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ELLOÁ B. GUEDES , F. M. DE ASS IS , and BERNARDO LULA JR.

IQuanta – Institute for Studies in Quantum Computation and Information,

Federal University of Campina Grande,
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There are advantages in the use of quantum computing in the elaboration of attacks on

certain pseudorandom generators when compared with analogous attacks using classical

computing. This paper presents a polynomial time quantum attack on the Blum–Micali

generator, which is considered secure against threats from classical computers. The proposed

attack uses a Grover inspired procedure together with the quantum discrete logarithm, and

is able to recover previous and future outputs of the generator under attack, thereby

completely compromising its unpredictability. The attack can also be adapted to other

generators, such as Blum–Micali generators with multiple hard-core predicates and

generators from the Blum–Micali construction, and also to scenarios where the requirements

on the bits are relaxed. Such attacks represent a threat to the security of the pseudorandom

generators adopted in many real-world cryptosystems.

1. Introduction

A random generator is a system whose output consists of fully unpredictable numerical

sequences. Such generators are composed of two elements:

(i) a non-deterministic phenomena; and

(ii) a post-processor that compresses the sequence previously produced in order to

minimise statistical defects.

Several phenomena can be used to build random generators, including radioactive decay,

electronic noise, chemical decay and air turbulence in hard drives (van Tilborg 2005).

Random numbers produced by random generators are used in many computational

applications, such as in engineering methods and in the study and simulation of biological

processes. However, digital computers are not able to generate such sequences without the

addition of an external random generator. To overcome this limitation, an algorithmic

alternative can be adopted in the form of apseudorandom generator.

Pseudorandom generators are deterministic and recursive algorithms. They can be

viewed as a function f that produces a number xi from � previous numbers:

xi = f(xi−1, xi−2, . . . , xi−�),
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where � is called the order of the generator, and the set of values at the start of the

recursion is called the seed. A variety of pseudorandom generators have been proposed,

including congruential generators, feedback shift register generators and generators based

on cellular automata or chaotic systems (Gentle 2003).

Pseudorandom generators play an important role in cryptography. Session keys,

initialisation vectors, salts to be hashed with passwords and unique parameters in digital

signatures are all examples of the cryptographic application of pseudorandom generators.

In fact, it is generally considered that the security of well-designed cryptographic

algorithms depends crucially on the random choice of keys and bit sequences (Paar

and Pelzl 2010; Goldreich 2005).

Given the importance of pseudorandom generators to cryptography, it is a crucial task

to analyse their vulnerability against attacks in order to ensure security of the entire

cryptosystem (Paar and Pelzl 2010; Eastlake et al. 2005). The security of the pseudo-

random generators adopted in many cryptosystem is based on hypotheses of the hard-

ness of certain problems for classical computers that make it impractical to elaborate

efficient classical attacks against them (Sidorenko and Schoenmakers 2005a; Kelsey

et al. 1998; Sidorenko and Schoenmakers 2005b). This calls attention to the use of other

computational paradigms in the elaboration of attacks aiming to exploit their possible

advantages.

Quantum computing is a computational paradigm based on quantum mechanics. Several

efficient quantum computing algorithms have been proposed for problems where there is

no known polynomial-time classical computing algorithm. The most remarkable results

in this area are Grover’s and Shor’s algorithms. Grover’s algorithm (Grover 1997), also

called the quantum search algorithm, performs a search on an unsorted database with a

quadratic speedup compared with its classical counterpart. Shor’s algorithm (Shor 1997)

enables polynomial-time solutions for integer factoring and discrete logarithms. Such

results motivate the elaboration of attacks on pseudorandom generators with the aim of

verifying their vulnerability against this computational paradigm.

In this paper, we present a quantum attack on the Blum–Micali generator, which

is a cryptographically secure pseudorandom generator that has been widely adopted

in cryptosystems (Blum and Micali 1984). The proposed attack is composed of three

stages: the second stage is a Grover inspired procedure and the third stage uses Shor’s

discrete logarithm algorithm. As a result of this attack, the previous and future output of

the generator become predictable, thereby completely compromising the security of the

generator.

The attack described in this paper is not restricted to the Blum–Micali generator. There

are generalisations that extend it to compromise multiple hard-core predicates and other

generators using the Blum–Micali construction, such as the Blum–Blum–Shub (Blum

et al. 1986) and Kaliski (Kaliski 1988) generators. These generalisations also allow attacks

even when the adversary intercepts non-consecutive bits, or when there are fewer bits

than required.

The results observed indicate that speedups are achieved when the proposed attack is

compared with its classical counterpart. In a practical scenario, this means that the gains

provided by the quantum paradigm facilitate the task of reproducing the outputs of the
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generator, and this can be critical for a scenario where unpredictability is an indispensable

resource.

1.1. Organisation of the paper

We begin in Section 2 with some of the concepts underlying the Blum–Micali generator.

Section 3 describes a classical attack on this generator, and the quantum computing attack

is then described in Section 4, with an example given in Section 5. Section 6 discusses the

computational complexity of the quantum computing attack, and some generalisations of

the attack are presented in Section 7. Finally, our conclusions and suggestions for future

works are discussed in Section 8.

2. The Blum–Micali generator

The Blum–Micali generator was the first cryptographically secure pseudorandom generator

proposed in the literature. It is composed of two elements:

(i) a one-way permutation that implements the recursive function of the generator;

(ii) a hard-core predicate for the one-way permutation that produces bits that will be

output.

The security of the Blum–Micali generator is founded on the hypothesis of the hardness

of its one-way permutation, which is based on the discrete logarithm problem (Blum and

Micali 1984; Sidorenko and Schoenmakers 2005b).

Some mathematical concepts are needed in order to understand the workings of this

generator. Let p be a large prime and n = �log p� be the binary length of p. The set

�∗
p = {1, 2, . . . , p − 1} stands for the cyclic group under multiplication mod p. Let g be a

generator of �∗
p and x0 ∈R �∗

p (where a ∈R A denotes the uniformly random choice of an

element a from the set A).

The Blum–Micali generator is prepared with parameters (p,g,x0), as previously descri-

bed, where x0 is the seed of the generator. This generator produces pseudorandom bits

using the discrete logarithm one-way permutation over the domain �∗
p, and a hard-core

predicate for the permutation, denoted by δ:

xi = gxi−1 mod p (1)

bi = δ(xi). (2)

Equation (1) is called the exponential map and δ is a binary function defined by

δ(x) =

{
1 if x > p−1

2

0 otherwise.

The generator’s internal state at time i, denoted by X(i), is an ordered set containing the

seed and the values that were produced by the exponential map up to the time i, that is,

X(i) = {xi, xi−1, . . . , x1, x0} .

