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Reynolds-averaged Navier–Stokes (RANS) simulations with turbulence closure
models continue to play important roles in industrial flow simulations. However,
the commonly used linear eddy-viscosity models are intrinsically unable to handle
flows with non-equilibrium turbulence (e.g. flows with massive separation). Reynolds
stress models, on the other hand, are plagued by their lack of robustness. Recent
studies in plane channel flows found that even substituting Reynolds stresses with
errors below 0.5 % from direct numerical simulation databases into RANS equations
leads to velocities with large errors (up to 35 %). While such an observation may
have only marginal relevance to traditional Reynolds stress models, it is disturbing
for the recently emerging data-driven models that treat the Reynolds stress as an
explicit source term in the RANS equations, as it suggests that the RANS equations
with such models can be ill-conditioned. So far, a rigorous analysis of the condition
of such models is still lacking. As such, in this work we propose a metric based on
local condition number function for a priori evaluation of the conditioning of the
RANS equations. We further show that the ill-conditioning cannot be explained by the
global matrix condition number of the discretized RANS equations. Comprehensive
numerical tests are performed on turbulent channel flows at various Reynolds numbers
and additionally on two complex flows, i.e. flow over periodic hills, and flow in
a square duct. Results suggest that the proposed metric can adequately explain
observations in previous studies, i.e. deteriorated model conditioning with increasing
Reynolds number and better conditioning of the implicit treatment of the Reynolds
stress compared to the explicit treatment. This metric can play critical roles in the
future development of data-driven turbulence models by enforcing the conditioning
as a requirement on these models.

Key words: computational methods, turbulence modelling, turbulence simulation

1. Introduction
Reynolds-averaged Navier–Stokes (RANS) simulations play an important role in

industrial simulations of turbulent flows. The state-of-the-art eddy-viscosity models,

† Email address for correspondence: hengxiao@vt.edu
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e.g. the k–ε, k–ω and Spalart–Allmaras (SA) models (Launder & Sharma 1974;
Wilcox 1988; Spalart & Allmaras 1994; Menter 1994), are based on the assumption
that the turbulence production and dissipation are in equilibrium, and thus they
perform poorly in flows with non-equilibrium turbulence (Speziale & Xu 1996;
Hamlington & Dahm 2008; Hamlington & Ihme 2014), e.g. flows with massive
separations or abrupt mean flow changes. On the other hand, Reynolds stress models
(RSMs), also referred to as second-moment closures, take into account the transport
of Reynolds stresses and thus have better performance than eddy-viscosity models
for flows with non-equilibrium turbulence (Pope 2000). NASA’s CFD Vision 2030
Study white paper identified advanced turbulence modelling based on Reynolds
stress models as a priority for aeronautic technological advancement in the coming
decades (Slotnick et al. 2014). However, so far Reynolds stress models have not
been widely used in engineering applications despite their theoretical superiority. A
key shortcoming of Reynolds stress models is their lack of stability and robustness,
i.e. the difficulty in achieving convergence (Basara & Jakirlic 2003; Maduta & Jakirlic
2017) and the high sensitivity to the modelling of unclosed terms (particularly the
pressure–rate-of-strain tensor) in the Reynolds stress transport equations.

Among the leading causes of numerical instability of Reynolds stress models
is the intricate coupling as dictated by the Reynolds stress transport equations
(Pope 2000, chap. 7). First, the shear stress τxy is responsible for the production
of streamwise fluctuations τxx, where x and y denote streamwise and wall-normal
coordinates, respectively. Then, the turbulent kinetic energy in τxx is redistributed by
the pressure–rate-of-strain to the other two normal components of the Reynolds stress
tensor, including τyy, which in turn generates the turbulent shear stress τxy through
interactions with the mean strain field. Another possible cause for the numerical
instability is the ill-conditioning of the RANS momentum equations themselves. Here
model conditioning refers to the sensitivity of the solved quantities (e.g. mean velocity
and pressure fields) to the modelled terms (Reynolds stresses). In computational fluid
dynamics codes that solve RANS equations and turbulence transport equations in a
segregated manner, ill-conditioned systems lead to numerical instability due to the
sensitivity of solved velocities to residuals in the Reynolds stress from iteration to
iteration. While the chain coupling mechanism described above is well known in
the turbulence modelling literature, the conditioning of RANS equations has rarely
been mentioned. This is probably due to the fact that the two causes are closely
intertwined in traditional models based on Reynolds stress transport equations and
the former dominated.

1.1. Unique challenges in data-driven Reynolds stress closures
Recently, data-driven turbulence modelling has emerged as a promising field of
research with a number of approaches having been proposed in the past few years
(e.g. Ling, Kurzawski & Templeton 2016; Singh & Duraisamy 2016; Weatheritt
& Sandberg 2016; Wang, Wu & Xiao 2017). Of particular relevance to the present
discussions are the data-driven Reynolds stress closures (Ling et al. 2016; Wang et al.
2017; Geneva & Zabaras 2019) in which the Reynolds stresses are obtained directly
from machine learning models trained on high-fidelity simulation databases without
solving partial differential equations (PDEs) or using explicit algebraic models. In
such models, the chain coupling mechanism related to the Reynolds stress transport
equations as described above is not a relevant cause of numerical instability, and
thus the possible ill-conditioning of RANS equations is placed under the spotlight.
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Moreover, these data-driven Reynolds stress models do not have explicit expressions
for the Reynolds stress (Ling et al. 2016; Wang et al. 2017), which makes it difficult
to treat the Reynolds stresses implicitly in the RANS equations to improve model
conditioning. For example, Wang et al. (2017) used random forest regression to
predict Reynolds stresses based on direct numerical simulation (DNS) databases
and reported that the solved mean velocity field does not improve over the original
RANS simulations, even though the predicted Reynolds stresses showed significant
improvements. Such a paradox clearly demonstrates the gap between a priori and
a posteriori performances in turbulence models based on data-driven Reynolds stress
closures. That is, an ill-conditioned model can amplify small a priori errors in the
modelled terms to large a posteriori errors in the solved quantities, which defeats all
efforts in the improvement of the closure models. Similar gaps have been observed
in data-driven subgrid-scale (SGS) stress models for large-eddy simulations (LES).
For example, Gamahara & Hattori (2017) reported that their neural network model
predicted better SGS stresses than the Smagorinsky model for turbulent channel flows,
but the mean velocity predictions were much less satisfactory. Given the large number
of efforts in developing data-driven Reynolds stresses model (e.g. Ling et al. 2016;
Wang et al. 2017; Zhu et al. 2019) and SGS models (e.g. King, Hamlington & Dahm
2016; Maulik & San 2017; Vollant, Balarac & Corre 2017; Maulik et al. 2019) for
turbulent flows, the conditioning in such models must be closely examined along
with their a priori predictive performances. Note, however, that some data-driven
approaches, e.g. those based on correcting turbulence transport equations (Parish
& Duraisamy 2016; Singh, Medida & Duraisamy 2017) or discovering analytical
turbulent constitutive relations by using symbolic regression (Weatheritt & Sandberg
2016), are less affected by the conditioning discussed here.

1.2. DNS data as the ideal scenario for data-driven Reynolds stress closures
Using Reynolds stress obtained from DNS data to solve the RANS equations for
velocity can be considered the ideal scenario for data-driven Reynolds stress closure,
at least for those without analytical expressions. Solving for mean velocities with a
given Reynolds stress field is referred to as ‘propagation’ in this work, i.e. propagation
of Reynolds stresses to mean velocities by solving the RANS equations. Such a
methodology represents an absolute upper limit of performances for data-driven
Reynolds stress models as pursued by Ling et al. (2016), Wang et al. (2017) and
Zhu et al. (2019). It allows us to concentrate on the conditioning of this class of
machine-learning-based Reynolds stress models without considering the a priori
performance of any specific model.

Somewhat surprisingly, even solving RANS equations with Reynolds stresses from
DNS data can lead to large errors in the velocities, which has been demonstrated
in the recent work of Thompson et al. (2016). They propagated Reynolds stresses
obtained from DNS to mean velocities for turbulent channel flows at a wide range
of Reynolds numbers. These DNS were performed with extreme caution by reputable
groups (Del Alamo & Jiménez 2003; Bernardini, Pirozzoli & Orlandi 2014; Lee &
Moser 2015), and it was verified that the errors in the reported Reynolds stresses
were indeed very small, typically less than 0.5 % as shown in table 1. Thompson
et al. (2016) showed that the solved mean velocity has an unsatisfactory agreement
with the DNS data at high frictional Reynolds numbers (e.g. Reτ = 5200). Poroseva
et al. (2016) also confirmed such observations. To motivate our work, we reproduced
the two studies of solving for mean velocities by using the DNS Reynolds stresses
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Frictional Reynolds number (Reτ ) 180 550 1000 2000 5200

Error in turbulent shear stresses (%)
Volume averaged 0.17 0.21 0.03 0.15 0.31
Maximum 0.43 0.38 0.07 0.23 0.41

Errors in mean velocities (%)
Volume averaged 0.25 1.61 0.17 2.85 21.6
Maximum 0.36 2.70 0.25 5.48 35.1

TABLE 1. Summary of the results of the channel flow test, showing percentage errors in
the turbulent shear stresses and the propagated mean velocities. The large errors in the
high-Reynolds-number case Reτ = 5200 are highlighted in bold. The true Reynolds shear
stresses are obtained by analytically integrating the RANS equation with the DNS mean
velocities (Thompson et al. 2016).

obtained from Lee & Moser (2015), and the results are summarized in table 1.
Although the solved mean velocities shown here are accurate up to Reτ = 1000,
researchers have reported that large errors in the propagated velocities can be found
at Reynolds number as low as Reτ = 395 depending on the DNS data used (S.
Poroseva, 2017, personal communication).

