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Basis identification is a critical step in the construction of accurate reduced-order
models using Galerkin projection. This is particularly challenging in unsteady flow
fields due to the presence of multi-scale phenomena that cannot be ignored and may
not be captured using a small set of modes extracted using the ubiquitous proper
orthogonal decomposition. This study focuses on this issue by exploring an approach
known as sparse coding for the basis identification problem. Compared with proper
orthogonal decomposition, which seeks to truncate the basis spanning an observed data
set into a small set of dominant modes, sparse coding is used to identify a compact
representation that spans all scales of the observed data. As such, the inherently
multi-scale bases may improve reduced-order modelling of unsteady flow fields. The
approach is examined for a canonical problem of an incompressible flow inside a
two-dimensional lid-driven cavity. The results demonstrate that Galerkin reduction of
the governing equations using sparse modes yields a significantly improved predictive
model of the fluid dynamics.
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1. Introduction
The advancement of computing hardware and the advent of parallel computing

algorithms have enabled unprecedented insight into complex flow physics using
computational fluid dynamics (CFD). This insight is often crucial in developing
a detailed understanding of multi-disciplinary interactions with complex flow
environments. However, the computational cost associated with high-fidelity analysis
tools has prevented their integration into broad systems-level and multi-disciplinary
studies. This critical need has motivated the pursuit of tractable, accurate and robust
reduced-order models (ROMs).

A commonly used ROM approach involves projecting the governing equations onto
a reduced-dimensional space comprising characteristic bases (Noack & Eckelmann
1994; Noack et al. 2003; Rowley 2005; Ilak et al. 2010; Holmes et al. 2012;
Kalashnikova et al. 2014). The projections can be orthogonal (e.g. Galerkin) or
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non-orthogonal (e.g. Petrov–Galerkin) (Noack & Eckelmann 1994; Noack et al. 2003;
Rowley 2005; Ilak et al. 2010; Holmes et al. 2012; Kalashnikova et al. 2014). The
accuracy of such approaches is intimately bound to the quality of the chosen bases.
The data from which appropriate bases for unsteady flow fields can be extracted
are typically limited to small spatial and temporal domains due to the previously
mentioned computational expense of high-fidelity CFD analyses. Furthermore, such
data are high-dimensional due to the spatial and temporal resolution typically required
for high-fidelity analyses. Thus, identification of a compact set of dynamically
important flow features that fundamentally characterise the fluid dynamics is a
non-trivial exercise. Proper orthogonal decomposition (POD), or principal components
analysis (PCA) (Sirovich 1987; Berkooz, Holmes & Lumley 1993; Chatterjee 2000;
Lucia, Beran & Silva 2004; Holmes et al. 2012), is a widely used and explored
technique aimed at meeting this need. The approach is based on identifying and
ordering principal components in observed data. The POD modes are optimal in terms
of capturing the energy of an observed flow response; thus, a reduced-dimensional
basis of the system is identified by truncating the modes based on the energy
contribution to the response (Sirovich 1987; Berkooz et al. 1993; Chatterjee 2000;
Lucia et al. 2004; Holmes et al. 2012). However, there are several issues with this
approach. First, the POD modes are only optimal in the sense of reconstructing
the observed flow responses (Ilak & Rowley 2008; Holmes et al. 2012; Balajewicz,
Dowell & Noack 2013). Thus, they may not generalise well for model predictions
that deviate from observed conditions. From a fluid physics perspective, truncation
in the first few most energetic modes is problematic due to energy exchange
between large- and small-scale structures (Amsallem & Farhat 2012; Holmes et al.
2012; Balajewicz et al. 2013). The large-scale structures are formed as a result of
disturbances in the flow – obtaining energy from the mean flow and then subsequently
breaking down into smaller scales (Pope 2009). The small-scale structures then cause
energy dissipation and result in viscosity in the fluid flow. Thus, the POD based
Galerkin ROMs that use a truncated basis may overpredict the kinetic energy due to
insufficient energy dissipation (Noack, Papas & Monkewitz 2005; Amsallem & Farhat
2012; Holmes et al. 2012; Balajewicz et al. 2013). Moreover, the energy accumulation
over a period of time may also cause the ROM to become unstable (Amsallem &
Farhat 2012; Amsallem, Zahr & Farhat 2012; Balajewicz et al. 2013). Related to
this, it is now well established that POD modes are ineffective in capturing the local
dynamics (or transience) of full-order systems unless a large number of modes are
used (Ilak & Rowley 2008; Balajewicz et al. 2013). This is because a set of POD
modes minimises reconstruction errors over the entire time history of training data,
and may not capture low-energy dynamically important transience. For these reasons,
the optimality of POD is generally not a well-suited criterion for model reduction of
nonlinear unsteady flows.

Techniques such as balanced truncation (Zhou, Doyle & Glover 1996), balanced
POD (BPOD) (Ilak et al. 2010) and the eigensystem realisation algorithm (ERA)
(Ma, Ahuja & Rowley 2010) have addressed some of the limitations identified earlier.
However, balanced truncation is intractable for large data (for more than 10 000
degrees of freedom) (Kalashnikova et al. 2014), BPOD is only applicable to response
data of linear systems as it requires adjoint system information (Ilak et al. 2010;
Ma et al. 2010), and modes generated by the ERA cannot be used for projection of
nonlinear dynamics (Ma et al. 2010). In a recent study, a technique was developed to
generate a stable Galerkin projection based ROM (Balajewicz et al. 2013). However,
this requires an iterative process that involves multiple time integrations of the ROM

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

61
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.616


Model order reduction using sparse coding exemplified for the lid-driven cavity 191

until an energy balance is achieved. These issues highlight the need to explore
alternative basis identification techniques that not only generalise well to changing
flow conditions but also accurately capture essential multi-scale features.

Olshausen & Field (1996) argue that most naturally occurring phenomena are
conveniently represented using non-Gaussian distributions, whereas the PCA approach
is suitable when the structure of the data can be represented using Gaussian
distributions. In Gaussian distributions, the linear correlation between statistical
structures is the most important relation. Observations from a naturally occurring
phenomenon, such as natural images, contain higher-order statistics. To this end, a
technique based on sparse coding was proposed to extract the higher-order features
from natural image data (Olshausen & Field 1996). This approach, which is also
referred to as sparse dictionary learning (Kreutz-Delgado et al. 2003), generates a
finite dictionary of modes in which only a subset is active for a given time window.
Furthermore, sparse coding describes a nonlinear system in a locally linear manner
by tailoring the modes to the local behaviour of the system (Yang, Yu & Huang
2010). Thus, compared with the POD approach, where the principal components
of the observed data are identified, ordered and then truncated to a compact set,
sparse coding is formulated as a procedure to identify a compact representation that
approximately spans all of the observed data. The sparse coding approach has been
successfully applied in a number of topics, such as in image processing (Yang et al.
2009), audio analysis (Grosse et al. 2012), neuroscience (Olshausen & Field 1996,
2004; Lee et al. 2006) and electrical power disaggregation (Kolter, Batra & Ng 2010).
Recently, a sparsity-promoting dynamic mode decomposition (DMD) algorithm was
used to carry out efficient and accurate reconstruction of fluid-flow data (Jovanović,
Schmid & Nichols 2014). However, to the best of the authors’ knowledge, the sparse
coding approach has not been examined for reduced-order modelling of dynamical
systems.