The value xi ∈ X(i) is the representative of the generator’s internal state at the time i. The

parameters p and g are publicly available, but the generator’s internal state, including the
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Figure 1. Diagram of the workings of a Blum–Micali generator initialised with parameters

(p = 7, g = 3, x0 = 1).
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Figure 2. Functional graph of the Blum–Micali generator (p = 7, g = 3, x = 1).

seed, must be kept secret. Only the bits output by the function δ are seen directly in the

generator’s output.

The security of this generator relies on the hardness of evaluating the inversion of the

one-way function xi+1 = gxi mod p, that is, evaluating

xi = logg(xi+1) mod p.

This is an instance of the discrete logarithm problem, and there is no known efficient

classical computing algorithm to perform this operation (Gregg 2003).

To illustrate the definition of the Blum–Micali generator, suppose it was configured

with parameter values (7, 3, 1) for p, g and x0, respectively. Figure 1 shows a diagram that

describes the evolution of its internal states and the bits output during this process.

A Blum–Micali generator can also be expressed in terms of a functional graph. A

functional graph is a digraph that respects the restriction that there is only one edge

directed out from each vertex (Cloutier and Holden 2010). This graphical representation

allows a better understanding of how this generator works, and also of its initialisation

procedures.

A functional graph of the Blum–Micali generator, denoted by G = 〈V , E〉, is a graph

whose set of vertices is given by V = �∗
p. There is an edge (x, y) ∈ E directed from the

vertex x to the vertex y if there is an exponential mapping x 	→ y (see Equation (1)). Such

an edge is labelled with the bit produced by its origin vertex, that is, with δ(x).

As an example of such a graph, consider Figure 2, which shows a functional graph

of the Blum–Micali generator initialised with parameters (p = 7, g = 3, x = 1). Vertex 1,

related to the seed, is emphasised.

From this figure, it can be seen that there are three self loops, that is, three vertices

with edges directed to themselves, and also a cycle of size 3, containing the vertices 1, 3

and 6. The vertices with self loops are called fixed points in the exponential map of the

Blum–Micali generator. The fixed points must be avoided as seeds because they always
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produce the same output. Furthermore, the choice of the seed must consider the longest

cycles in order to maximise the period of the generator.

Because of the widespread use of the Blum–Micali generator, the analysis of its

vulnerabilities against attacks is crucially important. The next section presents a classical

attack on this generator, which starts with the interception of some bits output by it.

Proofs of correctness and a complexity analysis of the attack are also provided.

3. Classical attack on the Blum–Micali generator

In this section we will describe a simple classical algorithm to attack the Blum–Micali

generator. To introduce this attack, suppose there is an adversary of the generator who

knows the public parameters p and g and has also intercepted a finite sequence of j bits,

denoted by b(j) = {bi}, where 1 � i � j. This adversary aims to retrieve the generator’s

internal state, that is, the set X(j).

To discover the generator’s internal state, the adversary must use the b(j) bits intercepted

and the information that x0 ∈ �∗
p. With the public parameters, it is possible to reconstruct

rules (1) and (2). Thus, the adversary needs to make assumptions about the elements of

X(j), and then use the bits in b(j) to confirm or refute them.

The set X̂i will be referred as the estimator set relative to xi, or simply the estimator

set. To carry out the attack on the Blum–Micali generator, the adversary will start with

X̂0 = �∗
p, since x0 ∈ �∗

p.

Given an estimator set X̂i−1 and a bit bi ∈ b(j), the adversary will proceed as follows

to obtain X̂i. First compute Ai = gX̂i−1 , the image of X̂i−1 under the exponential map

x 	→ gx mod p. Let Ai = A
(0)
i ∪ A

(1)
i be the partition of Ai due to Equation (2), that is,

a ∈ A
(0)
i if and only if δ(a) = 0, and similarly for A(1)

i . In this way, the estimator set X̂i

will be

X̂i = A
(bi)
i . (3)

That is, X̂i = δ−1(bj) ∩ Ai where δ−1(bj) denotes the inverse image of bj .

To verify that the described attack recovers the internal state of a Blum–Micali

generator, it must be proved that:

(i) Every estimator set X̂i contains xi ∈ X(i).

(ii) Given sufficient bits in b(j), either the size of the set X̂i is unitary for i large enough

or the adversary will easily be able to predict the generator’s next output.

The proofs are given below. In order to avoid trivialities, we assume that x0 is member

of a maximal cycle in the functional graph of the exponential map (Equation (1)) since

otherwise there is a high probability that the sequence produced is easily predictable.

Lemma 3.1. Every set X̂i of estimators contains the corresponding representative xi ∈ X(i),

that is, xi ∈ X̂i.

Proof. The proof is by induction on i. Clearly, the claim is valid for i = 0 as x0 ∈ X̂0 =

�∗
p, so we assume xi ∈ X̂i as our induction hypothesis. We must show that xi+1 ∈ X̂i+1.
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Indeed, from Equation (3), y ∈ X̂i+1 if and only if:

(1) y = gx mod p for some x ∈ X̂i; and

(2) δ (y) = bi+1.

But, by the induction hypothesis, xi ∈ X̂i and, according to the generator’s productions,

δ(xi+1) = δ(gxi mod p) = bi+1.

So xi+1 meets both requirements (1) and (2) and the proof is complete.

Using the proposed attack, an adversary is able to predict the next bit in two

situations:

(i)
∣∣∣X̂i

∣∣∣ = 1; or

(ii) A(0)
i+1 = � or A(1)

i+1 = �.

In other words, the next bit is completely predictable if one of the described situations

occurs. The first situation happens when the number of bits observed was sufficient to

identify precisely the representative of the generator’s internal state. In this case, there is

no doubt about the next bit that will be output. The second situation also allows the

adversary to predict the next bit correctly, but the adversary does not have complete

knowledge about the generator’s internal state. In other words, in the first situation there

is no uncertainty about its internal state or about the next bit, while in the second

situation, there is no uncertainty about the bit produced, but there is uncertainty about

the generator’s internal state.

For i large enough, and assuming that the second situation is less likely to occur given

the assumption previously made, the adversary will be able to look up the bits intercepted

and reduce the estimator set at every step. The convergence to a solution is synthesised

in the proof below.

Lemma 3.2. The sequence of estimator sets’ sizes is non-increasing, that is,

|X̂i+1| � |X̂i| i = 1, 2, . . . (4)

Moreover, if equality holds in Equation (4), then the bit bi+1 becomes completely

predictable.

Note that the lemma implies that there is uncertainty about the bit output only if the size

of the estimator set is decreased.

Proof. We have

|X̂i+1| (a)
=

∣∣∣A(bi+1)
i+1

∣∣∣ (b)

� |Ai+1| (c)
= |gX̂i (mod p)| (d)

= |X̂i|.

where:

— The equalities (a) and (c) correspond to the definitions of X̂i+1 and Ai+1, respectively.

— The inequality (b) is due to the fact that A
(bi+1)
i+1 is a subset of Ai+1 and both are finite

sets.

— The equality (d) follows from the fact that gx is a bijective map.