The percentage errors shown in table 1 are computed by comparing the DNS
Reynolds stresses and the mean velocities propagated therefrom against their
respective truths, which are obtained according to Thompson et al. (2016). Specifically,
the true velocities are taken as the DNS mean velocities, and the true Reynolds shear
stresses are computed based on the analytical solution

τ =
(

1−
y
h

)
τw − ρν

dU
dy

(1.1)

from the DNS mean velocities and wall shear stresses τw, where y denotes the wall
distance (y = 0 indicates the wall), h denotes the half channel width, and ρ and ν
represent density and kinematic viscosity, respectively.

It can be seen in table 1 that the errors in the Reynolds stresses are less than 0.5 %.
The errors in the Reynolds stress can be attributed to different sources, e.g. statistical
sampling errors (due to inadequate averaging of the DNS results), iterative errors (due
to lack of convergence when solving the linear equations in DNS) and interpolation
errors (when interpolating the DNS data to the RANS mesh). All these errors are
inevitable in any DNS data. It is noted that errors in the Reynolds stresses vary
non-monotonically with respect to the Reynolds number. Such a coincidental trend
should not be overly or literally interpreted, since the data shown here are a result
of complex interactions that lead to superposition and cancellation among various
sources as discussed above. It suffices to point out that all the DNS were obtained
with extreme caution, as is evident from the very small errors in the Reynolds stresses.
Nevertheless, the errors in the mean velocity solved from the Reynolds stresses clearly
increase monotonically with the Reynolds number, because they are dominated by
the conditioning of RANS equations, as we will show later. Specifically, while the
errors in the solved mean velocity are also less than 0.5 % at low Reynolds number
(Reτ =180), such errors can be as high as 35 % at high Reynolds number (Reτ =5200).
This observation suggests that the RANS equations can be ill-conditioned by directly
substituting the modelled Reynolds stress into the equations, which is a common
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practice in current data-driven RANS modelling. Such results raise several critical
questions on Reynolds-stress-based data-driven turbulence models, specifically the
following:

(i) How to explain the deteriorated conditioning (i.e. increased amplification of errors
in Reynolds stresses to velocities) with increasing Reynolds numbers observed in
these studies?

(ii) Is there a quantitative metric that can characterize the conditioning of RANS
equations with a given turbulence model?

(iii) What are the implications of the above observations to data-driven turbulence
models that treat Reynolds stresses as source terms in the RANS equations?

1.3. Summary and contribution of present work
Our present work aims to answer the above questions by proposing a quantitative
metric and elucidating the relevance of the above-mentioned studies to data-driven
turbulence modelling. Throughout this study, no turbulence models are used. Rather,
Reynolds stresses obtained from DNS databases are used to represent the ideal
performance for any data-driven Reynolds stress closures. A local condition number
function based on the work of Chandrasekaran & Ipsen (1995) is derived as a
metric to assess the conditioning property for turbulence models. Numerical tests on
turbulent channel flows at various Reynolds numbers and two more complex flows
suggest that the proposed metric can adequately explain observations in previous
studies, i.e. deteriorated model conditioning with increasing Reynolds number, and
better conditioning of the implicit treatment of the Reynolds stress compared to the
explicit treatment. As an application of the proposed approach, Wu, Xiao & Paterson
(2018) improved the conditioning of the data-driven Reynolds stress model of Wang
et al. (2017) by training machine learning models for the linear and nonlinear parts
of the Reynolds stress separately. The obtained Reynolds stress model achieved good
conditioning and satisfactory predictive accuracy simultaneously.

The rest of this paper is organized as follows. Section 2 introduces the global
condition number and shows that it fails to explain the deteriorated conditioning
with increasing Reynolds numbers. A local condition number function is derived to
achieve such an objective. In § 3, the local condition number is used to evaluate the
conditioning of RANS equations with data-driven Reynolds stress closures. Section 4
discusses the conditioning of RANS equations with traditional Reynolds stress
transport models and the monolithic coupling for both traditional and data-driven
models. Finally, conclusions are presented in § 5.

2. Methodology
Consider the steady-state RANS equations for incompressible, constant-density

fluids:

u · ∇u− ν∇2u+∇p−∇ · τ = 0, (2.1)
∇ · u= 0, (2.2)

where u is the mean flow velocity, ν is molecular viscosity, p is the pressure
normalized by the constant density of the fluid, and τ is the Reynolds stress tensor,
which needs to be modelled. For simplicity, we first consider a Reynolds-stress-based
model where τ is obtained by solving a transport equation in a segregated manner
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with the RANS equations or by a data-driven function (see e.g. Ling et al. 2016).
The objective of this work is to investigate the sensitivity of the obtained mean
velocity with respect to small perturbations on the Reynolds stress.

For simplicity of notation, we introduce nonlinear operator N to include the
convection and diffusion terms with

N (u)= u · ∇u− ν∇2u. (2.3)

The RANS momentum equation in (2.1) can be written as

N (u)=∇ · τ −∇p. (2.4)

In numerical solvers, the convection term is first linearized around the current velocity
U0 to obtain the linearized RANS equations

L(u)=∇ · τ −∇p, (2.5)

where L is the linearized operator of N , i.e.

L(u)= u0 · ∇u− ν∇2u. (2.6)

The linearized equation (2.5) is then discretized on a computational fluid dynamics
(CFD) mesh to obtain a linear system of the following form:

AU= b. (2.7)

Here we have denoted b = [∇ · τ − ∇p] as the imbalance between the two forces,
pressure gradient and Reynolds stress divergence; and U = [u] is the discretized
velocity field to be solved for. Both b and U are n × 1 vectors, where n is the
number of cells or grid points in the mesh. The matrix A with dimension n × n
comes from the implicit discretization of the linearized convection term and the
molecular diffusion term. In this work, we focus on the conditioning of linearized
RANS equations. This is because most CFD codes deal with the linearized RANS
equations in each iteration when solving the nonlinear RANS equations. Therefore,
the conditioning metrics studied here are valid within each iteration, even though the
flow of concern may deviate from the linearized RANS equations.

2.1. Matrix norm as a measure of model conditioning
We first show the derivation of the traditional matrix-norm-based condition number
and explain why it fails to distinguish the sensitivities of solving for mean velocity
at different Reynolds numbers as shown in table 1. Following the definition of matrix
norm, the norm of the error in the velocity is bounded as follows:

‖δU‖
‖U‖

6KA
‖δb‖
‖b‖

, (2.8)

where
KA ≡ ‖A‖ ‖A

−1
‖ (2.9)

denotes the condition number of matrix A (see e.g. Strang 2016).
As explained in the notation, the norms ‖U‖ and ‖b‖ are taken of the discretized

vectors [U] and [b], respectively, with the brackets inside the norm omitted for
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clarity. Such a brief notation does not cause confusion, because norms in this work
are always taken for the discretized vectors or matrices with dimensions of n × 1
or n × n, respectively, and never for the velocity or force vectors at any particular
location.

Considering that the objective is to assess the effects of Reynolds stress perturbation
δτ on the velocities, the inequality in (2.8) above is formulated as

‖δU‖
‖U‖

6Kτ

‖∇ · δτ‖

‖∇ · τ‖
, (2.10)

where

Kτ =KA
‖∇ · τ‖

‖b‖
. (2.11)

Detailed derivations are omitted here for brevity and are presented in § A.1. It can
be seen that the model condition number Kτ consists of the condition number of the
matrix A and the ratio

α = ‖∇ · τ‖/‖b‖. (2.12)

For plane channel flows, the convective term disappears, and thus b is the force due to
the divergence of the viscous stress, i.e. b=∇ ·ν(∇u+ (∇u)T)=∇ ·τvis. Consequently,
the ratio α indicates the overall relative importance of the forces due to Reynolds
stress and viscous stress.

The proposed condition number Kτ based on matrix condition number KA is
a natural first attempt in explaining the increasing sensitivity of the velocities
to the Reynolds stress with increasing Reynolds numbers as shown in table 1.
However, surprisingly, it turns out that the condition number Kτ is more or less
the same across all Reynolds numbers from Reτ = 180 to 5200, which is shown in
figure 1. This observation suggests that the matrix-based condition number Kτ cannot
explain the ill-conditioning of the Reτ = 5200 case and the better conditioning of the
lower-Reynolds-number cases as observed in table 1.