The overall objective of this study is to explore the concepts of sparse coding for
the purposes of identifying coherent global and local structures in unsteady flows,
and the development of robust and accurate ROMs for predicting unsteady flow field
behaviour. The specific objectives of the paper are to (1) develop a framework that
combines concepts of sparse coding with a Galerkin based projection methodology
in order to generate predictive ROMs for unsteady flow fields and (2) investigate
the performance of the ROMs for incompressible flow in a two-dimensional (2-D)
lid-driven cavity.

The remainder of this paper is organised as follows. The POD and sparse coding
approaches are presented in § 2. Application of POD and sparse modes to model the
lid-driven cavity is presented in § 3. Concluding remarks are given in § 4.

2. Method of solution
High-resolution data are computed by solving the 2-D incompressible Navier–Stokes

(NS) equations using a direct numerical simulation (DNS) CFD solver. The POD
approach is based on the method of snapshots developed by Sirovich (1987). Sparse
modes are computed using the algorithm developed by Friedman, Hastie & Tibshirani
(2010). These approaches are detailed next.

2.1. Full-order model
The DNS solution to the non-dimensionalised NS equations given by (2.1) is
generated using an immersed-boundary method (Mittal et al. 2008),

∇ · u= 0,
∂u
∂t
+ (u · ∇)u=−∇p+ 1

Re
∇2u, (2.1a,b)
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where ∇ is the gradient operator, t is the non-dimensional time, Re is the Reynolds
number, p is the non-dimensional pressure and u is the non-dimensional velocity. The
non-dimensionalisation is carried out as

x= x∗

L
, u= u∗

u0
, t= t∗

(L/u0)
, p= p∗

ρu0
2
, (2.2a−d)

where x is the non-dimensional position vector, L is the characteristic length, ρ is the
density and u0 is the characteristic velocity. The dimensional quantities are represented
with superscript asterisks. The DNS code uses a second-order central-difference spatial
scheme and a second-order fractional-step method for time marching. The equations
are discretised on a Cartesian mesh and boundary conditions are imposed using a
ghost-cell procedure (Mittal et al. 2008).

2.2. Modal decompositions

The full-order solution is decomposed into mean, Ū(x), and fluctuating components,
q(x, t), of the velocity. The component Ū(x) is evaluated as the time average of
the velocity field. The component q(x, t) is approximated as a linear combination of
modes:

q(x, t)= ũ(x, t)≈
N∑

i=1

si(t)Φi(x), (2.3)

where Φi is the ith mode, ũ is the fluctuating component of the velocity field, N is
the number of modes, si(t) is the coefficient corresponding to the ith mode at time t
and x ∈Ω , Ω being the flow domain. The inner product between any vectors f and
g in the vector space spanned by the modes is given as

(f , g)=
∫
Ω

f · g dΩ. (2.4)

The inner product (2.4) is a standard energy product that conserves the energy in
incompressible flows (Holmes et al. 2012). The computation of POD and sparse
modes is discussed next.

2.2.1. Proper orthogonal decomposition
First, a snapshot matrix Q = [q1q2 · · · qk · · · qm] is constructed by stacking the

flow observations qk in its columns. Here, the observations are grid-independent,
i.e. quantities at each of the grid points are multiplied by the corresponding cell
volume. The procedure to extract POD modes from a snapshot matrix is extensively
documented in Sirovich (1987) and Berkooz et al. (1993), and therefore is not
repeated here. However, for comparative discussion with the sparse coding procedure,
it should be noted that the POD modes fundamentally represent the solution to the
following minimisation problem (Abdi & Williams 2010):

min
Φ,S

1
2
‖Q−ΦS‖2

F, such that (Φi,Φj)=
{

1, i= j,
0, i 6= j,

(2.5)

where the columns of Φ, Φi are the POD modes, S is the coefficient matrix and
‖ · ‖2

F is the grid-independent square Frobenius norm of ‘·’. The objective function
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in (2.5) provides the error in the representation of the snapshot matrix by the modes
Φ. It should be noted that the POD modes are optimal in representing the snapshot
matrix, i.e. a set of POD modes provides the smallest possible value for the objective
function when compared with any other sets of the same size. Consequentially, the
complete set of POD modes exactly reproduces the snapshot matrix (Holmes et al.
2012). Moreover, the POD modes are orthogonal and are arranged in descending order
of eigenvalues, where the first few modes represent the most energetic structures in
the snapshot data (Berkooz et al. 1993).

2.2.2. Sparse coding
One approach to sparse coding is the solution of the following minimisation

problem:

min
S,Φ

1
2
‖Q−ΦS‖2

F + β‖S‖0, ‖Φi‖ = 1 for all i, (2.6)

where the columns of Φ are the sparse modes, S is a matrix of activation coefficients,
each column sk of S is encouraged to be sparse by a penalty on the L0 ‘norm’ of S
(the count of the non-zero elements of the matrix) and β > 0 is the regularisation (or
penalty) parameter, denoted here as the sparsity coefficient. It should be noted that
if the penalty term is ignored, (2.6) reduces to the PCA problem (2.5) and yields
the POD modes. The L0 penalty forces some of the entries in sk to be zero, thereby
resulting in a sparse coefficient matrix. The level of sparsity is controlled using β,
where increasing the value of β increases the number of zero entries in sk, thus
producing a sparser coefficient matrix S. Yang et al. (2009) recommend that a value
of 0<β < 0.5 is typically adequate for most cases.

In practice, the solution of (2.6) is challenging due to its non-convexity (Zuo et al.
2013), both from the fact that the objective is not jointly convex in Φ and S, and due
to the non-convexity of the L0 norm. To address the latter problem, the L0 penalty
in (2.6) is replaced with an L1 penalty (Zuo et al. 2013). The optimisation problem
is then given as

min
S,Φ

m∑
k=1

(
1
2

∥∥qk −Φsk

∥∥2 + β ‖sk‖1

)
, ‖Φi‖ = 1 for all i, (2.7)

where ‖ · ‖1 is the L1 norm. Although this problem is still not jointly convex in
S and Φ, it can be approximately optimised by alternating minimisation over these
two matrices, leading to convex problems in both cases. In particular, optimising
(2.7) over S is known as a least absolute shrinkage and selection operator (LASSO)
problem (Tibshirani 1996), and has been widely studied (Tibshirani 1996; Friedman,
Hastie & Tibshirani 2008; Friedman et al. 2010). A number of algorithms have been
devised to solve (2.7). In the current study, an algorithm (Friedman et al. 2010) based
on the coordinate descent technique is adopted. Likewise, optimising (2.7) over Φ is
a constrained least-squares problem, and is solved by using the method of optimal
directions (MOD) approach (Engan, Aase & Hakon 1999). The MOD approach is
equivalent to post-multiplying Q with the pseudo-inverse of the matrix S to obtain
the updated dictionary elements. It is important to recognise that the use of the L1
penalty eliminates the condition of orthogonality of the modes; hence, the sparse
modes are typically not orthogonal. Additionally, due to the induced sparsity in the
representation of the snapshot matrix, the resulting sparse modes are sub-optimal, i.e.
the reconstruction error has a larger value for a set of sparse modes compared with
a POD set of the same size. Thus, the reconstruction error for a POD set provides a
lower bound for the global optimum of (2.7).
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It should be noted that the application of sparse coding in this study deviates
from the traditional approach. Conventionally, sparse coding is used to compute
overcomplete dictionaries when applied to image analysis and signal processing
applications (Lee et al. 2006; Yang et al. 2010; Zuo et al. 2013). As overcomplete
dictionaries contain more basis vectors than the number of snapshots, the basis
vectors are not linearly independent. The overcompleteness of the dictionary is not
suitable when carrying out Galerkin projection, as the linear independence of modes
is required in order to build a stable Galerkin based ROM. In order to obtain linearly
independent modes, fewer modes than the number of snapshots are specified in the
present study. It should also be noted that the sparse modes are not ‘ordered‘ in
terms of energy content, and computation of a completely new set of sparse modes
is needed when building a new sparse ROM of higher or lower dimension.