This concludes the first part of the proof.
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To see why bi+1 is completely predictable if equality holds in Equation (4), we assume

that

|X̂i+1| = |X̂i|
in the sequence of Equation (3). It then follows that∣∣∣A(bi+1)

i+1

∣∣∣ = |Ai+1|.

But since

A
(bi+1)
i+1 ⊆ Ai+1,

the equality is only possible if

A
(bi+1)
i+1 = Ai+1.

Hence, the adversary can guess the next bit perfectly, since Ai+1 only contains elements x

such that δ(x) = bi+1.

After recovering the representative of the generator’s internal state by following

the previously mentioned steps, the adversary is able to discover the future output of

the generator using Equations (1) and (2). But to recover the previous elements of the

generator’s internal state, the adversary needs to perform discrete logarithm operations.

The adversary starts with xj , p and g and obtains xj−1. The same operation is then

repeated, but replacing xj by xj−1, and so on, until x0 is obtained.

The attack presented retrieves the generator’s internal state, in which the seed is

included. In consequence, all previous and future outputs are known by the adversary.

Thus, in the taxonomy of attacks presented in Kelsey et al. (1998), this attack on the

Blum–Micali generator is classified as a permanent compromise attack.

To conclude the description of the classical attack on the Blum–Micali generator, we

need to define the number of bits the adversary must intercept to identify precisely the

representative of the generator’s internal state at time i. A naive algorithm would demand

p − 1 bits, since this is the number of elements in the initial estimator set X̂0. On the

other hand, the procedure described takes advantage of the workings of the generator

and also considers that the estimator sets reduce in size, on average, by half per bit

observed. This implies that the adversary needs to intercept log p bits, on average, to

perform a successful attack. This number corresponds to the best scheme of questions to

identify the representative precisely. This result is in accordance with Boyar (1989) and

Krawczyk (1992), and has also been confirmed by experiments (Guedes et al. 2010b).

As an example of the attack described, suppose the adversary eavesdropped 2 sequenced

output bits, b(2) = {10}, from a Blum–Micali generator with parameters p = 7 and g = 3.

The adversary would start his estimators to the seed with the set X̂0 = {1, 2, . . . , 6}. The first

step is to perform a modular exponentiation over X̂0, resulting in A1. Note that the sets

A1 and X̂0 are equal since they contain all elements from the permutation domain. With

the information that the first bit observed was b1 = 1, the adversary would discard the

numbers lower than (7 − 1)/2 = 3 and perform the operation gx mod p in the remaining

ones, resulting in the set of estimators to x1, X̂1 = {4, 5, 6}. Repeating this process, but

with the next observed bit b2 = 0, the adversary would update from X̂1 his estimators

to x2, resulting in X̂2 = {1}. In this case, with only two intercepted bits, the adversary
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Figure 3. Graphical depiction of the attack performed on a Blum–Micali generator.

could retrieve, with 100% certainty, the representative of the generator’s internal state.

To recover the complete internal state of the generator, two discrete logarithm operations

would result in

X(2) = {x2 = 1, x1 = 6, x0 = 3} .
This example is presented graphically in Figure 3.

The complexity analysis of the classical permanent compromise attack on the Blum–

Micali generator will be described in the next section.

3.1. Complexity analysis of the classical attack

Despite being able to recover the generator’s internal state, this attack turns out to be

inefficient. We will assume that p is a large prime. We will also assume that the modular

exponentiation operation can be implemented in O(x) time, where x is the exponent in

gx mod p. Since the result of the first modular exponentiation is equal to the set X̂0, we

will define its cost as 0.

Upon observing the first bit output by the generator, we need to pass through all the

elements in A1 to verify which of them could have produced that bit. Those satisfying the

criteria will remain, and the others will be discarded. On average, half of the elements

will satisfy the criteria. This operation has a linear cost of O(p) because all the elements

in A1 must be evaluated.

A modular exponentiation must then be performed on the remaining elements com-

prising the set X̂1, resulting in A2. Suppose the elements greater than (p− 1)/2 remain.

The cost of performing the modular exponentiation on them will be

O

(
p+ 1

2

)
+ · · · + O(p− 1) = O(p2).

In this way, the cost of obtaining A2 from A1 is

T (p) = O(p2) + O(p) = O(p2).
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As can be seen from the first bit observed and the modular exponentiation performed,

some conclusions can be drawn about the cost of the next steps. The cost of the modular

exponentiation in the estimators set is O(p2) in the worst case. Furthermore, upon observing

a bit, on average, p/2t elements will remain, where t = 1, 2, . . . , j. These results will be

used to analyse the total cost of the classical attack.

The costs of obtaining A2 from A1, A3 from A2 and so on are described below, where

we make use of the assumptions previously made.

T (p) =

Modular Exponentiation︷ ︸︸ ︷
O(p2) +

Observing a bit︷︸︸︷
O(p) = O(p2)

T
(p

2

)
= O(p2) + O

(p
2

)
= O(p2)

...

T (1) = O(p2)︸ ︷︷ ︸
Greater exponent remains

+ O(1) = O(p2)

The cost of recovering the representative is the sum of the cost of the parts, that is

T (p) + T
(p

2

)
+ T

(p
4

)
+ · · · + T (1) = O(p2) + O(p2) + · · · + O(p2)

= log p · O(p2)

= O(p2 log p)

After this first part, j discrete logarithm operations must be carried out in order to

recover the previous elements xj−1, . . . , x0 of the generator’s internal state. But, there is no

known classical polynomial time algorithm to evaluate discrete logarithms efficiently. In

this way, the cost of this operation is, in the worst case,

j · O(2p) = log p · O(2p) = O(2p · log p).

Therefore, the whole cost of the classical algorithm to attack the Blum–Micali generator

is

O(p2 log p) + O(2p · log p) = O(2p · log p).

In other words, the attack presented is infeasible when using the classical computing

paradigm.

Quantum computation explores the possibilities of applying quantum mechanics to

computer science. If built, quantum computers would provide speedups over conventional

computers for a variety of problems (Ambainis 2004; Nielsen and Chuang 2005, page 7).

This statement is interesting from the point of view of attacks on cryptosystems, because

the speedups achieved will improve the performance of such attacks. In this context, the

next section presents a quantum version of the attack previously described. The purpose

of this new version is to use quantum computing to increase efficiency.
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4. Quantum attack on the Blum–Micali generator

The quantum attack on the Blum–Micali generator is based on the same idea as the

classical one: the bits intercepted by the adversary are used to confirm or refute hypotheses

about the generator’s internal state. The main differences between the classical and

quantum algorithms are due to the different computational paradigms adopted.

The attack is composed of three stages:

(1) identification of the representative;

(2) amplitude amplification; and

(3) internal state recovery.

The second stage is inspired by the quantum search algorithm (Grover 1997), and the

third makes use of the quantum discrete logarithm algorithm proposed in Shor (1997).