The following two factors explain why the matrix-based condition number Kτ is
almost the same at different Reynolds numbers:

(i) The matrix condition number KA is constant for all Reynolds numbers, because
the matrix A itself is independent of the Reynolds number.

(ii) The ratios α=‖∇ · τ‖/‖b‖ are very similar at vastly different Reynolds numbers,
because both norms (which involve integration or square sums) are dominated
by the viscous wall regions of each flow. It is well known that the Reynolds
number only determines the thickness of this region in outer coordinates, and
the Reynolds-number effect is weak here. Each factor above will be detailed as
follows.

First, it can be established through simple algebra that for plane channel flows the
matrix A is independent of the Reynolds number but depends on the discretization
scheme and the mesh used. Since the convection term disappears for plane channel
flows, the matrix A results solely from the discretization of the diffusion operator
ν∇2(·). When discretized with central difference on a uniform mesh of n cells,
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FIGURE 1. (Colour online) Conditioning measure of Reynolds-stress-based turbulence
models based on KA and the ratio α as defined in (2.12). The Reynolds stress is computed
from DNS data to study the ideal scenario of the RANS modelling.

matrix A can be written as follows (Strang 2016):

A= ν


2 −1
−1 2 −1

−1 2
. . .

. . .
. . . −1
−1 2

 . (2.13)

The condition number for matrix A is KA= 4n2/π2. Therefore, KA does not explicitly
depend on the viscosity or the Reynolds number. This analysis is confirmed by the
results shown in figure 1, which shows that KA is strictly constant for all five flows
at different Reynolds numbers. Moreover, KA depends on the mesh size n, which is a
critical shortcoming of the matrix-norm-based condition number as a measure of the
conditioning property of a turbulence model. To exclude the influences of the mesh,
we used the same mesh with 1040 cells in all the flows at different Reynolds numbers
presented in figure 1.

Second, the change of Reynolds number has little influence on the ratio α, as is
shown in figure 1. We examine the profile of turbulent shear (∇ · τ ) and viscous
shear (∇ · τvis) in the channel in figure 2 for the two cases, Reτ = 180 and 5200. In
most of the channel outside the viscous wall region, both forces (and thus the ratio)
are fairly uniform. Nevertheless, in the viscous wall region, the two forces are of
the same order of magnitude but with opposite signs. In contrast, outside the viscous
region, the pressure gradient is the main driving force while the Reynolds shear
stress is the resistance, with the viscous shear having negligible effects. The forces
in the two distinct regions are illustrated schematically in figure 3. However, when
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FIGURE 2. (Colour online) The balance among forces due to turbulent shear stress (∇ · τ ),
viscous shear stress (∇ · τvis) and pressure gradient (∇p) for two plane channel flows at
frictional Reynolds numbers (a) Reτ = 180 and (b) Reτ = 5200. The right vertical axis
denotes the inner coordinates (y+).

◊ · †vis

◊ · †vis

◊ · †

◊p

◊p
Outer layer

Viscous wall region

(a) (b)

◊ · †

FIGURE 3. (Colour online) Force balance of the plane channel flow in (a) the outer layer
and (b) the viscous wall region.

calculating the ratio α = ‖∇ · τ‖/‖b‖ of the two norms, values within the viscous
wall region clearly dominate the calculation of both norms, which involve integration
of the functions squared. It can be seen that in both figure 2(a) (Reτ = 180) and
figure 2(b) (Reτ = 5200) the areas enclosed by the blue solid curve and red dashed
curve (with the vertical zero line) are similar. Squaring the function places even
more weights on the regions of larger function values, i.e. the viscous wall region.
This observation suggests that the ratio ‖∇ · τ‖/‖b‖ is of O(1) for both cases, as
confirmed by examining figure 1. Consequently, the computed norm mostly reflects
the values of the forces in the viscous region and not the outer layer. It is well
known that the Reynolds-number effects are not pronounced within the viscous wall
region. Increasing the Reynolds number merely extends the outer layer in terms of
inner coordinates (y+ = y/y∗, where y∗ = ν/

√
τw/ρ is the viscous unit and τw is the
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wall shear stress). This explains why the ratio α does not vary significantly (much
less than proportionally) with the Reynolds number as can be seen in figure 1. If
the viscous region is neglected, the factor ᾱ will be higher for the larger Reynolds
number, and thus it makes the global condition number a better indicator of model
conditioning. However, the matrix condition number KA depends on the mesh size
and thus the global condition number is still not an ideal choice of evaluating model
conditioning of RANS equations.

In summary, the matrix-based condition number Kτ as derived in (2.11) is not
able to explain the increasing sensitivity of the velocities with respect to Reynolds
stresses with increasing Reynolds number. In addition, the matrix condition number
KA has another critical drawback of being mesh-dependent. The mesh dependence is
highly undesirable, as the condition number is to measure the conditioning property of
turbulence models at the PDE level, not any particular numerical discretization thereof.
These drawbacks clearly call for a better metric for measuring the conditioning
property of Reynolds-stress-based turbulence models.

2.2. Proposed metric as a measure of model conditioning
In order to address the deficiency of the global condition number as presented
in § 2.1, we derive a metric based on a local condition number function to measure
the sensitivity of the solved mean velocity u at a given location x with respect to
perturbation δτ on the Reynolds stress field τ . Such a local condition number is
formally defined as the following bound:

|δu(x)|
U∞

6K(x)
‖∇ · δτ‖Ω

‖∇ · τ‖Ω
, (2.14)

where K(x) is the local condition number function defined as

K(x)=
‖G(x, ξ)‖Ω ‖∇ · τ‖Ω

U∞
. (2.15)

Function G is the Green’s function corresponding to the linear operator L (see e.g.
Lanczos 1996), such that the solution to the linearized RANS equation (2.5) can be
written formally as

u(x)=L−1
[b(x)] ≡

∫
Ω

G(x; ξ)b(ξ) dξ , (2.16)

where L−1
[·] is the inverse operator of L. Green’s function G(x; ξ) indicates the

contribution of the source b(ξ) at location ξ to the solution u at location x. The
norm ‖ f (ξ)‖Ω of function f (ξ) is an integration on domain Ω defined as (Debnath
& Mikusiński 2005)

‖ f (ξ)‖Ω =

√∫
Ω

| f (ξ)|2 dξ . (2.17)

The detailed derivations to obtain (2.15) are presented in § A.2.
For functions discretized on a CFD mesh of n cells (e.g. those in RANS

simulations), the function norm ‖ · ‖Ω in (2.15) can be approximated by the norm of
the discretized n-vector through numerical quadrature. That is,

‖G(x, ξ)‖Ω ≈ ‖rj‖n and ‖∇ · τ‖Ω ≈ ‖[∇ · τ ]‖n, (2.18a,b)
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where rj is the jth row of the matrix A−1. Recall that [∇ · τ ] indicates discretization
of field ∇ · τ on the CFD mesh, but the bracket can be omitted inside a vector norm
‖ · ‖n without ambiguity. In this work, the norm ‖ · ‖n is defined by the L2-norm as

‖v‖n =

(∑
i

v2
i

)1/2

(2.19)

and the discretized condition number n-vector corresponding to K(x) in (2.15) is thus

Kj =
‖rj‖n ‖∇ · τ‖n

U∞
with j= 1, 2, . . . , n, (2.20)

which implies that the location x is the coordinate of the jth cell in the CFD mesh.
The proposed local condition number function K(x) has two important merits

compared to the global matrix-based condition number Kτ :

(i) First, K(x) provides a tighter upper bound than the matrix-norm condition
number Kτ . The main reason is that the upper bound of Kτ can only be
achieved when the following conditions are satisfied simultaneously: (1) the
discretized mean velocity field vector U is aligned with the principal axis of
the coefficient matrix A, and (2) the perturbation vector δb is aligned with the
principal axis of A−1. In contrast, the derivation of K(x) does not assume any
conditions on the discretized mean velocity field U. Consequently, the bound
provided by K(x) is a more precise assessment of the sensitivity δu with respect
to Reynolds stress perturbations.

(ii) The discretization Kj of function K(x) is mesh-independent, which is an
important property considering that this metric aims to measure the conditioning
property of data-driven Reynolds stress models. Detailed analytical derivations
to obtain (2.20) and numerical results (see figure 17 in the appendix) used
to demonstrate the mesh independence of the local condition number Kj are
presented in appendix B.

While the local condition metrics proposed here are generally applicable to
any linearized PDE and its discretization, it is important to emphasize that these
conditioning metrics faithfully embody the physics described by the underlying
PDEs. Taking the RANS equations as an example, the mean flow field contributes
to the linearized differential operator and thus is reflected in the analysis of local
conditioning. Therefore, these local condition metrics are flow-specific properties and
thus reflect the mean flow physics. More detailed discussion can be found in §§ 3.2.1
and 3.2.2 on the complex, two-dimensional flows.