The sparse modes with desired sparsity levels are generated by varying β between
0 and 0.5. For any given value of β, the process of computing the sparse modes is
initiated with a guess for the sparse modes. The initial guess matrix for Φ contains as
many columns as the desired number of sparse modes. The modes and corresponding
coefficient matrix are updated iteratively as explained earlier. The sparse coding
process is stopped once the modes are converged, such that the absolute change in
the value of the objective function (2.7) between two consecutive iterations is less
than a convergence criterion, set here as ε = 10−3. It should be noted that due to the
non-convexity of the minimisation problem in (2.7), the use of completely random
initial guess vectors can yield locally optimal solutions that produce inadequate bases
for accurate snapshot reconstruction or predictive modelling. However, this is readily
avoided by choosing initial guess vectors that span the snapshot matrix. This is
achieved in this study by setting the initial guess matrix for Φ as a random set of
snapshots from the flow solution.

Another factor that is found to affect the performance of a set of sparse modes is
the sparsity of the coefficient matrix, defined as

Sparsity= 100× number of zero elements in S

m×N
%. (2.8)

A coefficient matrix with a low sparsity is associated with modes that do not capture
the local dynamics (transience) of the full-order system. Moreover, a highly sparse
coefficient matrix may result in modes that provide a poor representation of the
structure in the observed data. Thus, an ‘optimal’ sparsity level exists to capture both
the structure and the local dynamics in the observed data. As discussed later, sparsity
levels of 50–80 % are found to result in stable and reasonably accurate sparse ROMs.
The process of sparse coding is summarised in Algorithm 1.

Finally, by definition, the sparse encoding process (Algorithm 1) generates a sparse
coefficient matrix, where the coefficients of different modes are identically zero for
different snapshots. However, the sparse coefficients do not represent the best fit to the
snapshots due to the presence of the L1 penalty in (2.7). A best fit for the projection
coefficients of the sparse modes is computed by solving the following multivariate
linear regression problem using a least-squares estimate:

min
S

1
2‖Q−ΦS‖2

F. (2.9)

The projection coefficients S computed from (2.9) result in smaller reconstruction
errors compared with the sparse coefficients. These projection coefficients for the
first snapshot are used as initial conditions for ROMs constructed using Galerkin
projection.
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Algorithm 1: Sparse coding algorithm
Input : Snapshot matrix Q of size n×m, number of sparse modes to be

computed (N), sparsity coefficient (β), convergence criterion (ε > 10−3)
Output : Sparse modes (Φ), sparse coefficient matrix (S)

1 Initialise the sparse modes as randomly sampled snapshots (qk)
2 Iteration number, i= 1
3 while ε > 10−3 do
4 Solve for sparse coefficient matrix S one column sk at a time by solving the

LASSO problem:
5 for k= 1, 2, . . . ,m do

6 min
sk

(
1
2

∥∥qk −Φsk

∥∥2

F + β ‖sk‖1

)
7 end
8 Update the sparse modes Φ by solving the following minimisation problem

using the MOD approach:

min
Φ

m∑
k=1

1
2

(∥∥qk −Φsk

∥∥2

F

)
, ‖Φi‖6 1 for all i

9 Evaluate the objective function:

Γ (i)=∑m
k=1

(
1
2

∥∥qk −Φsk

∥∥2

F + β ‖sk‖1

)
, ‖Φi‖6 1 for all i

10 Check for convergence, ε = |Γ (i)− Γ (i− 1)|
11 Update iteration number i= i+ 1
12 end

13 Evaluate sparsity, Sparsity = 100× number of zero elements in S

m×N
%

2.2.3. Galerkin projection
The reduced-order solution to the unsteady fluid system is obtained by computing

the time histories of the modal coefficients using a Galerkin projection framework. In
Galerkin projection (Rowley 2005; Ilak et al. 2010; Holmes et al. 2012; Kalashnikova
et al. 2014), the governing partial differential equations are projected onto the space
spanned by a set of basis functions to yield a system of ordinary differential equations.
The implementation of Galerkin projection involves the following steps. First, the
fluctuating component of each snapshot (qk) is expanded as a linear combination
of reduced-order modes as shown in (2.3). Next, the expansion is substituted into
the governing equations, (2.2). Subsequently, the residual term is minimised by
constraining it to be orthogonal to the space spanned by the modes. This process
results in the following set of ordinary differential equations:(

Φi,
∂(ũ+ Ū)

∂t
+ ((ũ+ Ū) · ∇

)
(ũ+ Ū)

)
= 1

Re

(
Φi,∇2(ũ+ Ū)

)
, (2.10)

where i= 1, 2, . . . ,N and ũ is expressed as a linear combination of the reduced-order
modes, as shown in (2.3). It should be noted that the reduced-order modes for an
incompressible flow are divergence free; therefore, the inner product of the modes with
the gradient of pressure vanishes for the homogeneous boundary conditions used in
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x

y

FIGURE 1. The two-dimensional lid-driven cavity configuration.

this study (Holmes et al. 2012). Equation (2.10) yields the following set of evolution
equations for the modal amplitudes si(t):



ds1(t)
dt
...

dsi(t)
dt
...

dsN(t)
dt


= [dij]−1



c1 +
N∑

j=1

l1jsj(t)+
N∑

j=1

N∑
k=1

q1jksj(t)sk(t)

...

ci +
N∑

j=1

lijsj(t)+
N∑

j=1

N∑
k=1

qijksj(t)sk(t)

...

cN +
N∑

j=1

lNjsj(t)+
N∑

j=1

N∑
k=1

qNjksj(t)sk(t)


, (2.11)

where the coefficients are given as

ci =−
(
Φi,
(
Ū · ∇

)
Ū
)+ 1

Re

(
Φi,∇2Ū

)
, (2.12)

lij =−
(
Φi,
(
Φj · ∇

)
Ū
)− (Φi,

(
Ū · ∇

)
Φj
)+ 1

Re

(
Φi,∇2Φj

)
, (2.13)

qijk =−
(
Φi,
(
Φj · ∇

)
Φk
)
, (2.14)

dij =
(
Φi,Φj

)
. (2.15)

The system of ordinary differential equations is then time marched using the fourth-
order Runge–Kutta scheme to obtain the evolution of the modal coefficients, referred
to from hereon as prediction coefficients.