The following sections describe each of these stages in detail. In presenting the quantum

attack, we will assume that the adversary has intercepted enough sequential bits to identify

the representative of the generator’s internal state precisely – see Section 7.3 for the changes

needed when this requirement is relaxed.

4.1. Identification of the representative

The identification of the representative stage requires the bits intercepted by the adversary

b(j) along with public parameters p and g to define a quantum algorithm able to identify,

at a quantum level, the representative xj ∈ X(j).

The input to this stage is composed of two registers, described as follows:

(1) Space of the solution:

This contains n = �log p� qubits that will be used to represent the elements in �∗
p. All

qubits of this register must be initialised to |0〉.
(2) Ancillary qubits:

For every bit that the adversary has intercepted from the generator, there must be one

ancillary qubit in this second register, therefore, this register must have, on average,

j = log p qubits. All ancillary qubits must be initialised to |0〉.

Thus, according to the initialisation procedures described, the input state is

|ψ0〉 = |0〉⊗n |0〉⊗j
.

Figure 4 shows the circuit that implements the identification of the representative stage.

It is composed of gates H , δbi and g(), and the goal is to ‘mark’ the representative

xj ∈ X(j), where ‘marking’ the representative means associating it with the state |1 . . . 1〉
in the second register.

The identification of the representative starts with an application of the Hadamard gate

to the first register. This operation will result in a uniformly distributed superposition in

which all elements of the domain of the generator are contained, that is, the outcome

is a superposition of the states {|0〉 , |1〉 , . . . , |2n − 1〉} (where n = �log p�), which contains

{|0〉 , . . . , |p− 1〉}, whose elements correspond to �∗
p. The state resulting from the Hadamard
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Figure 4. Quantum circuit implementing the identification of the representative stage.

operation is given by

|ψ1〉 = H⊗n ⊗ �⊗j |ψ0〉

=
1√
2n

2n−1∑
i=0

|i〉 |0〉⊗j
.

Let |ϕ〉 denote the result of applying the Hadamard gate exclusively to the first register,

that is,

|ϕ〉 =
1√
2n

2n−1∑
i=0

|i〉 . (5)

In this way, |ψ1〉 can also be written as

|ψ1〉 = |ϕ〉 |0〉⊗j
.

The gates g() and δbi are defined in terms of the one-way permutation and hard-core

predicates of the generator under attack. They can be constructed as follows:

δbi |x〉 |y〉i =
{

|x〉 |y〉i if x ∈ �∗
p and δ(x) = bi

|x〉 |y〉i otherwise

g() |x〉 =

{
|gx mod p〉 if x ∈ �∗

p

|x〉 otherwise

where the operation denoted by |y〉i indicates the application of the Pauli-X gate† to the

state |y〉 of the ith qubit of the second register conditioned on the value in the first register.

Gates δbi can be constructed from multiple controlled Pauli-X gates. The operation of g()

requires the recognition of �∗
p, which can be performed using ‘is less than or greater than’

comparisons, which can be implemented efficiently on a quantum computer since they are

already efficient in classical computing (Bennett 1973). We can also follow the procedures

in Meter and Itoh (2005) to implement the modular exponentiations in the gate g().

† The Pauli-X gate is also referred to as σX and has matrix form X =
[ 0 1

1 0

]
.
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It should be noted that each application of the pairs g() and δbi is analogous to obtaining

an estimator set of the generator’s internal state at time i. The elements in the generator’s

internal state are then progressively associated with |1〉⊗j in the second register.

After the first part of the algorithm is complete, the state can be described by

|ψ2〉 = αxj |xj〉 |1 . . . 1〉 +

2n−1∑
k=0,k �=xj

αk |k〉 |y �= 1 . . . 1〉 (6)

where

∣∣αxj ∣∣2 +

2n−1∑
k=0,k �=xj

|αk|2 = 1.

As shown in Section 3, the representative is always in the generator’s internal state, thus

αxj �= 0. Defining pxj =
∣∣αxj ∣∣2, pxj⊥ = 1 − pxj , so 0 < pxj < 1, we can renormalise as

follows: ∣∣ψxj〉 =
αxj√
pxj

|xj〉 |1 . . . 1〉

∣∣ψxj⊥〉
=

2n−1∑
k=0,k �=xj

αk√
p¬xj

|k〉 |y �= 1 . . . 1〉 .

According to the conventions established, the state |ψ2〉 in Equation (6) can be rewritten

as

|ψ2〉 =
√
pxj

∣∣ψxj〉 +
√
pxj⊥

∣∣ψxj⊥〉
.

Using a geometric representation,

|ψ2〉 = sin(θ)
∣∣ψxj〉 + cos(θ)

∣∣ψxj⊥〉
. (7)

where θ ∈
(
0, π/2

)
satisfies sin2(θ) = pxj .

After the conclusion of this first stage of the attack, the representative of the generator’s

internal state at time j is identified by its association with |1〉⊗j in the second register.

However, its amplitude has the same value as that of the remaining elements. This means

that a measurement of the first register after this first stage would return any component

of the superposition with the same probability, indicating that this marking procedure has

operated exclusively at the quantum level. Therefore, to retrieve the representative after

a measurement, it is necessary to amplify its amplitude. This procedure characterises the

second stage of the attack and will be described in the next section.

4.2. Amplitude amplification

The amplitude amplification stage will increase the probability of outputting the repres-

entative when the first register is measured. This stage is composed of iterations of the

gates F and A followed by a measurement in the first register, as shown in Figure 5. It is

important to note that no measurement is made between the first and second stages, that

is, the operations of the amplitude amplification stage are performed on the quantum

state resulting from the identification of the representative stage.
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Figure 5. Quantum circuit for the amplitude amplification stage.

The gate F performs a −1 phase shift in the first register controlled by the value |1〉⊗j

in the second register. After this operation, the gate A increases the amplitude of the

component whose phase is inverted. The F gates are defined by

F|y〉 |x〉 =

{
− |x〉 if |y〉 = |11 . . . 1〉
|x〉 otherwise

A = 2 · |ϕ〉 〈ϕ| − �

where |ϕ〉 is given in Equation (5) and � denotes the identity matrix. The operation of a

pair of gates F and A, respectively, is called an iteration, denoted by G, that is, G = A · F .

The application of k successive iterations G on the input state (see Equation (7)) can be

summarised by

Gk |ψ2〉 = sin ((2 · k + 1) · θ)
∣∣ψxj〉 + cos ((2 · k + 1) · θ)

∣∣ψxj⊥〉
.

The number k is the optimal number of iterations required to maximise the amplification

of the representative’s amplitude. Its determination involves the assumption previously

made that the adversary intercepted enough bits to identify the generator’s internal state

precisely. Taking this into account, the number of iterations k is given by

k =
⌊π

4

√
p
⌉
,

where �·� denotes the closest integer function.