Finally, we comment briefly on the numerical implementation and computational
complexity of conditioning metrics proposed below. The local condition number Kj
does not require a full inversion of the matrix A but only needs the jth row of A−1

to be computed. This can be achieved by solving the equation ATrj= I j based on the
identity A−1A = I , where I j denotes the jth column of the identity matrix I . Solving
this equation is a standard, inexpensive routine available in CFD codes, e.g. with a
computational complexity of O(n log n) if a multigrid linear solver is used, where
n indicates the number of elements in r. Therefore, it can be estimated that even
obtaining the full condition number field only has a computational complexity of
O(n2 log n) with a standard multigrid linear solver, which is much lower than the
complexity of O(n3) for typical algorithms of matrix inversions.
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As the local condition number K(x) is a spatial function, and its discretization is
an n-vector, it is desirable to obtain a scalar quantity to provide an integral, more
straightforward measure of model conditioning property similar to the global condition
number Kτ . To this end, we define a volume-averaged local condition number Kx
defined as

Kx =

n∑
j=1

[Kj][1Vj]

V
, (2.21)

where 1Vj denotes the volume of the jth cell in the CFD mesh, and V is the total
volume of the computational domain. This volume-averaged local condition number
Kx has a similar interpretation to Kτ but preserves the merits of Kj, i.e. tighter bounds
and mesh independence.

In the derivations above, the Reynolds stress term is substituted directly into the
RANS equation and is treated explicitly. When the Reynolds stress term is treated
implicitly as in many practical implementations of Reynolds stress models (e.g. Basara
& Jakirlic 2003; Maduta & Jakirlic 2017), the corresponding local condition number
of the model can be obtained similarly, except that the Green’s function is modified
to account for the implicit modelling of the linear part of the Reynolds stress with
the eddy-viscosity model. Specifically, the general form of implicit treatment of the
Reynolds stress can be written as

τ = 2νtS + τ⊥, (2.22)

where νt represents the eddy viscosity, S = 1
2(∇u + (∇u)T) denotes the strain-rate

tensor and τ⊥ denotes the nonlinear part. In this work, the eddy viscosity νt is
obtained from projecting DNS Reynolds stress onto DNS strain-rate tensor and not
from RANS simulations. With such an optimal eddy viscosity νm

t , equation (2.22)
treats the linear part of the Reynolds stress tensor implicitly to enhance the
conditioning of RANS equations. Consequently, the Green’s function G̃ corresponding
to the linear operator

L̃(u)=L(u)− νm
t ∇

2u= u0 · ∇u− (ν + νm
t )∇

2u (2.23)

should be used in (2.15) and (2.20), with G̃ related to L̃ in a similar way as G is to L
in (2.16). The optimal eddy viscosity νm

t is computed by minimizing the discrepancy
between the linear eddy-viscosity model and the DNS Reynolds stress data, i.e.

νm
t (x)= arg min

νt

‖τDNS
− 2νt(x)SDNS

‖, (2.24)

where τDNS and SDNS denote the Reynolds stress and the strain-rate tensor from the
DNS database, respectively. Here we emphasize that the optimal eddy viscosity is
location-dependent. The detailed derivations are presented in § A.3. It is noted that
the eddy viscosity νt in (2.22) only quantifies the amount of Reynolds stress being
treated implicitly and is not necessarily the optimal eddy viscosity νm

t . By specifying
different νt, the amount of implicit treatment of Reynolds stress and the amount
of the nonlinear part of the Reynolds stress vary accordingly, leading to different
conditioning of RANS equations. Therefore, equation (2.22) provides a general form
of the implicit treatment of Reynolds stresses. The optimal eddy viscosity is capped
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to be positive for numerical stability of solving the RANS equations. Therefore, the
implicit treatment always leads to better conditioning of the system, but the difference
between the implicit and explicit treatments becomes smaller in the regions where the
linear part of the Reynolds stress is less dominant. In the extreme (albeit unlikely)
situation where the Reynolds stress tensor is orthogonal to the strain-rate tensor
(i.e. optimal eddy viscosity is zero across the flow domain), the conditioning with
implicit and explicit treatments would be equivalent.

In summary, we proposed a local condition number to assess the sensitivity of
local mean velocities with regard to data-driven Reynolds stress models. It has the
following three forms: the spatial function K(x) (i.e. condition number function),
an n-vector Kj obtained by discretizing K(x) on the CFD mesh, and a scalar
Kx obtained by integration of K(x). This metric is applicable to different types
of data-driven Reynolds stress models. The main contributions of this work are
(1) highlighting the importance of the conditioning of PDE-governed systems with
data-driven closure models, and (2) providing a quantitative metric for assessing
such conditioning. Data-driven modelling is becoming an emerging area in the fluid
mechanics community. However, all existing works of data-driven modelling focus on
the accuracy of the model itself. Our work demonstrates that an accurate data-driven
model does not necessarily guarantee satisfactory predictions of quantities of interest.
Therefore, ensuring good conditioning of the problem formulation (i.e. PDEs with
data-driven closure) is as important as improving the accuracy of data-driven model.
We envision a standard practice in the future where all developed data-driven closures
are presented along with corresponding conditioning analysis, in the same way in
which experimental data reported nowadays are accompanied by their associated
uncertainties.

3. Results
We first use the proposed local condition number to explain the model conditioning

of RANS equations when using an explicit treatment with fixed Reynolds stress.
Specifically, turbulent channel flows at different Reynolds numbers are studied and
the results are shown in table 1. In addition, the implicit treatment of the Reynolds
stress is studied to compare with the model conditioning of RANS equations by
using an explicit treatment with fixed Reynolds stress. By studying these two types
of RANS modelling, we show that the proposed local condition number can be used
to assess the sensitivities of RANS simulations for data-driven modelling. We also
extend the study of the model conditioning and the proposed local condition number
to two more complex flows, including the flow over periodic hills and the flow in
a square duct. The results show that the RANS equations can be ill-conditioned for
other types of flows, which can be assessed by the proposed condition number metric.

The RANS simulations are performed in a finite-volume CFD platform OpenFOAM,
using a modified flow solver that allows the explicit and implicit treatments of
the Reynolds stress computed from DNS data. For numerical discretizations, the
second-order central difference scheme is chosen for all terms except for the
convection term, which is discretized with a second-order upwind scheme. The
second-order upwind scheme was used to avoid the possible numerical instability
when using the central difference scheme for the convection term. For the turbulent
plane channel cases, the convection term disappears at steady state and thus the
results presented in § 3.1 are not influenced by the discretization of the convection
term thereof. In § 3.1, the mean velocity is obtained by directly solving (2.5) since
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the mean velocity and the pressure are decoupled for the RANS simulation of a fully
developed plane channel flow. The convergence criterion of solving the momentum
equations is set as 10−8 in absolute error.

3.1. Turbulent channel flow
The fully developed turbulent plane channel flows are investigated by using the
local condition number Kj. In this work, we consider an ideal scenario in which the
Reynolds stress τ is directly computed from a DNS database at various Reynolds
numbers Reτ = 180, 550, 1000, 2000 and 5200. The numbers of mesh cells N are
36, 110, 200, 400 and 1040, respectively, for the channel flows at those Reynolds
numbers. Non-uniform meshes are used and the expansion ratio is adjusted to ensure
that the y+ of the first cell centre is kept below 1. Therefore, the mesh size of the
first cell in the wall-normal direction is below h/N, where h denotes the half channel
height. The DNS data were obtained from the University of Texas, Austin, online
database (Lee & Moser 2015). The mean velocity field is then solved by substituting
the computed Reynolds stress as the closure term of RANS equations.

In the practice of RANS modelling, iterations are involved in solving RANS
equations and the modelling of the Reynolds stress is updated by the mean velocity
field during the iterations. Therefore, it is possible that the mean velocity field and
the Reynolds stress can adjust to each other during the iterations. We employed the
ratio δUrms/UDNS

rms to assess the error of the solved mean flow field at each iteration
step. Specifically, the volume-averaged root-mean-squared (r.m.s.) error of the solved
mean velocity is defined as

δUrms =

√√√√√√
n∑

j=1

([U]j − [UDNS
]j)

2
[1Vj]

V
. (3.1)

The volume-averaged r.m.s. DNS velocity is defined as

UDNS
rms =

√√√√√√
n∑

j=1

([UDNS
]j)

2
[1Vj]

V
. (3.2)

3.1.1. Reynolds stress models with explicit treatment
The Reynolds stress term is directly computed from DNS data and substituted into

RANS as shown in algorithm 1. The purpose is to study most existing data-driven
RANS models, in which the Reynolds stress is directly predicted by training on DNS
data and then used to solve for mean velocity field. In this subsection, we only study
the explicit treatment with fixed Reynolds stress, i.e. the dependence of the Reynolds
stress on strain-rate tensor is not considered. It is because such a dependence has
not been taken into consideration in many data-driven turbulence models, and thus
we illustrate the corresponding issue here. More results of explicit treatment with
dependence on strain-rate tensor can be found in appendix C, where we further show
that the explicit coupling between Reynolds stress and mean velocity during the
iterations can gradually amplify the errors.
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Algorithm 1: Explicit treatment of Reynolds stress with the DNS Reynolds stress
being fixed among iterations.