3. Application to modelling of a lid-driven cavity
The POD and sparse coding approaches are applied to model the 2-D incompressible

flow in a lid-driven cavity, which is schematically depicted in figure 1. The unsteady
response of a fluid enclosed in a cavity is actuated using a moving surface (lid).
This configuration has been used in several studies (Leblond, Allery & Inard 2011;
Terragni, Valero & Vega 2011; Balajewicz et al. 2013) for benchmarking purposes.
The cavity considered in this study is a 2-D square enclosed region, with three rigid
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stationary walls and one rigid lid translating in the x direction with constant velocity.
The lid velocity is prescribed as (1− (2x− 1)2)2, where x varies from 0 to 1. The
DNS solutions are obtained using a 512 × 512 uniform grid at Re ranging from
15 000 to 35 000, where the Re is computed based on the maximum lid velocity.
Following the case considered by Balajewicz et al. (2013), the modal decompositions
are computed from Re= 30 000 flow data, and most of the analysis is presented for
this case. The remaining flow data sets are used to study the performance of the
constructed ROMs for off-design flow conditions.

The constructed ROMs are assessed in terms of the root mean square (RMS)
of the flow field, and the power spectral densities of the probe velocity data,
auto- and two-point covariances, and cross-power spectral densities are used to
quantify comparisons between DNS, and POD and sparse ROMs. These second-order
statistics are considered due to the chaotic nature of turbulent flow fields, which
makes point-wise comparison an unreliable metric for assessing accuracy.

3.1. Choice of snapshot matrix
A total of 50 000 uniformly sampled observations are collected from Re = 30 000
flow over 500 units of non-dimensional time once the flow had reached a statistically
stationary state. A subset of snapshots from the large set of observations is used to
construct a snapshot matrix. An ‘optimal’ snapshot matrix should capture most of the
important flow features while keeping the number of snapshots to a minimum.
Convergence in the mean flow and instantaneous turbulent kinetic energy (K)
quantities is used as a criterion for choosing the optimal snapshot matrix, where

K(t)= 0.5 (ũ(t), ũ(t)) . (3.1)

Four snapshot matrices constructed using different sampling frequencies (ω) and
spanning different periods of time are considered, as summarised in table 1. The
snapshot matrix numbered 1 with a sampling frequency of 100 and a time span of
50 units is used as the benchmark case, against which the rest of the three snapshot
matrices are compared. Normalised L2 percentage errors in the estimated mean flow
field for matrices 2, 3 and 4 are also provided in table 1. The errors in mean flow for
matrices 2 and 3 are less than half of that for matrix 4. Furthermore, instantaneous
K values are computed over 100 units of time using the mean flows obtained from
each of the matrices, as shown in figure 2. The normalised L2 errors in the estimates
of K obtained from the matrices numbered 2 and 3 are only 3 %, whereas for matrix
4 the error is as high as 13.32 %. This convergence study indicates that the first- and
second-order statistics, i.e. mean flow and instantaneous K respectively, are converged
for matrices 2 and 3. Moreover, matrix 3 contains 1250 snapshots, compared with
2500 snapshots in matrix 2. Therefore, the snapshot matrix numbered 3 with a
sampling rate of 50 units and a time span of 25 units is used to construct the ROMs.

3.2. Dimensionality reduction using POD and sparse modes
The ability of the POD and sparse coding approach to carry out effective dimension-
ality reduction is assessed next. For this purpose, the snapshot matrix is approximated
using different sets of POD and sparse modes. The normalised L2 error in the root
mean square (RMS) values of the approximated fluctuating flow velocity vector is
used as the performance metric. The RMS values are computed over time, at each
of the grid points, for DNS and different sets of POD and sparse modes.
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12.5 units, 100 Hz

FIGURE 2. The turbulent kinetic energy (K) of the flow predicted by DNS over the first
100 time units, computed using the mean flow obtained from different snapshot matrices.
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FIGURE 3. Errors in the representation of the snapshot matrix using the converged
solutions for (a) 20-mode and (b) 50-mode sets. Errors for sparse modes for 30 different
initial guesses are compared against POD sets of size 20 and 50.

Snapshot
matrix
number

Non-
dimensional

time spanned

Non-dimensional
sampling

frequency (ω)

Number of
snapshots

Error in
mean flow

(%)

Error in
K (%)

1 50 100 5000 0.00 0.00
2 25 100 2500 1.16 3.00
3 25 50 1250 1.16 3.00
4 12.5 100 1250 2.77 13.32

TABLE 1. Normalised L2 errors in estimated mean flows obtained from four different
snapshot matrices, and estimated instantaneous K over 100 time units.

First, the sensitivity of a converged sparse coding solution to change in the initial
guess for the sparse modes is studied. A set of 30 different initial guesses is used
for computing 20 and 50 sparse modes. As discussed earlier, the initial guesses are
obtained from randomly sampling the snapshot matrix. The RMS flow field errors in
the representation of the snapshot matrix using the converged solutions for 20- and
50-sparse-mode sets are compared against those of POD sets in figure 3. The mean
and standard deviation values for errors, and the difference between POD and mean
sparse errors are listed in table 2. As discussed earlier, due to the optimality of POD
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Number of
modes

POD error
(%)

Mean sparse
error (%)

Standard deviation
sparse errors (%)

20 4.85 5.88 0.13
50 0.58 0.74 0.016

TABLE 2. Mean and standard deviations of the normalised L2 errors in the representation
of the RMS of the fluctuating velocity vector by 20- and 50-mode sets of sparse modes.
The 20- and 50-mode POD errors are provided for reference.

Number of
modes

POD error
(%)

Sparse error
(%)

Sparsity in
representation

(%)

10 1.13× 101 1.29× 101 78.16
20 4.85× 100 5.67× 100 71.80
50 5.78× 10−1 7.42× 10−1 69.34
80 9.54× 10−2 1.09× 10−1 65.05

100 3.58× 10−2 3.79× 10−2 67.62
200 4.03× 10−4 4.10× 10−4 64.91

TABLE 3. Normalised L2 errors in the representation of the RMS of the fluctuating
velocity vector by POD and sparse modes, and sparsity in the representation of the
snapshot matrix by sparse modes.

Number of
modes

POD error
(%)

Sparse error
(%)

10 313.76 34.71
20 835.09 16.39
50 52.11 10.54
80 11.49 11.73

100 11.37 10.60
200 11.12 11.02

TABLE 4. The normalised L2 error in the prediction of the RMS of the fluctuating
velocity vector by several POD and sparse ROMs.

modes in reconstructing the snapshot matrix, the POD error provides the lower bound
of the global optimum of (2.7) when using the same sized sparse set. The differences
between errors in the representation of the snapshot matrix using sparse modes with
different initial guesses and the same number of POD modes are small. Moreover, the
standard deviations in the sparse errors are significantly smaller than the mean sparse
errors for both cases.