At the conclusion of this second part, it is expected, with high probability, that a

measurement in the first register would retrieve the representative xj of the generator’s

internal state. When we are in possession of this number, the internal state recovery stage

described in the next section must be carried out.

However, we will first take a closer look into the operations of the second stage to reveal

similarities with the quantum search algorithm of Grover (1997). In fact, the representative

(solution) has its phase flipped and amplified through iterations. However, while Grover’s

algorithm requires a black-box function to identify the solution to the problem, in the

proposed attack, we can identify the representative by its association with 1 . . . 1 in the

second register because of the procedures performed in the first stage. This is the main

difference between the proposed attack and the standard quantum search. The latter

assumes a quantum black-box function that can return the solution in one computational
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Figure 6. Quantum circuit for the discrete logarithm.

step (Hirvensalo 2001, pages 74–79), but this assumption is not required in the algorithm

proposed here, so we can say that this stage is ‘inspired’ by the Grover algorithm, but

there are considerable differences.

4.3. Internal state recovery

After the amplitude amplification stage, the adversary has recovered the representative xj
of the generator’s internal state at time j. Using Equations (1) and 2, it is then possible to

predict the next output. However, despite the fact that the adversary knows some previous

outputs, the internal states associated with them still remain unknown. Thus, in order to

recover the set {x0, x1, . . . , xj−1}, the quantum discrete logarithm will be applied.

The discrete logarithm will be performed using the quantum algorithm proposed in

Shor (1997), the circuit for which is shown in Figure 6. This circuit is composed of a

Hadamard gate, denoted by H , an oracle Uf , a gate that implements the quantum Fourier

transform, denoted by QFT , and some measurement gates.

The first use of the quantum discrete logarithm algorithm in the attack will take as

input xj , which is obtained from the amplitude amplification stage, together with g and

p, as in the Blum–Micali generator definition (see Section 2). The output is xj−1 ∈ X(j).

Three registers of size n, where n is the binary length of p, are initialised to |0〉. In this

way, the input state of this stage is

|φ0〉 = |0〉⊗n |0〉⊗n |0〉⊗n

The gate Uf is an oracle implementing the function

f(a, b) = ga · x−b
j mod p = ga · gxj−1 −b mod p = ga−xj−1·b mod p

where xj and g are parameters. It should be noted that for a certain pair (a1, b1), we have

f(a1, b2) = f(a2, b2) if and only if

(a2, b2) = (a1, b1) + λ · (xj−1, 1)
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for any λ ∈ �p−1. The pair (xj−1, 1) is called the period of the function f.

A brief description of the steps performed in this part is given below (Jozsa 2001). They

are heavily based on number theory and are justified in Shor (1997).

The first step of the algorithm is to apply the Hadamard gate to the first two registers

to give

|φ1〉 = H⊗2·n |ψ0〉

=
1√
2n

· 1√
2n

2n−1∑
a=0

|a〉
2n−1∑
b=0

|b〉 |0〉⊗n

=
1

2n

2n−1∑
a=0

2n−1∑
b=0

|a〉 |b〉 |0〉⊗n
.

In the context of the discrete logarithm, only the values of a and b that belong to �p−1

are of interest because they belong to the domain of the function f implemented by the

oracle. For those values that are not of interest, a comparison with p at the end of the

process can be performed, and a new execution of the algorithm carried out if the value

obtained is greater than p. If we only consider the values in the domain of f, we can

denote |φ1〉 by

|φ1〉 =
1

p− 1

p−2∑
a=0

p−2∑
b=0

|a〉 |b〉 |0〉⊗n
.

The next step of this stage is to apply the gate Uf to the input. The result of this

operation is the state

|φ2〉 =
1

p− 1

p−2∑
a=0

p−2∑
b=0

|a〉 |b〉 |f(a, b)〉 .

As shown in Figure 6, we now need to measure the third register. This measurement

will collapse the superposition and will result in the value ω0 = f(a0, b0) in the third

register. Making use of the periodicity of f, the quantum system enters the periodic state

|φ3〉:

|φ3〉 =
1√
p− 1

p−1∑
k=0

|a0 + k · xj−1〉 |b0 + k〉 .

In order to eliminate the dependence on the values (a0, b0) chosen randomly after the

measurement in the third register, the quantum Fourier transform modulo p−1 is applied

to the remaining registers.

Let the quantity ı denote the unit imaginary number and let χ�1 ,�2
be a function defined

by

χ�1 ,�2
(a, b) = exp

[
2 · ı · π · (a · �1 + b · �2)

p− 1

]
.

The application of the QFT gate to the first two registers will yield an equally weighted

superposition of those labels (�1, �2) such that

χ�1 ,�2
(xj−1, 1) = 1,
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that is,

xj−1 · �1 + �2 ≡ 0 mod p− 1,

so

�2 = −xj−1 · �1 mod p− 1

�1 = 0, . . . , p− 2

(Jozsa 2001). Taking these considerations into account, the state of the system after the

quantum Fourier transform is given by

|φ4〉 =
1√
p− 1

p−2∑
�1=0

exp

[
2 · ı · π
p− 1

·
(
a0 · �1 − b0 · xj−1 · �1

)]
|�1〉 |−xj−1�1〉 .

The last step consists of a measurement in the first and second registers, which will return

(�1,−xj−1�1 mod p− 1).

Two situations must be considered:

(A) �1 and p are coprime:

In this case, we need to find �−1
1 , the multiplicative inverse modulo p− 1. This value

must then be multiplied by the value observed in the second register to give xj−1.

(B) �1 and p are not coprime:

This indicates a failure of the algorithm, so another execution with the same input

must be carried out.

In order to increase confidence in the result, given the possible occurrence of failures,

we need to carry out O(log log p) repetitions, as a result of which, xj−1 will be obtained

with high probability.

This process must now be repeated, but replacing j by j − 1, that is, the input will now

be xj−1, p and g and the output xj−2. The repetitions of the quantum discrete logarithm,

as the index j decreases, continue until x0 is obtained. As a result, the generator’s

complete internal state is recovered, which successfully concludes the quantum permanent

compromise attack on the Blum–Micali generator.

In the next section, we will give an example of a quantum attack on a Blum–Micali

generator, and then discuss the complexity analysis in Section 6.

5. Example of the quantum attack on the Blum–Micali generator

To illustrate the attack on the Blum–Micali generator, we will assume that the adversary

knows the public parameters p = 7 and g = 3, and has discovered three sequenced bits

b(3) = {001}. Following the procedures indicated in Section 4, the quantum circuit to

perform the first and second stages is illustrated in Figure 7.

The steps of the first and second stages will be described according to the evolution of

the state |ϕ〉 from |ϕ0〉 to |ϕ8〉. The input of the algorithm is prepared in the following

state according to the definition rules for each register:

|ϕ0〉 = |000〉 |000〉 .
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Figure 7. Quantum circuit to exemplify an attack on a Blum–Micali generator.