1 Set Reynolds stress from DNS data: τ = τDNS

2 for each iteration step i= 1, 2, . . . ,N do
3 Solve RANS equations: N (u(i))=∇ · τ −∇p to obtain u(i)

4 end

The local condition numbers Kj of the explicit treatment of the Reynolds stress are
shown in figure 4. With the increase of the Reynolds number, it can be seen that the
magnitude of local condition number also increases. Specifically, the local condition
number of the flow at Reτ = 180 is of O(1), while the local condition number of
the flow at Reτ = 5200 is of O(102). This rapid increase of local condition number
agrees well with the increased error of solved mean velocity U as summarized in
table 1. In addition, the local condition number is greater near the channel centre than
close to the wall, especially for the high-Reynolds-number cases. Such pattern of local
condition number also agrees with the spatial pattern of the error of the solved mean
velocity as illustrated in figure 9(b). As demonstrated by Thompson et al. (2016),
the error of solved channel flow mean velocity at a given point is an integration of
Reynolds stress errors (which happen to be of the same sign in the entire domain,
indicating a systematic nature) from the wall to that given point, i.e. the Reynolds
stress errors in between are accumulated without cancellation. The local condition
number in figure 4 faithfully reflects such an accumulative nature with deteriorated
conditioning further away from the wall for all cases. Recall that the local condition
number Kj assesses the relative error of solved mean velocity at a given point with
respect to the error in the whole Reynolds stress field, and not with respect to the
error of the Reynolds stress at the same given point.

The averaged local condition number Kx increases with the Reynolds number
by using explicit treatment of the Reynolds stress, which is clearly seen in
figure 7. Such increase of averaged local condition number with Reynolds number
reveals the potential shortcoming of explicit modelling of the Reynolds stress,
i.e. a relatively accurate but explicit modelling of the Reynolds stress does not
guarantee the satisfactory mean velocity by solving RANS equations, especially
for high-Reynolds-number flows. This observation has been reported in the work
of Thompson et al. (2016), and the proposed averaged local condition number
can be used as an integral indicator to estimate the extent of error propagation
from the modelled Reynolds stress to the solved mean velocity field. The error
propagation with iterations is presented in figure 5(a) together with the averaged
local condition number in each iteration. It can be seen that the error in the solved
mean velocity stays constant in every iteration step. This observation is consistent
with our expectation since the convection term disappears in the channel flows and
the RANS equations become linear. Therefore, the error within the solved mean
velocity in a given iteration does not influence the model conditioning and thus has
no effect upon the error in the solved mean velocity at the next iteration.

3.1.2. Reynolds stress models with implicit treatment
The eddy viscosity is directly computed from DNS data and substituted into RANS

equations to study the ideal situation of data-driven Reynolds stress models with
implicit treatment as shown in algorithm 2.
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FIGURE 4. (Colour online) The profiles of local condition number Kj at different Reynolds
numbers by using explicit treatment with fixed Reynolds stress, i.e. the fixed DNS
Reynolds stress is substituted into RANS equations.
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FIGURE 5. (Colour online) The error propagation analysis of solving streamwise velocity
iteratively by using explicit treatment with fixed Reynolds stress, including (a) relative
error of mean velocity and (b) volume-averaged local condition number.

Algorithm 2: Implicit treatment of Reynolds stress that depends on the strain rate
among iterations.

1 Compute optimal eddy viscosity νm
t from DNS Reynolds stresses based on (2.24)

2 for each iteration step i= 1, 2, . . . ,N do
3 Compute Reynolds stress: τ (i) = νm

t (∇u(i) + (∇u(i))T)+ τ⊥DNS

4 Solve the RANS equations: N (u(i))=∇ · τ (i) −∇p to obtain u(i)

5 end
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FIGURE 6. (Colour online) The local condition number at different Reynolds numbers
by using implicit treatment of Reynolds stress, i.e. the linear part of Reynolds stress is
implicitly treated by introducing an optimal eddy viscosity.

Compared to the Reynolds stress models, it is well known that eddy-viscosity
models can enhance the stability and conditioning of RANS equations with turbulence
closures. In the practice of traditional RSM, the modelled Reynolds stress is
empirically blended with the Reynolds stress from eddy-viscosity models to achieve
better convergence and conditioning (Basara & Jakirlic 2003; Maduta & Jakirlic 2017).
In this work, we demonstrate that the local condition number Kj can quantitatively
explain the improved conditioning of the implicit treatment of the Reynolds stress
by introducing an eddy viscosity. It can be seen in figure 6 that the local condition
number Kj is significantly reduced compared with the results of explicit treatment of
the Reynolds stress as shown in figure 4, especially for high-Reynolds-number flows.
Although the local condition number of high-Reynolds-number flow is still greater
than that for low Reynolds number, they are of the same order of magnitude for
different Reynolds numbers. The volume-averaged local condition number in figure 7
is also significantly reduced by using an implicit treatment of the Reynolds stress,
demonstrating the merit of using an implicit treatment of the Reynolds stress in
improving the conditioning when solving RANS equations for mean velocity field.
The conditioning can be further improved by adjusting τ⊥DNS to enhance the implicit
treatment part, e.g. increasing νm

t by 1νt and adjusting the nonlinear part of the
Reynolds stress as τ⊥DNS − 1νt(∇u(i) + (∇u(i))T) accordingly. However, it should be
noted that such a purely numerical enhancement may introduce excessive errors to
iterative solvers when the chosen 1νt is too large. The proposed scheme aims to
strike a balance between accuracy and conditioning.

We further show that the relative error of mean velocity is much smaller by using
an implicit treatment of the Reynolds stress in RANS simulations. It can be seen in
figure 8(a) that the relative error of the solved mean velocity is much smaller than
the one shown in figure 5(a). In addition, the volume-averaged local condition number
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FIGURE 7. (Colour online) The volume-averaged local condition number at different
Reynolds numbers for explicit and implicit treatments of Reynolds stress.
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FIGURE 8. (Colour online) The error propagation analysis of solving streamwise velocity
iteratively by using implicit treatment of Reynolds stress, including (a) relative error of
mean velocity and (b) volume-averaged local condition number.

stays at O(1) as shown in figure 8(b), which explains the better convergence of solving
for mean velocity field by using an implicit treatment of the Reynolds stress.

The mean velocity U is solved and presented in figure 9 at Reynolds numbers
Reτ = 180 and 5200 by using explicit and implicit treatments of the Reynolds stress.
At Reynolds number Reτ = 180, it can be seen in figure 9(a) that the solved mean
velocity U by using both kinds of treatments has a good agreement with DNS data.
This demonstrates that the error propagation from Reynolds stress to mean velocity
is not severe at low Reynolds number, and the percentage error of the mean velocity
is comparable by using either an explicit or implicit treatment of the Reynolds stress
as shown in figure 9(c). These results show good agreement with the local condition
number presented in figures 4 and 6, which shows that the local condition number
is of the same order for the flow at Reynolds number Reτ = 180 by using both
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FIGURE 9. (Colour online) The comparison of solved mean velocity by using explicit
and implicit treatments of Reynolds stress, including (a) mean velocity U at Reτ = 180,
(b) mean velocity U at Reτ = 5200, (c) percentage error of mean velocity U at Reτ = 180
and (d) percentage error of mean velocity U at Reτ = 5200.

types of treatments. However, the solved mean velocity fields are noticeably different
at high Reynolds number (Reτ = 5200) as shown in figure 9(b). Specifically, the
solved mean velocity by using an explicit treatment of the Reynolds stress shows a
significant difference from the DNS data, while the solved mean velocity by using
an implicit treatment of the Reynolds stress still agrees well with the DNS data at
Reτ = 5200. The subtle differences between the explicit and implicit treatments are
further discussed in appendix D. The percentage error of solved mean velocity at
Reτ = 5200 in figure 9(d) also confirms that the error in mean velocity by using an
explicit treatment of the Reynolds stress is orders of magnitude higher than the error
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FIGURE 10. The configuration of (a) the flow in a square duct at Reb= 3500 and (b) the
flow over periodic hills at Reb = 5600.

of using an implicit treatment of the Reynolds stress. Such comparison of solved
mean velocity fields agrees well with the differences in local condition number Kj,
demonstrating that the proposed local condition number can be used to quantitatively
assess the error propagation from Reynolds stress to mean velocity when solving
RANS equations. At a high Reynolds number (Reτ = 5200), the profile of the error
is dominated by the local condition number, which is much larger near the channel
centre as shown in figure 4. At a low Reynolds number (Reτ = 180), the local
condition number is of the same order of magnitude in the whole domain, and thus
the profile of the error is dominated by the error within the DNS Reynolds stress.
Therefore, the noisy pattern of the profile of the error can only be seen in figure 9(c)
for Reτ = 180 but not in figure 9(d) for Reτ = 5200. Inspired by the comparison
of conditioning with explicit and implicit treatments of Reynolds stress closures,
Wu et al. (2018) further proposed an implicit treatment of the Reynolds stress for
machine-learning-assisted RANS modelling to improve the conditioning when solving
for mean velocity field.

