2
2
) (

1+ 1
2z

2
3
)
)−v

(23)

One can see again that Z1 is a normal random variable, which is independent of (Z2, Z3)T , and
(Z2, Z3)T is a bivariate-dependent random vector, whose marginals are Student’s t-distributions
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Figure 1. Density of multi-Student family of distributions with different and equals marginal degrees of freedom.

with m1 = 2v1 − 1 and m2 = 2v2 − 1 degrees of freedom, respectively, and 0≤ ρ212 < 1 is a mea-
sure of dependence. The statement about marginal Student’s t-distribution of Zi follows after
substituting − 1

2z
2
i into the marginal mgf of U∗ given in (17) for i= 2, 3. When ρ12 = 0, Z2 and Z3

are independent.
Now we show how to calculate the constant c using another method that was proposed in (13).

In fact, we have to evaluate

I =
∫ ∞

0

∫ ∞

0

(
1+ 1

2
z22
)−v1 (

1+ 1
2
z23
)−v2
(
1− ρ212z

2
2z

2
3

4
(
1+ 1

2z
2
2
) (

1+ 1
2z

2
3
)
)−v

dz2dz3

After changing variables: {
z2 = √

2 tan
(
arcsin

√
x
)

z3 = √
2 tan
(
arcsin√y

)
we get

I = 1
2
π

�(p+ 1)�(q+ 1)
�(p+ 3/2)�(q+ 3/2) 3F2

(
1
2
,
1
2
, r; p+ 3

2
, q+ 3

2
; ρ212
)

(24)

where 3F2(a1, a2, a3; b1, b2; z) is the generalised hypergeometric function, and p= v1 − 3/2, q=
v2 − 3/2, r = v. The integral in (24) was evaluated using the WolframAlpha computational
package. Therefore, the constant c in density (23) is equal to:

c= 2π/(4I)= �(v1)�(v2)
�
(
v1 − 1

2
)
�
(
v2 − 1

2
) 3F2 (12 , 12 , v; v1, v2; ρ212

)−1

Recall that pFq(a1, ..., ap; b1, ..., bq; z) is a generalised hypergeometric function of z with p param-
eters of type 1 and q parameters of type 2 (see, e.g. Masjed-Jamei & Koepf 2019, equation (2)). In
Figure 1, we provide a graph of the densities of a “multi-Student” vector Z−1 = (Z2, Z3)T , with
different and equals marginal degrees of freedoms, respectively
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4.1.2 Special case, n= 4
We consider the case of a normal-multi-Student distribution when n= 4. The determinant in (16)
is equal to:

g(β1, β2, β3)= det

⎛
⎜⎝ 1 −ρ12β2 −ρ13β3

−ρ12β1 1 −ρ23β3
−ρ13β1 −ρ23β2 1

⎞
⎟⎠

= 1− ρ212β1β2 − ρ213β1β3 − ρ223β2β3 − 2ρ12ρ13ρ23β1β2β3
Then, from (21), we can write the density of four-variate symmetric density of Z:

fZ (z1, z2, z3, z4)= 1√
2π

exp
(

−1
2
z21
)

c
(2π)3/2

(
1+ 1

2
z22
)−v1 (

1+ 1
2
z23
)−v2 (

1+ 1
2
z24
)−v3

×
(
1− ρ212z

2
2z

2
3

4
(
1+ 1

2z
2
2
) (

1+ 1
2z

2
3
) − ρ12ρ13ρ23z22z

2
3z

2
4

4
(
1+ 1

2z
2
2
) (

1+ 1
2z

2
3
) (

1+ 1
2z

2
4
)

− ρ213z
2
2z

2
4

4
(
1+ 1

2z
2
2
) (

1+ 1
2z

2
4
) − ρ223z

2
3z

2
4

4
(
1+ 1

2z
2
3
) (

1+ 1
2z

2
4
)
)−v

Again we see that that Z1 is a normal random variable, which is independent on (Z2, Z3, Z4)T ,
and (Z2, Z3, Z4)T is a three-variate dependent random vector, whose marginals are Student’s t-
distributions withm1 = 2v1 − 1,m2 = 2v2 − 1 andm3 = 2v3 − 1 degrees of freedom, respectively.
From Theorem 7, it follows that

corr
(
U∗
i ,U

∗
j

)
= vρ2ij√vivj

, i, j= 1, 2, 3, i �= j

When ρ12 = 0, ρ13 = 0 and ρ23 = 0, Z2, Z3 and Z4 are independent. When only ρ13 = 0 and ρ23 =
0, Z4 is independent on vector (Z2, Z3).