Figure 8. Decomposition of the gate δb1=0 into multiple controlled Pauli-X gates.

The next step is to apply gate H to the first register, with the result

|ϕ1〉 =

[
1√
8

(
|0〉 + |1〉 + . . .+ |7〉

)]
|000〉 .

It can be seen that all the elements of the domain �∗
7 = {1, 2, . . . , 6} are represented in

the state |ϕ1〉. The next step of the algorithm is to apply gate δb1=0, which, since i = 1,

will associate with |1〉 in the first qubit of the second register all those elements in �∗
7 that

would have produced the bit b1 = 0. The result of this operation is

|ϕ2〉 =
1√
8

(
|0〉 |000〉 + |3〉 |100〉 + |2〉 |100〉 + |6〉 |000〉

+ |4〉 |000〉 + |5〉 |000〉 + |1〉 |100〉 + |7〉 |000〉
)
.

The gate δb1=0 can be implemented using multiple controlled Pauli-X gates, as shown

in Figure 8. This illustration considers the upper qubit on the first register as the least

significant one. The • denotes controls that are activated by the |1〉 state, and the ◦
denotes controls that are activated by the |0〉 state.

Proceeding with the attack, the next step is to apply the g() to the input state. This gate

is defined by

g() = |0〉 〈0| + |3〉 〈1| + |2〉 〈2| + |6〉 〈3| + |4〉 〈4| + |5〉 〈5| + |1〉 〈6| + |7〉 〈7| .

The state after applying g() is given by

|ϕ3〉 =
1√
8

(
|0〉 |000〉 + |3〉 |100〉 + |2〉 |100〉 + |6〉 |100〉

+ |4〉 |000〉 + |5〉 |000〉 + |1〉 |000〉 + |7〉 |000〉
)
.
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The first stage continues in a similar fashion, but using the relevant definitions of δb2=1

and δb3=1. Performing the next three steps, the resulting state after the identification of

the representative stage of the quantum attack is

|ϕ6〉 =
1√
8

(
|0〉 |000〉 + |1〉 |100〉 + |2〉 |110〉 + |3〉 |010〉

+ |4〉 |001〉 + |5〉 |001〉 + |6〉 |111〉 + |7〉 |000〉
)
.

Note that the only state associated with 111 in the second register is the |6〉. It is also

important to note that all amplitudes are equal, that is, a measurement of the first register

would return any number from 0 to 7 with the same probability.

Rewriting the state |ϕ6〉 as a partition, we get

|ϕ7〉 =
1√
8

|6〉 |111〉 +
1√
8

(
|0〉 |000〉 + |1〉 |100〉 |2〉 |110〉

+ |3〉 |010〉 + |4〉 |001〉 + |5〉 |001〉 + |7〉 |000〉
)

=
1√
8

|xj〉 |111〉 +

√
7

8
|xj⊥〉 |y〉

= sin(θ)
∣∣ψxj〉 + cos(θ)

∣∣ψxj⊥〉
where:

— j = 3;

— |xj〉 = |6〉;
— |xj⊥〉 denotes the subspace ortogonal to |xj〉;
— y �= 111;

—
∣∣ψxj〉 = |6〉 |111〉;

—
∣∣ψxj⊥〉

= |x〉 |y〉; and

— θ ∈
(
0, π/2

)
satisfies θ = arcsin

(
1/

√
8
)

= 0.36 radians.

The next step of the algorithm is to perform the amplitude amplification stage, but before

we can do this, we need to determine how many Grover iterations are required. Taking

into account that n = 3, we get that k =
⌊
(π/4)

√
7)

⌉
= 2 iterations are required.

Therefore, k = 2 Grover iterations on |ϕ6〉 will result in

|ϕ8〉 = G2 |ϕ6〉
= sin((2 · 2 + 1) · θ)

∣∣ψxj〉 + cos((2 · 2 + 1) · θ)
∣∣ψxj⊥〉

= sin(5θ)
∣∣ψxj〉 + cos(5θ)

∣∣ψxj⊥〉
= sin(1.8)

∣∣ψxj〉 + cos(1.8)
∣∣ψxj⊥〉

.

A measurement in |ϕ8〉 will result in 6 with probability |sin(1.8)|2 ≈ 94.83%. Assuming

the adversary retrieved the generator’s internal state 6 after a measurement, the second

stage has now been successfully concluded.

With the generator’s internal state x3 = 6, the adversary is able to predict the next

output of the generator under attack. But the adversary does not know the previous

elements of the generator’s internal state. To recover them, we need to perform the third

stage of the quantum attack – the generator’s internal state recovery.
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Figure 9. Quantum circuit for the internal state recovery stage to exemplify an attack on a

Blum–Micali generator.

The third stage starts with the input x3 = 6, p = 7 and g = 3. The oracle will implement

the function

f(a, b) = 3a · 6−b mod 7 = 3a · (3x2 )−b mod 7 = 3a−x2·b mod 7.

The circuit implementing the third stage is shown in Figure 9. In order to illustrate how

the next steps of this example are carried out, we will make some assumptions as we go

along about measurement outcomes and about how the oracle works.

The initial state |φ0〉 is a tensor product of the three registers initialised to |0〉:

|φ0〉 = |000〉 |000〉 |000〉 .

The first step uses the Hadamard gate to put the first two registers in superposition:

|φ1〉 =
1

8

7∑
a=0

7∑
b=0

|a〉 |b〉 |000〉 .

Restricting the sum to the values in the domain of f, we get |φ1〉 is given by

|φ1〉 =
1

6

5∑
a=0

5∑
b=0

|a〉 |b〉 |000〉 .

Applying the oracle Uf to the state |φ1〉 gives the state

|φ2〉 =
1

6

5∑
a=0

5∑
b=0

|a〉 |b〉 |f(a, b)〉 .

The next step is a measurement of the third register. Note that the possible values of (a, b)

are equiprobable as a consequence of the superposition created by the Hadamard gate.
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For example, let us assume that the system collapsed to a0 = 4 and b0 = 1, and that,

in consequence, the adversary obtained the value ω0 = f(4, 1) = 34 · 6−1 mod 7 = 3 from

the measurement of the third register. Note that despite our assumption about the values

assumed by a0 and b0 (which we will continue to make in illustrating the further steps of

the third stage), they are not known by the adversary, who only sees ω0 = 3.

Taking the periodicity of f into account, the state of the system after the measurement

is

|φ3〉 =
1√
6

5∑
k=0

|4 + k · x2〉 |1 + k〉 .