3.2. Model conditioning of RANS equations for more complex flows
We further study the model conditioning of RANS equations for more complex flows
including the flow in a square duct at Reb = 3500 (Pinelli et al. 2010) and the flow
over periodic hills at Reb = 5600 (Breuer et al. 2009), where Reb is defined by the
bulk velocity Ub at the inlet. The flow configurations are shown in figure 10. In this
work, we show that the RANS equations of more complex flows can also be ill-
conditioned. In addition, we demonstrate that the proposed local condition number can
be used to assess the model conditioning of RANS equations in these more complex
flows.

3.2.1. Flow in a square duct
We first study the solved mean secondary velocity Uz by using an explicit treatment

with fixed Reynolds stress and an implicit treatment of the Reynolds stress. The
comparison of mean velocity profiles demonstrates that the implicit treatment of the
Reynolds stress leads to solved mean velocity that shows better agreement with DNS
data in figure 11. We then focus on the analysis of the errors in this work. The
error is quantified by the ratio ‖Uz−UDNS

z ‖/U
DNS
z,rms, where UDNS

z,rms is a volume-averaged
velocity of UDNS

z as defined in (3.2). It can be seen in figure 12(a) that some large
errors exist in the region of the vertical symmetry plane and around the diagonal
within the cross-plane. Compared to the errors as shown in figure 12(a), noticeable
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y/h;    y/h + 15Uz

z/h

0

0.2

0.4

0.6

0.8

1.0

Explicit treatment Implicit treatment DNS

0.25 0.50 0.75 1.00

FIGURE 11. (Colour online) The comparison of solved mean velocities by using explicit
treatment with fixed Reynolds stress and implicit treatment of Reynolds stress. The
computational domain covers a quarter of the cross-section of the physical domain, i.e. h=
D/2. This is due to the symmetry of the mean flow in both y and z directions as shown in
figure 10(a). It should be noted that the Reynolds stress is obtained from a DNS database
(Pinelli et al. 2010).

(a) (b)

0 0.25 0.50

FIGURE 12. (Colour online) The normalized error of the solved secondary flow velocity
Uz of the flow in a square duct by using (a) explicit treatment with fixed Reynolds stress
and (b) implicit treatment of Reynolds stress.

reduction of errors can be observed in figure 12(b), where the implicit treatment of
the Reynolds stress is used.

The proposed local condition number can be used to analyse the model conditioning
for the flow in a square duct as demonstrated in figure 13. It can be seen in
figure 13(a) that the local condition number is also large in the region of the vertical
symmetry plane and around the diagonal within the cross-plane, which is consistent
with the error of mean velocity as shown in figure 12(a). In addition, figure 12(b)
shows that the local condition number is generally smaller across the whole domain
by using an implicit treatment of the Reynolds stress. Such a reduction of local
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(a) (b)

0 10 20

FIGURE 13. (Colour online) The local condition number of the flow in a square duct
by using (a) explicit treatment with fixed Reynolds stress and (b) implicit treatment of
Reynolds stress.

condition number also correlates well with the comparison of mean velocity error
in figure 12. It should be noted that the mean velocity error is determined by both
the local condition number and the error in Reynolds stress. Therefore, the spatial
pattern of mean velocity error in figure 12 cannot be solely explained by the local
condition number in figure 13. However, the analysis of local condition number can
still provide some information about whether the solved mean velocity is reliable.
In practical applications, the error of the Reynolds stress is usually unknown, and
caution should be exercised when regions with large local condition number exist.
Note that the results shown in figures 12 and 13 demonstrate that the vertical velocity
Uz is not symmetric with itself about the diagonal of the domain. Rather, the diagonal
symmetry of this flow is such that the velocity components Uz and Uy are symmetrical
to each other about the diagonal. That is, it is expected that Uy(x)= Uz(x′) and not
Uz(x)=Uz(x′), where x and x′ denote two points symmetric about the diagonal.

3.2.2. Flow over periodic hills
Unlike the flow in a square duct, the error of mean velocity can be large across

the whole domain for the flow over periodic hills. We first show the comparison
of the Reynolds stress from different DNS datasets, including the data by Breuer
et al. (2009) (dataset 1) and two datasets obtained by using Incompact3d (Laizet
& Lamballais 2009; Laizet & Li 2011) by using two different mesh resolutions
(datasets 2 and 3). The simulation details are summarized in table 2. It can be seen
in figure 14(a) that the Reynolds stresses obtained from these three datasets are very
close to each other. According to the comparison of these Reynolds stresses, we
might intuitively expect that the solved mean velocity fields are similar to each other
by substituting the fixed DNS Reynolds stresses into RANS equations. However, this
is not the case, as shown in figure 14(b), where we compare the solved mean velocity
with the DNS mean velocity field. It can be seen that the solved mean velocity field
by using fixed DNS Reynolds stress from dataset 2 show noticeable differences across
the whole domain. In contrast, the solved mean velocity fields from datasets 1 and 3
have better agreement with the DNS mean velocity field, but they are still different
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2.5

3.0(a)

(b)

Dataset 1 Dataset 2

Dataset 3 DNS

0.5

1.0

1.5y/H
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2.0

2.5

3.0

x/H;   2Ux/Ub + x/H 

x/H;   25†xy/Ub
2 + x/H 

FIGURE 14. (Colour online) The comparison of (a) DNS Reynolds stress and (b) solved
mean velocity between different DNS datasets. The solved mean velocity is obtained by
substituting the corresponding DNS Reynolds stress and solving RANS equations. The
solid black lines in panel (b) denote the DNS mean velocity as a benchmark. It should be
noted that the DNS mean velocities from different datasets have no noticeable difference,
and here we present the DNS mean velocity from Breuer et al. (2009).

Dataset Mesh (Nx ×Ny ×Nz) Solver Methods

1 281× 234× 200 LESOCC
(Breuer et al. 2009)

LES, finite volume method, body-fitting
grid, second-order discretization

2 512× 257× 128 Incompact3d
(Laizet & Li 2011)

DNS, Cartesian grid with immersed
boundary method, pseudo-spectral
method, sixth-order discretization

3 768× 385× 128

TABLE 2. Summary of the datasets of the flow over periodic hills at Reynolds number
Re = 5600, including the numerical methods, treatment of solid boundaries, accuracy of
numerical discretization, mesh sizes and type. Here Nx, Ny, and Nz indicate number of
grids in streamwise, wall-normal and spanwise directions, respectively.

from each other. It is expected that implicit treatment leads to better agreement of
solved mean velocity with DNS data, which has been demonstrated in a related work
(Wu et al. 2018).
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0

(a)

(b)

100 200

FIGURE 15. (Colour online) The local condition number Kj of the flow over periodic hills
at Re= 5600 by using (a) explicit treatment with fixed Reynolds stress and (b) implicit
treatment of Reynolds stress.

The comparison in figure 14 can be explained by studying the model conditioning
of RANS equations with specified Reynolds stress. Specifically, it can be seen in
figure 15(a) that the local condition number by using fixed Reynolds stress is of
O(102) in most areas, indicating that the RANS equations are ill-conditioned in these
regions. On the other hand, the local condition number is smaller in the near-wall and
the recirculation regions. The large local condition number can explain the comparison
in figure 14, i.e. the similar Reynolds stress fields lead to dramatically different mean
velocity fields by solving the RANS equations. The physical justification of such a
pattern of the local condition number field is that the mean velocity error is strongly
correlated along the streamlines, and the periodic boundary condition of the inlet
and outlet exacerbates the model conditioning for this flow. We also study the local
condition number by using an implicit treatment of the Reynolds stress. It can be
seen in figure 15(b) that the local condition number is much smaller than those where
fixed Reynolds stress is used in figure 15(a). Therefore, it can be expected that the
solved mean velocity by using an implicit treatment of DNS Reynolds stress have
a better agreement with the DNS mean velocity, which has been confirmed by Wu
et al. (2018).