4.2 Examples of application Theorem 6 not related to distribution (21)
Example 1 Suppose that U∗ has the bivariate exponential distribution proposed in Balakrishna &
Shiji (2014), where the moment generation function is

MU∗(s)= λ

λ− s1

⎛
⎜⎝ β

β − s2
(

λ
λ−s1

)α
⎞
⎟⎠

where λ> 0 and β > 0 are scale parameters of the marginal exponential distributions, 0<α < 1
is measure of dependence. Then, using (14), we can write the density of Z:

fZ (z1, z2, z3)= 1√
2π

exp
(

−1
2
z21
)

c
2π

MU∗

(− 1
2z

2
2

− 1
2z

2
3

)
,

= 1√
2π

exp
(

−1
2
z21
)

c
2π

(
1+ 1

2λ
z22
)−1
(
1+ 1

2
z23
β

(
1+ 1

2λ
z22
)−α)−1

One can see that Z1 is again a normal random variable, which is independent on (Z2, Z3)T ,
and (Z2, Z3)T is a bivariate-dependent Cauchy distribution, whose marginals are Cauchy with
different scale parameters λ and β . When α ↓ 0, (Z2, Z3)T becomes independent.
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Example 2 Suppose that U∗ has a bivariate χ2 distribution with m degrees of freedom proposed
in Natarajah (2010), where the moment generation function of U∗ is

MU∗(s)=
(

1− ρ2

(1− 2s1(1− ρ2))(1− 2s2(1− ρ2))− ρ2

)m/2
Then, again using (14), we write the density of Z :

fZ (z1, z2, z3)= 1√
2π

exp (− 1
2
z21)

c
2π

MU∗

(− 1
2z

2
2

− 1
2z

2
3

)
,

= 1√
2π

exp
(

−1
2
z21
)

c
2π

(
1− ρ2(

1+ 2z22
(
1− ρ2
)) (

1+ z23
(
1− ρ2
))− ρ2

)m/2

One can see that Z1 is a normal random variable, which is independent on (Z2, Z3)T and (Z2, Z3)T
is a bivariate dependent χ2 distribution, whose marginals are χ2 distributions with m degree of
freedoms and ρ is measure of dependence, 0≤ ρ2 ≤ 1. When ρ = 0, Z2 and Z3 are independent.
For the case ρ2 → 1, density of (Z2, Z3)T degenerates to a constant.

5. TVaR and Allocation of the Aggregate Loss
Landsman & Valdez (2003) investigated the TVaR risk measure in the context of elliptical family.
They considered various examples of TVaR models and obtained the closed-form expression of a
natural allocation for aggregate loss. We provide a brief review of the presented results.

Consider a random variable X representing a loss of a portfolio or risk of the stock. We denote
by FX(x) the cumulative distribution function (cdf) and by F̄X(x)= 1− FX(x) the distributional
tail function. TVaR is defined as:

TVaRq(X)=E(X|X> xq) (25)
where xq represents the q-level quantile of the loss distribution, which means that FX(xq)= q. The
TVaR defined in equation (25) represents the expected loss that potentially occurs in unfavourable
scenarios.

Assume now that the random vector X∗ ∼ En(μ,�,g(n)), that is, elliptical with density gener-
ator g(n). Then, for the aggregate loss S∗ =∑n

k=1 X∗
k = 1TX∗ ∼ En(μS∗ , σ 2

S∗ , g(1)), where 1 is the
vector with n ones, μS∗ = 1Tμ, and σ 2

S∗ = 1T	1 are the expectation and the scale values of S∗.
Assume the expected value of components of vector X∗ exists, that is,

E(X∗
i )<∞ (26)

in Landsman & Valdez (2003), it was shown as:
TVaRq(S∗)=μS∗ + λS∗ · σ 2

S∗ (27)
where

λS∗ =
1
σS∗

G
(
1
2z

2
s∗q

)
1− q

(28)

with zs∗q = s∗q −μS∗
√
σS∗S∗

. Here, the following function G(x)= c1
∫∞
x g(1)(u)du was introduced in the

cited paper, whose compliment G(x)= c1
∫ x
0 g(1)(u)du was called the cumulative generator, and
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s∗q =VaRq(S∗). We note that the condition (26) guarantees the finiteness of G(x). TVaR provides
the following natural capital allocation of the aggregate loss S∗:

TVaRq(S∗)=E

(
S∗|S∗ > s∗q

)
=

n∑
i=1

E

(
X∗
i |S∗ > s∗q

)
In Landsman & Valdez (2003), the components of this allocation were also derived as follows:

E

(
X∗
k |S∗ > s∗q

)
=μk + λS∗ · σk,S∗ , for k= 1, 2, ..., n

where σk,S∗ =
n∑
j=1
σkj. Our goal is to provide the capital allocation of aggregate sum S=

n∑
j=1

Xi of

elements of ME random vector X ∼ MEn(μ,	v, g(n), fV).
Denote sq =VaRq(S) and notice that μS =μS∗ =	n

i=1μi. Assume

	1/2 =
⎛
⎜⎝
δ11 · · · δ1n

· · · · · · · · ·
δn1 · · · δnn

⎞
⎟⎠

Then,

σ v
SS = σSS|{V= v}=	n

i,j=1	
n
l=1δilδljv

2
l−1

where v0 = 1. Define

λ
(k)
S =
∫ ∞

0
v2k−1

1√
σ v
SS
G

⎛
⎝1
2

(
sq −μS√
σ v
SS

)2⎞⎠ fV(v)dv,

k= 1, ..., n

Note that

λ
(1)
S =
∫ ∞

0

1√
σ v
SS
G

⎛
⎝1
2

(
sq −μS√
σ v
SS

)2⎞⎠ fV(v)dv

and recall that	V =	1/2�V	1/2.

Theorem 8Assume X ∼ MEn(μ,	v, g(n), fV). Then

Ki =E
(
Xi|S> sq

)=μi + 1
1− q

	n
j=1	

n
l=1δilδljλ

(l)
S ,

i= 1, ..., n

Proof. For the proof, please see the supplementary material.

Remark 4 If instead of square root decomposition of matrix 	, we use Cholesky decomposition
(10) as in Remark 1, with the matrix:

L= (dij)ni,j=1,
dij = 0, j> i
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Then, using the same method shown in the proof of Theorem 8, one can obtain the TVaR-based
decomposition:

Ki =E(Xi|S> sq)=μi + 1
1− q

	n
j=1	l≤i,l≤jdildjlλ(l)S ,

i= 1, ..., n

where

σ v
SS =	n

i,j=1	l≤i,l≤jdildjlv2l−1

To illustrate the obtained results, consider the case n= 3. Then,

	 =
⎛
⎜⎝

σ 2
1 ρ12σ1σ2 ρ13σ1σ3

ρ12σ1σ2 σ 2
2 ρ23σ2σ3

ρ13σ1σ3 ρ23σ2σ3 σ 2
3

⎞
⎟⎠

As the symbol form of 	1/2 is rather cumbersome, we use Cholesky decomposition, which looks
more elegant:

L=

⎛
⎜⎜⎜⎜⎜⎝

σ1 0 0

σ2ρ12 σ2

√
1− ρ212 0

σ3ρ13 σ3
ρ23−ρ12ρ13√

1−ρ212
σ3

√
1− ρ213+ρ223−2ρ12ρ13ρ23

1−ρ212

⎞
⎟⎟⎟⎟⎟⎠ (29)

Then, the non-zero elements of matrix L are as follows: d11 = σ1, d21 = σ2ρ12, d22 =
σ2

√
1− ρ212, d31 = σ3ρ13, d32 = σ3

ρ23−ρ12ρ13√
1−ρ212

, d33 = σ3

√
1− ρ213+ρ223−2ρ12ρ13ρ23

1−ρ212
,

σ v
SS =d211 + 2d11d21 + 2d11d31 + d221 + d222v

2
1

+ 2(d21d31 + d22d32v21)+ d231 + d232v
2
1 + d233v

2
2

and

K1 =E
(
X1|S> sq

)=μ1 + 1
1− q
(
d211 + d11d21 + d11d31

)
λ
(1)
S

K2 =E
(
X2|S> sq

)=μ2 + 1
1− q

((
d11d21 + d221 + d21d31

)
λ
(1)
S + (d222 + d22d32

)
λ
(2)
S

)
K3 =E

(
X3|S> sq

)=μ3 + 1
1− q

((
d11d31 + d21d31 + d231

)
λ
(1)
S + (d22d32 + d232

)
λ
(2)
S + d233λ

(3)
S

)

6. Numerical Illustration
In this section, we show how the portfolio decomposition with TVaR can be provided numerically
in the case of the ME family. We assume that X∼ ME3(μ,	V, g(3), fV), where g(3)(u)= exp (− u)
and fV is such as in Example 4.1.1. In other words, the density has the form:

fX(x)=
1

|	|1/2 fZ(L
−1(x− μ)) (30)
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where fZ(z) is given in (23). Recall that the lower triangle matrix of Cholesky decomposition has
form (29), we can write that determinant of L, |L| = σ1σ2σ3