Removing the dependency on the values a0 = 4 and b0 = 1 using the quantum Fourier

transform, the state |φ4〉 is:

|φ4〉 =
1√
6

5∑
�1=0

exp

[
2 · ı · π

6
(4 · �1 − x2 · �1)

]
|�1〉 |−x2 · �1〉 . (8)

A measurement must now be made in the first two registers. Note that from the 6 different

values that �1 can assume in Equation (8), only zero is not coprime with p = 7, and this is

the only value that would require a new execution of the algorithm. Again, for example,

let us assume that the superposition of the values of �1 collapsed to �1 = 1. Since

4 · 1 − x2 · 1 ≡ 0 mod 6,

it turns out that x2 = 3 (but the adversary does not know this yet because it is encoded

in the phase of the quantum system). Upon observing the value of the second register,

the adversary gets −x2 · �1 = 3. Note that �1 = 1 and p = 7 are coprime, so we are in

situation (A) of the two situations listed at the end of Section 4.3 and we can proceed.

The multiplicative inverse of �1, denoted by �−1
1 , is equal to 1, so the adversary finally

obtains x2 = 3, which turns out to be an element of the generator’s internal state.

Once x2 is known, the adversary must apply the quantum discrete logarithm two more

times: first, taking as input p = 7, g = 3 and x2 = 3 to recover x1; and then, with p = 7,

g = 3 and x1, to recover the seed x0. We will not work through these steps here, but

they will lead the adversary to obtain X(3) = {x3 = 6, x2 = 3, x1 = 1, x0 = 6}. With this

information, the adversary has successfully concluded the permanent compromise attack

on the Blum–Micali generator, thereby completely compromising its unpredictability.

6. Complexity analysis of the quantum attack on the Blum–Micali generator

To perform the complexity analysis of the described attack, all three stages must be

considered.

In the first stage, the input has size n + j qubits and the output is a quantum state

of n + j qubits. The number of gates needed to perform the initial superposition, the

modular exponentiations and the function δ is equal to 2 · j, since two gates of the type

δbi are separated by gates g(). Each gate acts in a single step on the input, so the cost of

this first stage is

(2 · j) · O(1) = O(2 · log p) = O(log p),
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since j = log p.

The second stage has an input size of n + j qubits and an output size of n bits. The

amplitude amplification performs
√
p operations, each of unitary cost, so the resulting

complexity of the second stage is O(
√
p). Note that this complexity is a result of our

adopting the Grover inspired procedure.

The final stage is composed of applications of the quantum discrete logarithm procedure.

The input has size of 3 · n qubits and an output of 3 · n bits. The complexity of each

execution is O(n3) or, similarly, O(log3 p). Thus, considering that j = log p executions are

required with O(log log p) repetitions each, the cost is

O(log log p) · log p · O(log3 p) = O(log log p · log4 p).

The overall cost of the quantum attack on the Blum–Micali generator is the sum of the

costs of its stages:

O(log p) + O(
√
p) + O(log log p · log4 p) = O(log log p · log4 p).

Therefore, the resulting complexity of the quantum algorithm is in sharp contrast with its

classical counterpart complexity, which is , as shown in Section 3.1, O(2p · log p), that is,

we have achieved a superpolynomial speedup, and we can conclude that the Blum–Micali

pseudorandom generator is not secure against quantum computing attacks.

7. Generalising the quantum attack

The quantum attack described in Section 4 is aimed at the Blum–Micali pseudorandom

generator. However, with some modifications, it can also be used as a framework for

quantum attacks on certain other pseudorandom generators, or in some situations

where the requirements regarding the bits intercepted are not completely satisfied. Such

generalisations are characterised and presented in this section.

7.1. Multiple hard-core predicates

The Blum–Micali generator requires a considerable computational effort to produce bits.

According to its original definition, just a single bit is extracted per iteration, that is, per

modular exponentiation performed (Blum and Micali 1984).

In an attempt to improve the production of bits without compromising the security

of this generator, some authors have explored the possibility of extracting more bits per

iteration. Long, Wigderson and Peralta showed that O(log log p) bits could be extracted by

a single iteration of the Blum–Micali generator (Long and Wigderson 1988; Peralta 1986).

H̊astad et al. also showed that if we consider a discrete logarithm modulo a composite

integer, then nearly n/2 bits can be extracted per modular exponentiation (H̊astad

et al. 1993). Other authors have shown that similar extractions are possible even when

the exponent is small (Patel and Sundaram 1998; Gennaro 2005). In summary, this line of

work tries to improve the Blum–Micali generator by the addition of multiple hard-core

predicates.
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For each hard-core predicate γ of the Blum–Micali generator, there is an associated

quantum gate. Such a gate, say Y, is capable of determining if a certain control register

x produced a certain bit bi (γ(x) = bi) by registering this information in a target qubit |y〉
according to the following procedure:

Ybi |x〉 |y〉i =
{

|x〉 |y〉i if x ∈ �∗
p and γ(x) = b

|x〉 |y〉i otherwise
(9)

where the operation denoted by |y〉i indicates the application of the Pauli-X gate to the

ith qubit of the second register.

If the adversary intends to attack one version of the Blum–Micali generator with

multiple hard-core predicates, he would register in b the tuples of bits intercepted

per iteration, per hard-core predicate. For example, suppose a Blum–Micali generator

has three hard-core predicates. By eavesdropping on this generator, the adversary has

discovered that it produced the bits 111, 011 and 100 per hard-core predicate, respectively.

According to the specified procedure, he would register in b the following tuples:

{(1, 0, 1), (1, 1, 0), (1, 1, 0)}.
In the construction of the quantum circuit to attack the generator, the adversary

must consider one extra register per hard-core predicate. Each extra register must have

dimension and initialisation procedures similar to the ancillary qubits register described

in Section 4.1. The gates related to the hard-core predicate must be inserted between the

two successive g() gates that implement the modular exponentiation operation.

This shows that the quantum attack can be adapted to these more general situations.

This is an important consideration taking into account that, due to the efficiency in the

production of bits, multiple hard-core predicates in the Blum–Micali generator are more

likely to be used in real-world cryptosystems. In addition, it is possible to attack the

generator more effectively since more information about the generator’s internal state is

captured per iteration.

7.2. Blum–Micali construction

The Blum–Micali construction is a family of cryptographically secure pseudorandom

number generators. They are defined by a one-way permutation f over a domain D and

by a hard-core predicate φ of the one-way permutation. The seed x0 is obtained through

a random choice of an element in the domain (x0 ∈R D). The productions (bits) from

these generators are obtained as follows:

xi = f(xi−1),

bi = φ(xi).

There are three commonly used generators in this family: the Blum–Micali generator,

presented in Section 2; the Blum–Blum–Shub generator; and the Kaliski generator.

The Blum–Blum–Shub generator’s one-way permutation is the Rabin function f : �M →
�M , such that f(x) = x2 mod M, where M is the product of two primes both congruent to

3 mod 4. The domain of this generator is QRM = (�∗
M)2. Its hard-core predicate returns

the jth bit from the given parameter, where j is previously fixed. The values of M and
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j are publicly available. The Blum–Blum–Shub generator is one of the most efficient

pseudorandom number generators known that is provably secure under the assumption

that factoring large composites is intractable (Blum et al. 1986).