Next, the normalised L2 errors in the representation of the RMS flow field by
different sets of POD modes and selected sets of sparse modes of sizes 10, 20, 50,
80, 100 and 200 are compared in table 3. Again, the differences between the errors
in representation using POD and sparse sets are small, with less than 1.6 % maximum
difference. Additionally, the sparsity levels in the coefficient matrix output from the
sparse coding process, corresponding to the different sets of sparse modes, are listed
in table 3. By design, the sparsity levels lie in the range of 50–80 %.
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FIGURE 4. Sparsity and normalised L2 error in the representation of the snapshot matrix
using sparse modes. The snapshot matrix consists of 1250 snapshots, and 20 sparse modes
are computed. The 20-mode POD error is provided for reference.

Mode 1 Mode 10 Mode 50 Mode 100

FIGURE 5. The u and v components of the POD modes numbered 1, 10, 50 and 100 of
the lid-driven cavity.

As discussed, the sparse modes with the desired level of sparsity in the representa-
tion of the snapshot matrix are computed by varying the sparsity parameter, β. The
relationship between the β value, the sparsity in the representation and the normalised
L2 error in the reconstruction of the snapshot matrix is shown in figure 4. Here, a total
of 20 sparse modes are computed, with a fixed initial guess matrix, for β varying from
5× 10−5 to 5× 10−3. The resulting sparsity increases monotonically from 0 % up to
97 %. Correspondingly, the reconstruction error increases from 4.9 % up to 10 %. It
should be noted that values of β greater than 5 × 10−3 failed to produce 20 sparse
modes.

3.3. Comparison between POD and sparse modes
Comparison between POD modes, sparse modes and the original snapshots is provided
next. The velocity components of the POD modes numbered 1, 10, 50 and 100, and
four modes taken arbitrarily from a set of 100 sparse modes are shown in figures 5
and 6 respectively. For reference, the velocity components from the full-order solution
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FIGURE 6. The u and v components of four of the sparse modes of the lid-driven cavity.

FIGURE 7. The u and v components of four different snapshots of the lid-driven cavity.

are displayed in figure 7. The POD approach produces a set of orthogonal modes that
are ordered from highest to lowest energy. Accordingly, the spatial variance of the
POD modes increases with increasing mode number, where the lower-order modes
capture the high-energy structures. In contrast, all of the sparse modes have mixed
structures that resemble those in the flow field snapshots.

The ability of a set of sparse modes to account for the multi-scale features is
studied by computing the transformation matrix between 20 sparse modes and 200
POD modes. Figure 8 shows the log10 of the absolute value of the transformation
matrix. A relatively large value of an element of the transformation matrix represents
a higher degree of correlation between a corresponding POD mode and a sparse
mode. For example, a value of 0 in figure 8 represents 100% correlation between
the corresponding pair of POD and sparse modes; a value of −∞ represents zero
correlation. None of the entries are smaller than −9. Thus, the set of 20 sparse
modes contains combinations of all 200 POD modes. Consequentially, a set of sparse
modes contains a broad spectrum of the large-energy and small-energy information.

The energy content in the modes is estimated as the sum of the squares of the
projection coefficients corresponding to the snapshot matrix, as shown in figure 9. It
should be noted that since the sparse modes are not orthogonal, the sums of squares
of coefficients may overpredict the energy. Thus, this is not a precise quantitative
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FIGURE 8. Transformation matrix between the 20 sparse modes and 200 POD modes.
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FIGURE 9. Estimated energy content in the first 100 POD modes and the sparse modes
of a 100-mode model of the lid-driven cavity, expressed in terms of the sum of squares
of projection coefficients evaluated over 25 time units. The estimated energy content in
sparse modes is rearranged in terms of decreasing sums of squares of coefficients.

comparison. However, it highlights the relative distribution of energy between the
different sparse modes. It is observed that the energy content in the POD modes
decreases rapidly with increase in mode number, with the first 17 modes accounting
for approximately 90 % of the total energy. In comparison, the estimated energy
distribution in the sparse modes is more uniform, or levelled.

The time varying projection coefficients of the POD modes for first 25 units of
the time history are shown in figure 10. The coefficients obtained as output from
the sparse coding process (Algorithm 1) are compared with projection coefficients
computed using (2.9) for sparse modes in figure 11. Projections of the modes
onto the snapshots using (2.9) indicate negligible activity in the time spans where the
encoding of the modes to the snapshots yields zero activity. Thus, while the projection
of snapshots onto the sparse modes does not yield exactly zero coefficients, the
characteristically intermittent behaviour of the modal activity represents a fundamental
difference with POD modes.
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FIGURE 10. The time history of POD projection coefficients corresponding to the 100-
mode POD set of the lid-driven cavity; coefficients of (a) POD mode 1 and (b) POD
mode 2.
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FIGURE 11. The time history of sparse projection coefficients and sparse coefficients
output from the sparse coding process corresponding to the 100-mode sparse sets of the
lid-driven cavity; coefficients corresponding to (a), (b) two of the sparse modes.
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FIGURE 12. The RMS of the (a) u and (b) v velocity components of flow within the
lid-driven cavity as predicted by DNS.

3.4. Predicted RMS velocity fields
The flow predictions obtained from the ROMs are compared with the full-order
solutions for 500 time units. The RMS values of the flow velocities u and v over
time, as computed using DNS, are shown in figure 12. The RMS values corresponding
to the 10-, 20-, 50-, 80-, 100- and 200-mode POD and sparse ROMs are shown in
figures 13–16. It should be noticed that the colour-bars used in the predicted RMS
velocity flow field figures are consistent with those of DNS. The normalised L2
errors in the RMS of the fluctuating velocity vector computed over time, as predicted
by POD and sparse ROMs, are listed in table 4. It is observed that the errors in
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(a) (b) (c)

(d ) (e) ( f )

FIGURE 13. The RMS of the u velocity component of flow within the lid-driven cavity
as predicted by (a) 10-mode, (b) 20-mode, (c) 50-mode, (d) 80-mode, (e) 100-mode and
( f ) 200-mode POD ROMs.

(a) (b) (c)

(d ) (e) ( f )

FIGURE 14. The RMS of the v velocity component of flow within the lid-driven cavity
as predicted by (a) 10-mode, (b) 20-mode, (c) 50-mode, (d) 80-mode, (e) 100-mode and
( f ) 200-mode POD ROMs.

predicting the RMS velocities are much smaller for the 10- to 50-mode sparse models
compared with the corresponding POD models. The 10-mode sparse ROM predicts
RMS flow velocities with approximately 35 % error, which is smaller than the error in
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(a) (b) (c)

(d ) (e) ( f )

FIGURE 15. The RMS of the u velocity component of flow within the lid-driven cavity
as predicted by (a) 10-mode, (b) 20-mode, (c) 50-mode, (d) 80-mode, (e) 100-mode and
( f ) 200-mode sparse ROMs.

(a) (b) (c)

(d ) (e) ( f )

FIGURE 16. The RMS of the v velocity component of flow within the lid-driven cavity
as predicted by (a) 10-mode, (b) 20-mode, (c) 50-mode, (d) 80-mode, (e) 100-mode and
( f ) 200-mode sparse ROMs.

prediction by the 50-mode POD model of over 50 %. Moreover, the errors converge
to approximately 10–12 % for sparse models with 50 or more modes, whereas as
many as 80 POD modes are required to achieve this convergence.
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FIGURE 17. The time history of the instantaneous K of the lid-driven cavity as predicted
by DNS, and the computed POD and sparse ROMs constructed using (a) 10 modes,
(b) 20 modes, (c) 50 modes, (d) 80 modes, (e) 100 modes and ( f ) 200 modes. The
snapshot matrix used to compute the modes spans the first 25 time units, and ROMs are
integrated for 500 time units.