In this work, the local condition number assesses the relative error of the solved
mean velocity at a given point with regard to the errors in the Reynolds stress field.
Therefore, the global effect of error can be captured by the local condition number.
Specifically, such an effect depends on the mean flow pattern, which is embodied
in the differential operator of linearized RANS equations and influences the local
condition number via the Green’s function G(x, ξ) as defined in (2.15). For instance,
the errors in the solved mean velocity of the periodic hill flow is generally large across
the upper channel region as shown in figure 14. This is largely due to the fact that the
cyclic boundary conditions of the inlet and outlet introduce a strong correlation among
errors in the upper channel region. It can be seen in figure 15 that the local condition
number Kj is also large across the upper channel region, demonstrating that the local
condition number takes into account the mean flow pattern and thus truthfully reflects
the potentially large error in the solved mean velocities therein.
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4. Discussion

While this work primarily focuses on the conditioning of a particular class of
data-driven Reynolds stress models, the conditioning issue is an equally important
challenge for traditional Reynolds stress models based on Reynolds stress transport
equations. Although solving a monolithic system of Reynolds stress transport
equations and RANS equations is the most effective way to improve conditioning, it
is uncommon due to increased computational costs. Moreover, monolithic coupling
is by no means a panacea that guarantees well-conditioning and stability. The
conditioning and stability ultimately depend on the characteristics of the turbulence
model itself. For example, the popularity of the SA model in external aerodynamics
is largely attributed to its excellent robustness in terms of both model conditioning
and numerical stability, which many other models do not have. As of now, most
commercial and open-source general-purpose CFD packages (e.g. Weller et al. 1998)
still solve the turbulence transport equations and the RANS mean flow equations
in a segregated manner, even in solvers where velocity and pressure are solved
concurrently. In such segregated solvers, the modelled Reynolds stress is often
updated with the mean velocity field at every iteration step, in the hope that the
mean velocity field and the Reynolds stress can consistently adjust to each other
during the iterations. However, if the RANS equations are ill-conditioned and the
Reynolds stresses are treated explicitly as source terms, the error can be amplified
within each iteration. Consequently, a small error in the modelled Reynolds stress
can lead to large errors in the solved mean velocity field, which is carried over
to the Reynolds stresses in the next iteration step and further amplified. Such an
error amplification destabilizes the solution procedure and can potentially lead to
divergence.

For the reasons outlined above, RANS simulations with Reynolds-stress-based
turbulence models need to be stabilized to increase the robustness of the solvers.
Examples of stabilization include (1) using the velocity solved with eddy-viscosity
models as an initial condition for iterations in the RSM-based solver and (2) partial
implicit treatment of the Reynolds stress, among others. In the latter category,
researchers introduced a hybrid scheme of computing Reynolds stress by blending
the RSM-modelled Reynolds stress with that computed from eddy-viscosity models,
with the latter stabilizing the solution (Basara & Jakirlic 2003; Maduta & Jakirlic
2017). However, the choice of the blending factor is largely ad hoc due to the lack
of a quantitative method to evaluate the model conditioning. A large blending factor
improves the conditioning and stabilizes the solution of the RANS equations, but
it impairs the accuracy of the solved mean velocity, since the linear eddy-viscosity
assumption would be increasingly dominant. The metric proposed in this work can
assess the model conditioning with any given blending factor, and thus it is possible
to choose a minimum blending factor that maintains good conditioning.

A monolithic coupling for data-driven turbulence models is more challenging
than for traditional PDE-based models, if it is possible at all. For example, for
a neural-network-based data-driven turbulence model (e.g. Ling et al. 2016; Zhu
et al. 2019), a monolithic coupling is possible, because neural network models are
differentiable. However, for non-differentiable models, e.g. those based on random
forests or other tree-based models (e.g. Wang et al. 2017), a monolithic coupling is
not straightforwardly viable.
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5. Conclusion
Recently, several researchers have employed DNS Reynolds stress data as the

closure term and solved the RANS equations for mean velocities on turbulent channel
flows. They reported unexpected results that the obtained mean velocities deviated
significantly (up to 35 %) from the DNS data at high Reynolds numbers. In this
work, we aim to identify a metric to quantitatively assess the conditioning of RANS
equations with data-driven Reynolds stress closures, i.e. how a small error in Reynolds
stress can lead to large errors in the mean velocity by solving RANS equations. The
turbulent channel flow is studied to evaluate the candidate metrics. Our analysis shows
that the global matrix-based condition number is not able to distinguish the different
sensitivity of solved mean velocities at different Reynolds numbers. A local condition
number function is then derived as a more precise indicator of model conditioning.
We demonstrate that such a local condition number explains the error propagation
from the modelled Reynolds stress to the solved mean velocity in RANS simulations
for turbulent channel flows at different Reynolds numbers. Two more complex flows
are also studied to further demonstrate the capability of the proposed local condition
number in evaluating the conditioning of RANS equations with data-driven Reynolds
stress closures. The proposed condition number provides a quantitative metric to
assess the model conditioning of RANS equations, facilitating the development of
conditioning-oriented schemes in data-driven turbulence modelling.
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Appendix A. Derivations of condition numbers
A.1. Derivation of global matrix-based condition number

The global matrix-based condition number Kτ is defined as follows:

‖δU‖
‖U‖

6Kτ

‖∇ · δτ‖

‖∇ · τ‖
, (A 1)

where Kτ measures the sensitivity of the solved mean velocity field due to the
perturbation of the Reynolds stress field, and | · | indicates the Euclidean norm of
a vector (of all values in the discretized velocity field). To derive the formulation
of Kτ , the perturbation δb in (2.8) is further written as

δb=∇ · δτ − δ(∇p). (A 2)

For the purpose of the sensitivity study here, it is assumed that a constant pressure
gradient is imposed to drive the flow, i.e. δ(∇p)= 0, and thus we have

δb=∇ · δτ . (A 3)
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Hence,
‖δU‖
‖U‖

6KA
‖δb‖
‖b‖
=KA

‖∇ · δτ‖

‖b‖
=KA

‖∇ · τ‖

‖b‖︸ ︷︷ ︸
Kτ

‖∇ · δτ‖

‖∇ · τ‖
. (A 4)

Comparing the forms of (A 4) with the definition of Kτ in (A 1), the matrix-norm-
based condition number for Reynolds-stress-based turbulence models is thus

Kτ =KA
‖∇ · τ‖

‖b‖
. (A 5)

A.2. Derivation of local condition number function
The continuous local condition number K(x) is defined as follows:

|δu(x)|
U∞

6K(x)
‖∇ · δτ‖Ω

‖∇ · τ‖Ω
, (A 6)

where K(x) measures the sensitivity of the solved mean velocity at any given
location x due to the perturbation of the Reynolds stress field, and U∞ is a constant
representative velocity magnitude for normalization. The function norm ‖ · ‖Ω of
function f (ξ) on domain Ω is defined as in (2.17).

To derive the formulation of this local condition number, we first consider the
solution u at a particular location x′:

u(x′)=
∫
Ω

G(x′; ξ)b(ξ) dξ , (A 7)

where G represents the Green’s function of the linear differential operator L in
the linearized RANS equations as defined in (2.6). Denoting Gx′ = G(x′; ξ), the
perturbation of the solution is thus

δu(x′)=
∫
Ω

G(x′; ξ) δb(ξ) dξ = 〈Gx′, δb〉Ω, (A 8)

where 〈·〉Ω is the inner product of functions defined on domain Ω .
Using the Schwartz inequality (Steele 2004; Debnath & Mikusiński 2005) leads to

|δu(x′)| 6 ‖Gx′‖Ω ‖δb‖Ω (A 9)
= ‖Gx′‖Ω ‖∇ · δτ‖Ω . (A 10)

As in § A.1, the pressure gradient is assumed constant and thus δb=∇ · δτ . Finally,
the sensitivity of mean velocity u with respect to the Reynolds stress τ perturbations
is derived as follows:

|δu(x′)|
U∞

6
‖Gx′‖Ω ‖∇ · δτ‖Ω

U∞
(A 11)

=
‖Gx′‖Ω ‖∇ · τ‖Ω

U∞

‖∇ · δτ‖Ω

‖∇ · τ‖Ω
. (A 12)

Therefore, by comparing (A 12) and (A 6), we define a local condition number
function K of spatial location x as

K(x)=
‖Gx‖Ω ‖∇ · τ‖Ω

U∞
=
‖G(x, ξ)‖Ω ‖∇ · τ‖Ω

U∞
. (A 13)

Without causing ambiguity, we have dropped the subscript of x′ in the equation above
and in the text for simplicity of notation.
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0(a)

(b)

0.003 0.006

0 0.002 0.004

FIGURE 16. (Colour online) The optimal eddy-viscosity fields for (a) the flow in a square
duct at Reb = 3500 and (b) the flow over periodic hills at Reb = 5600.

A.3. Local condition number for implicit treatment of Reynolds stress
In the practice of RANS modelling, eddy-viscosity models are widely used, and the
modelled eddy viscosity influences the differential operator L associated with RANS
equations. Therefore, we extend the derivation of (2.15) to make it compatible with
the implicit treatment of the Reynolds stress. According to the general form of the
implicit treatment of the Reynolds stress (Pope 1975) in (2.22), the linearized RANS
equations in (2.5) can be rearranged as follows:

L̃(u)=∇ · τ⊥ −∇p, (A 14)

where L̃=L− νm
t ∇

2 is the modified linear differential operator by using an implicit
treatment of the Reynolds stress. Examples of optimal eddy viscosity νm

t for the flow
over periodic hills and the flow in a square duct are shown in figure 16. Here we only
study the perturbation on the nonlinear term τ⊥ of the Reynolds stress τ , i.e.