The Kaliski generator is based on the elliptic curve discrete logarithm. Let p be a prime

with p ≡ 2 mod 3, and consider a curve E(�p) that consists of points (x, y) ∈ �p × �p

such that y2 = x3 + c, where c ∈ �p. The points of E(�p) together with a point at infinity,

denoted by O, form a cyclic additive group of order p + 1, which is the domain of the

generator. Let Q be a generator of this group and ϕ be a function defined by

ϕ(P ) =

{
y if P ∈ E(�p)

p if P = O.

The seed of the Kaliski generator is a random point on the curve. The one-way

permutation of this generator is a function f such that f(P ) = ϕ(P ) · Q. The hard-

core predicate of this function returns 1 if ϕ(P ) � (p+ 1)/2, and 0 otherwise. The security

of the Kaliski generator is based on the the assumption that the elliptic curve discrete

logarithm is intractable (Kaliski 1988).

As a one-way permutation defines a bijection over its domain, it is possible to

build quantum gates to implement such functions (Williams 2011). Let f be a one-

way permutation over the domain D, and Q be a quantum gate that implements f. The

gate Q performs the following transformations:

Q |x〉 =

{
|f(x)〉 if x ∈ D
|x〉 otherwise.

Moreover, as shown in Equation (9), there is a quantum gate associated with every hard-

core predicate. It turns out that it is possible to construct attacks on every generator

of the Blum–Micali construction analogous to the attack shown in Section 4. The main

modification is the identification of the representative stage in which the gates g() and δbi
must be replaced by the equivalent gates of the generator of the Blum–Micali construction

under attack.

The gain achieved when generators of the Blum–Micali construction are attacked with

quantum computing instead of classical computing is very likely to be the same as for the

Blum–Micali generator since there are algorithms to perform factoring and elliptic curve

discrete logarithms in polynomial time (Shor 1997; Proos and Zalka 2004).

It is important to note that it is also possible to attack the Blum–Blum–Shub and

Kaliski generators with multiple hard-core predicates by following the procedures shown

in Section 7.1. Furthermore, detailed examples of attacks on the Blum–Micali construction

generators can be found in Guedes et al. (2010a).

7.3. Attacks with non-consecutive bits or with fewer bits than required

A very realistic situation that must be considered is the case in which the adversary fails

to intercept adequate sequences of bits to carry out the attack. In this scenario, it may be

that only non-consecutive bits or fewer bits than required are available. Such situations
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still gather information that can favour the adversary and must be considered in the

design of an attack.

Consider first the retrieval of non-consecutive bits. In this case the adversary must keep

the bits and record in which iteration they were intercepted. For instance, if an adversary

retrieved the first three bits of a generator, the fifth and the eighth, he could store such

bits in the following way: b = {b1 = 1, b2 = 1, b3 = 0, b5 = 1, b8 = 0}.
In order to build the circuit for the quantum attack when the bits intercepted are

non-consecutive, we must make some changes in the identification of the representative

part: if two bits, say bbx and bby , are consecutive, one gate g() must be placed between the

gates δbx and δby , as specified in Section 4.1; otherwise |x− y| gates of type g() must be

inserted between the gates δbx and δby .

The addition of extra g() gates reproduces the iterations performed by the generator in

which the adversary skipped the bits output. Despite allowing the attack, this configuration

does require more gates and thus increased computational effort in comparison with the

scenario where the bits intercepted are consecutive.

The second situation to consider is where the adversary has intercepted fewer bits than

required to identify precisely the representative of the generator’s internal state, say x

bits where x < �log p�. This requires two modifications to the attack. The first consists of

a subspace of possible representatives instead of the single element shown previously in

Equation (6). The second is a modification in the number of iterations required, which is

now given by

k =

⌊
π

4

√
p

2(�log p�−x)

⌉
.

That is, multiple solutions in the amplitude amplification stage must be considered. This

is a consequence of the fact that the number of bits intercepted by the adversary does not

allow a precise identification of the representative of the generator but of a set of possible

candidates, all of them equally like to be the representative.

8. Final remarks

This paper presented a quantum attack against the Blum–Micali pseudorandom generator.

In this attack, an adversary intercepts some bits output by the generator and, using a

quantum computer and the procedures described, is able to retrieve the generator’s internal

state. In consequence, all previous and future outputs are known by the adversary, thereby

compromising the unpredictability of the generator.

The quantum permanent compromise attack on the Blum–Micali generator is a three

stage procedure. In the first stage, the representative of the generator’s internal state is

identified at a quantum level. In the second stage, the amplitude of the representative

is amplified to increase its probability of being measured. Finally, quantum discrete

logarithm operations are performed to recover the generator’s entire internal state. This

quantum attack makes use of a Grover inspired procedure and Shor’s discrete logarithm

algorithm, that is, it combines two of the most famous quantum algorithms.
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The proposed attack provides a superpolynomial speedup when compared with its

classical counterpart. This result means that the security of the Blum–Micali generator

in the face of the quantum computing paradigm no longer holds. In addition to the

characterisation of the attack, the number of bits to perform this quantum attack

successfully is also defined to be log p bits on average.

One might think that since the security of the Blum–Micali generator is based on

the hypothesis of intractability of the discrete logarithm problem, we could just use the

algorithm proposed in Shor (1997) in the design of an attack on the generator. However,

this is not possible because of the input requirements of this algorithm. To see why this is

the case, recall that the quantum discrete logarithm procedure demands a pair g and xj
to build an oracle, but that xj is still hidden in the generator’s internal state. Therefore,

an attack based exclusively on Shor’s discrete logarithm algorithm is impossible.

In addition to the description of a quantum permanent compromise attack on the

Blum–Micali generator, we have also suggested generalisations that allow modifications

to the algorithm to enable attacks on Blum–Micali generators with multiple hard-core

predicates and on generators belonging to the Blum–Micali construction family, as well

as in situations where the requirements on the intercepted bits are relaxed.

The contributions of this work can be divided into two areas: contributions to

cryptanalysis and contributions to quantum computing. The contributions of this paper

in the area of cryptanalysis are:

(i) improvements in the knowledge of the possible attacks against pseudorandom gene-

rators that have been adopted in many real-world cryptosystems;

(ii) the definition of algorithms to attack pseudorandom generators; and

(iii) an analysis of the security of certain pseudorandom generators against threats from

quantum computing.

The contributions of this paper in the area of quantum computing are:

(i) the development of new quantum computing algorithms;

(ii) the description of threats against classical cryptosystems; and

(iii) speedups over equivalent classical algorithms.

Some suggestions for future work are:

(i) an estimate of bounds on the number of bits required to attack the Blum–Blum–Shub

and Kaliski generators; and

(ii) an expansion of the quantum attack to a wider range of cryptographically secure

pseudorandom generators, such as those defined by one-way functions (H̊astad

et al. 1999).

Contributions in these areas would increase the applicability of the proposed attack.
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