3.5. Predicted instantaneous turbulent kinetic energy
The instantaneous turbulent kinetic energy K predicted by ROMs is shown in
figure 17. The sparse ROMs generally capture the energy levels with greater accuracy
compared with the POD ROMs for the same number of modes used. When averaging
over the first 500 time units, the 10- and 20-mode POD models overpredict the
energy by two orders of magnitude, compared with 1.3 for the 10-mode sparse
model. Similarly to the observations made for the RMS velocities, as many as 80
POD modes are required to capture the K levels with accuracy, whereas all of the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

61
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.616


Model order reduction using sparse coding exemplified for the lid-driven cavity 207

3010 20 40 500

3010 20 40 500 3010 20 40 500

100

10–10

10–20

100

10–10

10–20

100

10–10

10–20

DNS POD200 Sparse200

DNS POD20 Sparse20 DNS POD80 Sparse80
(a) (b)

(c)

FIGURE 18. The PSD of the turbulent kinetic energy of the lid-driven cavity as predicted
by DNS, and the (a) 20-mode, (b) 80-mode and (c) 200-mode POD and sparse ROMs.

sparse models capture the K levels with at least reasonable accuracy. These results
are consistent with previous findings (Noack et al. 2005; Amsallem & Farhat 2012;
Holmes et al. 2012; Balajewicz et al. 2013) that ignoring small-scale low-energy
information in a truncated POD set may result in overprediction of the turbulent
kinetic energy, and therefore result in an inaccurate flow prediction.

Next, the power spectral densities (PSDs) of the instantaneous turbulent kinetic
energy predicted by 20-, 80- and 200-mode POD and sparse ROMs are shown
in figure 18. Bendat & Piersol (2010) recommend using long time histories with
integral powers of two instances for accurate PSD estimations. Therefore, the PSDs
are computed over 215 data points corresponding to the last 327.68 time units
using Welch’s method (Welch 1967). Furthermore, a Hanning window is used to
minimise truncation errors. Consistent with the previous set of results, the 20-mode
POD model significantly overpredicts the energy values over the entire range of
frequencies, whereas 20-mode sparse and higher-order ROMs provide a good overall
prediction.

3.6. Comparison between projection and prediction coefficients
Next, the projection and prediction coefficients for the 100-mode POD and sparse
models are compared in figure 19. There is good agreement between the projection
and prediction coefficients for both POD and sparse ROMs over the first 10 time
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FIGURE 19. The time history of projection and prediction coefficients corresponding to
the 100-mode POD and 100-mode sparse sets of the lid-driven cavity; coefficients of
(a) POD mode 1, (b) POD mode 2 and (c), (d) two of the sparse modes.
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FIGURE 20. The two probe locations in the computational domain over which the local
dynamics of the predicted and DNS flows are computed.

units, past which the prediction coefficients deviate from the projection coefficients in
terms of both phase and magnitude. As noted previously, this behaviour is expected
for ROMs representing chaotic full-order systems.

3.7. Predicted local flow dynamics
Next, the accuracy of POD and sparse ROMs in capturing the local dynamics of the
flow within the lid-driven cavity is studied. For this purpose, the velocity data are
considered at two probe locations denoted by P1 and P2, as shown in figure 20. Again,
the probe data are saved for the last 327.68 time units, which correspond to 215 data
points.
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FIGURE 21. The PSDs of the u and v velocity components at probe P1, as predicted by
DNS, POD ROMs and sparse ROMs; (a) PSD of u by 20-mode models, (b) PSD of v by
20-mode models, (c) PSD of u by 80-mode models, (d) PSD of v by 80-mode models,
(e) PSD of u by 200-mode models and ( f ) PSD of v by 200-mode models.

First, the PSDs of the u and v velocity components computed for the two probes
are shown in figures 21 and 22. The PSDs are computed following the procedure
discussed in § 3.5. The 20-mode POD model overpredicts the PSD of both the u and v
components over the first 20 units of frequency for both the probe locations, whereas
the 20-mode sparse, and 80-mode and 200-mode POD and sparse models provide
accurate predictions for the PSDs. It should be noticed that the PSDs are plotted in
logarithmic scale, and over 99 % of the power is contained in the first three units of
frequency.
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FIGURE 22. The PSDs of the u and v velocity components at probe P2, as predicted by
DNS, POD ROMs and sparse ROMs; (a) PSD of u by 20-mode models, (b) PSD of v by
20-mode models, (c) PSD of u by 80-mode models, (d) PSD of v by 80-mode models,
(e) PSD of u by 200-mode models and ( f ) PSD of v by 200-mode models.

Next, the autocovariances of the predicted velocities are computed for the two probe
locations. The autocovariance of a random signal z1(t) is given as (Bendat & Piersol
2010)

Rz1,z1(ζ )= 〈(z1(t)−µz1) , (z1(t+ ζ )−µz1)〉t, (3.2)

where Rz1,z1 is the autocovariance of a random signal z1(t), µz1 is the mean of z1(t),
ζ is the non-dimensional time lag and 〈.〉t is the convolution operation over variable t.
The autocovariance is maximum at time lag ζ = 0, i.e. when the signal is convoluted
with itself without any time lag. Moreover, the autocovariance of a random signal
will sharply drop to zero as |ζ | is increased from zero, whereas, for a constant
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FIGURE 23. Autocovariances of the u and v velocity components at probe P1, as
predicted by DNS, POD ROMs and sparse ROMs: (a) Ru(P1),u(P1) by 20-mode models,
(b) Rv(P1),v(P1) by 20-mode models, (c) Ru(P1),u(P1) by 80-mode models, (d) Rv(P1),v(P1) by
80-mode models, (e) Ru(P1),u(P1) by 200-mode models and ( f ) Rv(P1),v(P1) by 200-mode
models.

signal, the autocovariance will acquire a constant value for all values of ζ . Thus, the
autocovariance provides a good measure of the dynamics at any given point in the
flow field. The autocovariances of the u and v velocities at the two probe locations
are provided in figures 23 and 24. The 20-mode POD model overpredicts the peak
value of the autocovariance for u by two orders of magnitude and the autocovariance
for v by an order of magnitude, whereas the 20-mode sparse, and 80-mode and
200-mode POD and sparse models capture the peak value, width of the peak and
overall magnitude of the autocovariance with reasonable accuracy. Interestingly, the
20-mode sparse, and 80-mode and 200-mode POD and sparse ROMs predict the
autocovariances of the u component with better accuracy than the autocovariances
of the v component. However, it should be noticed that the magnitudes of the
autocovariances of the v component are four orders of magnitude smaller than those
of the u component. Thus, these ROMs are able to capture the overall dynamics of
the flow, which corresponds to the u component for the considered probes, with good
accuracy.
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FIGURE 24. Autocovariances of the u and v velocity components at probe P2, as
predicted by DNS, POD ROMs and sparse ROMs: (a) Ru(P2),u(P2) by 20-mode models,
(b) Rv(P2),v(P2) by 20-mode models, (c) Ru(P2),u(P2) by 80-mode models, (d) Rv(P2),v(P2) by
80-mode models, (e) Ru(P2),u(P2) by 200-mode models and ( f ) Rv(P2),v(P2) by 200-mode
models.