√
1− ρ2123 = |	|1/2, and

L−1 =

⎛
⎜⎜⎜⎜⎜⎝

1
σ1

0 0

− 1
σ1

ρ12√
1−ρ212

1
σ2
√
1−ρ212

0

− ρ13−ρ12ρ23
σ1
√(

1−ρ2123
)√(

1−ρ212
) − (ρ23−ρ12ρ13)

σ2
√(

1−ρ2123
)√(

1−ρ212
) 1

σ3

√
1−ρ212
1−ρ2123

⎞
⎟⎟⎟⎟⎟⎠

where ρ2123 = ρ212 − 2ρ12ρ13ρ23 + ρ213 + ρ223. Then,

fX(x)= 1
|	|1/2

c
(2π)3/2

exp

(
−1
2
(x1 −μ1)2

σ 2
1

)

×
(
1+ 1

2
(
1− ρ212

) (−ρ12 (x1 −μ1)
σ1

+ (x2 −μ1)
σ1

)2)−v1

×

⎛
⎜⎜⎜⎜⎜⎝
1+ 1

2
(
1−ρ2123

)
(
(ρ13−ρ12ρ23)√(

1−ρ212
) (x1−μ1)

σ1
+ (ρ23−ρ12ρ13)√(

1−ρ212
) (x2−μ2)

σ1

−
√

1−ρ212
1−ρ2123

(x3−μ3)
σ3

)2

⎞
⎟⎟⎟⎟⎟⎠

−v2

×
(
1− ρ212z

2
2z

2
3

4
(
1+ 1

2z
2
2
) (

1+ 1
2z

2
3
)
)−v

, 0≤ β ≤ 1

where z2 =
(

− ρ12
(x1−μ1)
σ1

+ (x2−μ1)
σ1

)
/

√(
1− ρ212

)
and z3 =

(
− (ρ13−ρ12ρ23)√(

1−ρ212
) (x1−μ1)

σ1
−

(ρ23−ρ12ρ13)√(
1−ρ212
) (x2−μ2)

σ1
+
√

1−ρ212
1−ρ2123

(x3−μ3)
σ3

)
/

√(
1− ρ2123

)
.

Now we assume thatm1 = 2,m2 = 3, v= 2.5, ρ212 = 0.879, μ = (5, 3, 7)T and

	 =
⎛
⎜⎝

1.33 −0.067 2.63
−0.067 0.25 −0.50
2.63 −0.50 5.76

⎞
⎟⎠

Then,

L=
⎛
⎜⎝

1. 153 3 0 0
−5. 809 6× 10−2 0.496 61 0

2. 280 5 −0.740 04 0.108 03

⎞
⎟⎠

and portfolio decomposition is given in the Table 1.
One can see that even for aggregate risk with components having different shapes of distri-

butions, the TVaR-based capital allocation can be computed numerically. When investigating
portfolio risks, we show that ME family allows to naturally decompose total risk into the sum
of individual risks of the portfolio constituents. This turns out to be particularly meaningful in

https://doi.org/10.1017/S1748499521000038 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499521000038


Annals of Actuarial Science 23

Table 1. TVaR-based capital allocation of aggregate risk

Observations Marginals Degrees of freedom λi Ki = E(Xi|S> sq)

X1 Normal ∞ 0.061 6.627
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X2 Student’s t 3 0.122 3.604
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X3 Student’s t 5 0.041 7.009
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

S Sum of ME TCE(S)= 17.240

practice, when one is interested in computing capital requirements for each institutional busi-
ness line, whereas business lines are assumed to be correlated and allocate the contribution of
individual risks to the aggregate risk.

Alternatively, one might be interesting in the problem of optimal portfolio selection (OPS)
using TVaR. Landsman & Makov (2011) have shown that the elliptical family is very convenient
for the solution of this problem using TVaR and not only TVaR, but any translation invariant and
positive-homogeneous risk measure, where TVaR is a main representative, because OPS problem
reduces to the linear plus square root quadratic functionals. In the case of ME family of distribu-
tions, which is more complicated case, the mentioned phenomenon still can be used conditionally
of vector V with further averaging the result with respected probability measure having density
fV. The details will be developed in the future research.

7. Conclusion
We proposed a ME family of distributions that generalises the elliptical family of distributions.
In particular, the proposed model allows each of the elliptical random variables to have different
characteristic (or density) generators and is based on a different distribution of the radius of each
elliptical component. We investigated and calculated the covariance structure of this family and
provided an expectation of the linear regression vector. As special cases, we offer a multi-Student
subfamily of distributions and several notable examples. We investigated the problem of capital
allocation of the aggregate sum of the components of this family to obtain the analytic form of
this allocation based on a TVaR risk measure. We also presented a numerical illustration of the
obtained results.
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