The autocovariances of the flow field using an integral measure without a location
bias are also considered using the following equation:

C(ζ )=
∫
Ω

ũ(x, t) · ũ(x, t− ζ ) dx. (3.3)

The bias in the autocovariance (3.2) is removed by integrating the autocovariances
for each of the grid points over the entire computational domain. Results for 20-,
80- and 200-mode POD and sparse ROMs are provided in figure 25. Similarly to the
observations made in the previous set of results, all of the sparse and higher-order
POD models provide reasonably accurate predictions for the unbiased autocovariances.
However, the 20-mode POD model overpredicts the unbiased autocovariances by two
orders of magnitude.

In order to further assess the capabilities of the ROMs in capturing the local
dynamics, the relationships between the flow quantities at two probe locations are
studied. Two-point covariances and cross-power spectral densities (CPSDs) are used
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FIGURE 25. The unbiased autocovariances of the u and v velocity components, as
predicted by DNS, POD ROMs and sparse ROMs: (a) Cu,u by 20-mode models, (b) Cv,v

by 20-mode models, (c) Cu,u by 80-mode models, (d) Cv,v by 80-mode models, (e) Cu,u
by 200-mode models and ( f ) Cv,v by 200-mode models.

for this purpose. The two-point covariance between two random signals z1 and z2,
recorded at two different probe locations, is given by (Bendat & Piersol 2010)

Rz1,z2(ζ )= 〈(z1(t)−µz1) , (z2(t+ ζ )−µz2)〉t, (3.4)

where Rz1,z2 is the two-point covariance of random signals z1(t) and z2(t), and µz2
is the mean of z2(t). Two-point covariance provides an estimate of the relationship
between velocity signals at two probe locations. The two-point covariances between
the flow quantities at two probe locations, Ru(P1),u(P2) and Rv(P1),v(P2), are shown in
figure 26. All of the ROMs capture the location of the peak at ζ = 0.03 time units.
However, the 20-mode POD ROM significantly overpredicts the magnitudes of the
two-point covariances. Similarly to the previous observations, the 20-mode sparse, and
the higher-order POD and sparse ROMs provide reasonably accurate predictions for
the two-point correlations.

Next, CPSDs between the flow quantities at two probe locations are presented in
figures 27 (magnitudes) and 28 (imaginary parts). The CPSD provides an estimate
of the correlation between two signals in the frequency domain. The CPSDs are
computed using the ‘cpsd’ function of MATLAB, which uses Welch’s method (Welch
1967). The time domain signals are divided into seven bins with 50 % overlap between
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FIGURE 26. Two-point covariances of the u and v velocity components between probes
P1 and P2, as predicted by DNS, POD ROMs and sparse ROMs: (a) Ru(P1),u(P2) by
20-mode models, (b) Rv(P1),v(P2) by 20-mode models, (c) Ru(P1),u(P2) by 80-mode models,
(d) Rv(P1),v(P2) by 80-mode models, (e) Ru(P1),u(P2) by 200-mode models and ( f ) Rv(P1),v(P2)
by 200-mode models.

them. Additionally, a Hanning window is used to minimise truncation errors. The
20-mode sparse, and 80-mode and 200-mode ROMs capture the CPSDs over the first
three frequency units accurately, whereas the 20-mode POD model overpredicts the
CPSDs over the same frequency range. Moreover, the 20-mode sparse model and the
higher-order ROMs capture the magnitude of the imaginary components of CPSDs
with reasonable accuracy. The 20-mode POD model provides a poor prediction for
the imaginary components.

3.8. Robustness of POD and sparse ROMs
The robustness of POD and sparse ROMs is assessed by computing DNS and ROM
solutions with varying Re, which for the lid-driven cavity problem here represents a
change in lid velocity. However, it should be noted that the ROMs are constructed
using modes extracted from a singular Re case (30 000). The solutions are compared
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FIGURE 27. Magnitudes of the CPSDs between probes P1 and P2, as predicted
by DNS, POD ROMs and sparse ROMs: CPSD of (a) (u(P1), u(P2)) by 20-mode
models, (b) (v(P1), v(P2)) by 20-mode models, (c) (u(P1), u(P2)) by 80-mode models,
(d) (v(P1), v(P2)) by 80-mode models, (e) (u(P1), u(P2)) by 200-mode models and
( f ) (v(P1), v(P2)) by 200-mode models.

over 100 time units past a statistically stationary condition. The mean flows used in
ROM construction are computed separately from each of the DNS simulations. The
initial conditions for each of the ROMs are computed by projecting the first snapshot
of the corresponding dataset onto the sets of POD and sparse modes. Representative
comparisons for predicted K are shown in figures 29–32. The errors in time averaged
K values for different ROMs over the range of Re values are shown in figure 33.
The 20- and 50-mode sparse models perform better than the corresponding 20- and
50-mode POD models for all of the Re values studied. Moreover, the 20-mode POD
ROM for Re=31 000 is unstable (figure 31a), while none of the sparse ROMs indicate
any stability issues. These results suggest that sparse modes produce ROMs that are
at least as robust as those generated using POD.
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FIGURE 28. Imaginary parts of the CPSDs between probes P1 and P2, as predicted
by DNS, POD ROMs and sparse ROMs: CPSD of (a) (u(P1), u(P2)) by 20-mode
models, (b) (v(P1), v(P2)) by 20-mode models, (c) (u(P1), u(P2)) by 80-mode models,
(d) (v(P1), v(P2)) by 80-mode models, (e) (u(P1), u(P2)) by 200-mode models and
( f ) (v(P1), v(P2)) by 200-mode models.

3.9. Computational expense

The computational costs associated with the POD and sparse ROMs computed for
Re= 30 000 are listed in tables 5 and 6 respectively. The simulations are performed
on an Intel(R) Xeon(R) E5-2620 v2 @ 2.10 GHz processor. The computation of
the sparse modes is one order of magnitude more expensive than generating the
POD modes. The costs to generate the Galerkin matrices and to carry out the
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FIGURE 29. The time history of the instantaneous K of the lid-driven cavity at Re 15 000
as predicted by DNS, and the computed POD and sparse ROMs constructed using (a) 20
modes, (b) 50 modes, (c) 60 modes and (d) 80 modes. The POD and sparse modes are
retained from the Re= 30 000 study.

Number
of

modes

Modes
calculation

(h)

Galerkin
matrices

(h)

ROM
integration and

output (h)

Total time
(h)

Speed-up in
online

computations

10 2.1× 10−1 3.4× 10−4 3.2× 10−1 5.4× 10−1 2.5× 102

20 2.3× 10−1 2.9× 10−3 3.3× 10−1 5.5× 10−1 2.2× 102

50 2.4× 10−1 8.9× 10−2 3.6× 10−1 6.9× 10−1 1.9× 102

80 2.8× 10−1 4.5× 10−1 4.3× 10−1 1.2 1.8× 102

100 3.7× 10−1 1.0 5.3× 10−1 2.0 1.5× 102

200 6.2× 10−1 3.2× 101 2.2 3.5× 101 3.6× 101

TABLE 5. Computational costs associated with several POD ROMs developed for the lid-
driven cavity at Re = 30 000. It should be noted that the modes are computed using a
snapshot matrix spanning the first 25 time units, whereas the ROMs are integrated for
500 time units.

ROM integration for POD and sparse ROMs are comparable. However, the cost of
generating the Galerkin matrices is proportional to the cube of the number of modes
used. This results in a high computational cost of generating a ROM when a large
number of modes are used. Therefore, it is desirable to minimise the number of modes
used in ROM construction, while maintaining reasonable accuracy in predictions.

The speed-ups obtained in carrying out online computations are also listed in
tables 5 and 6. The speed-up values are obtained by dividing the cost of CFD by
the combined cost of ROM integration and output operations, where the cost for
generating the 500 units of DNS data at Re = 30 000 is approximately 79.25 h.
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FIGURE 30. The time history of the instantaneous K of the lid-driven cavity at Re 29 000
as predicted by DNS, and the computed POD and sparse ROMs constructed using (a) 20
modes, (b) 50 modes, (c) 60 modes and (d) 80 modes. The POD and sparse modes are
retained from the Re= 30 000 study.

Number
of

modes

Modes
calculation

(h)

Galerkin
matrices

(h)

ROM
integration and

output (h)

Total time
(h)

Speed-up in
online

computations

10 9.1× 10−1 3.5× 10−4 3.2× 10−1 1.3 2.5× 102

20 1.4 3.0× 10−3 3.3× 10−1 1.7 2.2× 102

50 2.1 8.5× 10−2 3.6× 10−1 2.5 1.9× 102

80 3.7 4.3× 10−1 4.2× 10−1 4.5 1.8× 102

100 4.3 1.0 5.3× 10−1 5.8 1.5× 102

200 1.2× 101 3.3× 101 2.2 4.7× 101 3.6× 101

TABLE 6. Computational costs associated with several sparse ROMs developed for the
lid-driven cavity at Re = 30 000. It should be noted that the modes are computed using
a snapshot matrix spanning the first 25 time units, whereas the ROMs are integrated for
500 time units.

It should be noticed that the most expensive 200-mode ROMs provide a speed-up of
36. However, reasonably accurate flow predictions are obtained from 20-mode sparse
ROMs with online speed-up of 250 times, whereas, when using POD modes, up
to 80 modes are required to form an accurate ROM. This corresponds to an online
speed-up of 180.

The sums of computational costs for several POD and sparse ROMs developed for
the off-design conditions are listed in tables 7 and 8. The sum of computational costs
is obtained by adding up the costs associated with ROMs developed using a fixed
set of modes, over the complete range of Re = 15 000–35 000. As the modes used
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FIGURE 31. The time history of the instantaneous K of the lid-driven cavity at Re =
31 000 as predicted by DNS, and the computed POD and sparse ROMs constructed using
(a) 20 modes, (b) 50 modes, (c) 60 modes and (d) 80 modes. The POD and sparse modes
are retained from the Re= 30 000 study.

Number of
modes

Modes
calculation (h)

Galerkin
matrices (h)

ROM integration
and output (h)

Total time
(h)

20 0 3.42× 10−2 1.15 1.18
50 0 1.00× 10−1 1.28 1.38
60 0 1.68 1.31 2.99
80 0 4.89 1.42 6.31

TABLE 7. Sums of computational costs associated with several POD ROMs developed for
the lid-driven cavity in the off-design conditions. The costs are summed over 11 Re values
ranging from 15 000 to 35 000. The total cost of computing the high-fidelity solutions over
150 time units in all of the off-design conditions is 250.5 h.

for computing ROMs in the off-design conditions are retained from the Re= 30 000
case, the cost of computing modes is avoided. Moreover, the total cost of computing
the high-fidelity solutions over 150 time units in all of the off-design conditions is
250.5 h, which is two orders of magnitude greater than the total ROM costs.

4. Conclusions
The generation of sparse and POD modes is described with an example of a DNS

database of a flow inside a 2-D lid-driven cavity. The computed POD and sparse
modes are compared in terms of the energy content in the modes, the time history
of the projection coefficients and the spatial structure of the u and v components of
the modes. Several Galerkin projection based ROMs are developed. The performance
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FIGURE 32. The time history of the instantaneous K of the lid-driven cavity at Re =
35 000 as predicted by DNS, and the computed POD and sparse ROMs constructed using
(a) 20 modes, (b) 50 modes, (c) 60 modes and (d) 80 modes. The POD and sparse modes
are retained from the Re= 30 000 study.

Number of
modes

Modes
calculation (h)

Galerkin
matrices (h)

ROM integration
and output (h)

Total time
(h)

20 0 3.39× 10−2 1.16 1.19
50 0 1.12× 10−1 1.26 1.37
60 0 1.64 1.33 2.97
80 0 4.91 1.41 6.32

TABLE 8. Sums of computational costs associated with several sparse ROMs developed for
the lid-driven cavity in the off-design conditions. The costs are summed over 11 Re values
ranging from 15 000 to 35 000. The total cost of computing the high-fidelity solutions over
150 time units in all of the off-design conditions is 250.5 h.

of the POD and sparse ROMs is compared in terms of the evolution of the turbulent
kinetic energy, the RMS of the velocities over the computational domain, the local
dynamics of the predicted flow, the robustness and accuracy for varying Reynolds
number, and computational expense. The results of these studies allow one to reach
several useful conclusions, as follows.

(1) Sparse modes are inherently multi-scale, providing an a priori means to
systematically incorporate both large-energy and small-energy fluid features.

(2) Sparse modes exhibit intermittent periods of inactivity, with only a subset of
the entire set active at any instant. This property may result in modes that are
more tailored to the temporally local dynamics (transience) of the system. On the
contrary, the POD process yields a set of modes active at all times.
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FIGURE 33. Errors in average K levels for POD and sparse ROMs over Re values ranging
from 15 000 to 35 000 when using (a) 20 modes, (b) 50 modes, (c) 60 modes and (d) 80
modes. The POD and sparse modes are retained from the Re= 30 000 study.

(3) The lower-order sparse-Galerkin ROMs significantly outperform comparable POD-
Galerkin ROMs. An ROM constructed with only 20 sparse modes is found to
be adequate in capturing the instantaneous turbulent kinetic energy, the RMS of
velocities and the spatially local dynamics of the flow within the lid-driven cavity,
whereas as many as 80 POD modes are required to obtain reasonably accurate
flow predictions.

(4) The sparse-Galerkin ROMs are found to yield comparable robustness to POD-
Galerkin ROMs for varying Reynolds number.

(5) The computational cost of computing sparse modes is an order of magnitude
higher than the cost of computing the same number of POD modes. This
increased cost is mitigated somewhat by the ability of the sparse ROMs to
yield a sufficiently accurate prediction model with significantly fewer modes.
Furthermore, the cost of the most expensive sparse-Galerkin models remains
significantly smaller than that of solving the full-order model.
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