δτ = δτ⊥. (A 15)

Finally, we have the local condition number K(x′) in (2.15) rederived as follows for
the implicit treatment of the Reynolds stress:

|δu(x′)|
U∞

6
‖G̃x′‖Ω ‖∇ · δτ

⊥
‖Ω

U∞
(A 16)

=
‖G̃x′‖Ω ‖∇ · τ‖Ω

U∞︸ ︷︷ ︸
Kj

‖∇ · δτ‖Ω

‖∇ · τ‖Ω
, (A 17)

where the kernel function ‖G̃x′‖Ω represents the Green’s function that corresponds to
the linear differential operator L̃ defined in (2.23), taking into account the implicit
modelling of the linear part of the Reynolds stress by introducing an eddy viscosity.
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Appendix B. Mesh independence of the local condition number function
We present the numerical discretization of the proposed local condition number on a

CFD mesh and show that the discretized local condition number is mesh-independent.
First, the function norms ‖ · ‖Ω are approximated in vector norms ‖ · ‖n through
numerical integration on a CFD mesh of n cells. This is derived as follows:

‖Gx′‖Ω =

√∫
Ω

|G(x′; ξ)|2 dξ (B 1)

≈

√√√√ n∑
i=1

([rj,i]
21Vi) (B 2)

=

√√√√ n∑
i=1

(
[rj,i]

√
[1Vi]

)2
(B 3)

= ‖rj

√
[1V]‖n = ‖r̃j‖n, (B 4)

with r̃j= rj

√
1V and ≈ indicating numerical discretization of the integral involved in

the function norm in (B 1); 1Vi is the volume for the ith cell; 1V is the n-vector
consisting of volumes of cells in the mesh; and rj is the jth row of the matrix A−1,
with A being the discretization of the operator L as seen in (2.6). The numbering
implies that the location x′ is the coordinate of the jth cell.

Similarly, the function norm of the Reynolds stress divergence is approximated on
the CFD mesh as follows:

‖∇ · τ‖Ω ≈ ‖[∇ · τ ]
√
[1V]‖n. (B 5)

It is clear that the function norm ‖Gx′‖Ω is mesh-independent as its definition does
not involve any discretization mesh (quadrature), so its numerical approximation
‖rj
√
[1V]‖n should also be mesh-independent on a sufficiently fine mesh. In the

same way, both the function norm ‖∇ · τ‖Ω and its numerical approximation
‖[∇ · τ ]

√
[1V]‖n are mesh-independent. The mesh independence can be further

verified in the special case, where the divergence field ∇ · τ is a non-zero constant β
and the mesh consists of n uniformly sized cells. In this case we have 1V = |Ω|/n,
where |Ω| is the total volume of the computational domain Ω (independent of the
discretization mesh). Therefore, the vector norm, which is a numerical approximation
of the function form, is as follows:

‖[∇ · τ ]
√
[1V]‖n =

√√√√ n∑
i=1

(
β

√
|Ω|

n

)2

(B 6)

=

√
nβ2
|Ω|

n
(B 7)

= β
√
|Ω|, (B 8)

which is clearly independent of the number of cells in the mesh. In order to
complement and validate the derivations above, a numerical study of mesh convergence
is presented in figure 17, where the local condition number Kj at Re = 5200 is
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FIGURE 17. (Colour online) Mesh convergence study of local condition number Kj at
Re = 5200 by using explicit treatment with fixed Reynolds stress, i.e. the fixed DNS
Reynolds stress is substituted into RANS equations.

calculated by using different mesh resolutions. It can be seen that asymptotical
convergence of local condition number Kj can be achieved by gradually refining the
mesh resolution. Moreover, even on a coarser mesh the overall magnitude and spatial
distribution of the condition number Kj are correctly captured.

Appendix C. Explicit treatment of Reynolds stress with dependence on strain rate
The conditioning of RANS equations with explicit treatment of the Reynolds

stress has been discussed in § 3.1.1, where the Reynolds stress is obtained from a
DNS database and is fixed when solving RANS equations. If the dependence of the
Reynolds stress on strain rate is considered, it can be seen in figure 18 that the
conditioning of RANS equations in the first iteration is the same as the conditioning
with fixed Reynolds stress as shown in figure 5. This is because the detailed explicit
treatment of the Reynolds stress does not influence the model conditioning at a
given state. Here we further show that the explicit coupling between Reynolds stress
and mean velocity during the iterations can gradually amplify the errors and lead
to divergence. Such explicit coupling is often used in the Reynolds stress transport
models. Specifically, the Reynolds stress is obtained by solving its transport equations
with the mean velocity field at the previous iteration step. In the following, we use a
simplified example with an iterative solver as shown in algorithm 3 to illustrate the
convergence issue of Reynolds stress transport models. In addition, we demonstrate
that the proposed local condition number can be used to detect and explain the
corresponding ill-conditioning issue during iterations.

The Reynolds stress at the ith iteration step is explicitly treated by using DNS data
according to algorithm 3. Unlike the data-driven Reynolds stress modelling as shown
in algorithm 1, this simplified explicit Reynolds stress treatment allows the update of
the Reynolds stress at each iteration based on the solved mean velocity field at the
previous iteration step. Compared to the implicit treatment of the Reynolds stress as
shown in algorithm 2, the only difference of this explicit treatment is the computing
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FIGURE 18. (Colour online) The error propagation analysis of solving streamwise velocity
iteratively by using explicit treatment of Reynolds stress that depends on the strain rate,
including (a) relative error of mean velocity and (b) volume-averaged local condition
number.

Algorithm 3: Explicit treatment of Reynolds stress that depends on strain rate
among iterations.

1 Compute optimal eddy viscosity νm
t from DNS Reynolds stresses based on (2.24)

2 for each iteration step i= 1, 2, . . . ,N do
3 Compute the Reynolds stress:

τ (i) = νm
t (∇u(i−1)

+ (∇u(i−1))T)+ τ⊥,DNS Solve the RANS equations:
N (u(i))=∇ · τ (i) −∇p to obtain u(i)

4 end

of the Reynolds stress with the mean velocity at the previous iteration step, which is
indicated by the superscript i− 1 at line 3 of algorithm 3.

The errors of solved mean velocity field by using an explicit treatment of the
Reynolds stress is presented in figure 18(a). The DNS mean velocity is used as
the initial field in RANS simulations, and thus the initial value of δUrms/UDNS

rms is
small. However, the value of δUrms/UDNS

rms increases rapidly during the first several
iteration steps. It demonstrates that the conditioning issue within each iteration can
lead to error amplification, i.e. a small error in the modelled Reynolds stress can
lead to noticeable errors in the solved mean velocity field and thus influence the
modelled Reynolds stress in the next iteration step. Owing to such coupling of error
amplification, even a small error of modelled Reynolds stress can lead to divergence
of the simulation eventually. It can be seen in figure 18(b) that the volume-averaged
local condition number is of O(102) within the first three iteration steps, explaining
the rapid growth of error in the solved mean velocity. The error of the solved mean
velocity grows rapidly and eventually leads to divergence of the simulation. Therefore,
the solved mean velocity is not presented in this work since a converged solution was
not achieved. Therefore, the proposed local condition number is still of importance
in traditional RANS modelling since it provides a quantitative assessment of model
conditioning at every iteration step. The divergence of the mean velocity is because
the Reynolds stress is updated according to the mean velocity at each iteration step.
With the rapidly increased error in the mean velocity at the first several iteration
steps, the error in the Reynolds stress also increases accordingly. The decrease of
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the condition number as shown in figure 18(b) does not guarantee the decrease of
the error in the mean velocity in such a scenario, considering that the error of mean
velocity is also influenced by the error in the modelled Reynolds stress. Therefore,
the small condition number needs to be interpreted with caution when the source
term in RANS equations changes during the simulation. With large condition number
in some previous iteration steps, it is possible that the error of the modelled Reynolds
stress becomes large and the mean velocity error keeps increasing even though the
condition number decreases.

Appendix D. Discrepancies in velocities obtained with different treatments
It was shown in figure 9 that the solved mean velocity can be significantly different

depending on whether the DNS Reynolds stress used to solve (2.4) is treated explicitly
or implicitly. In other words, solving the following two equations

L(uexp)=∇ · τ exp
−∇p, (D 1)

L(uimp)=∇ · τ imp
−∇p (D 2)

yields drastically different velocities. The superscript ‘imp’ indicates the implicit
treatment of the Reynolds stress and ‘exp’ denotes the explicit treatment, i.e. τ imp

=

νt(∇uimp
+ (∇uimp)T) + τ⊥,DNS and τ exp

= τDNS. This finding apparently contradicts
the common understanding in traditional CFD practice that the converged solution
of the mean velocity should be the same regardless of how the Reynolds stress is
treated. Indeed, the Reynolds stresses used in the two formulations in (D 1) and (D 2)
are approximately equal, since νt(∇uimp

+ (∇uimp)T)+ τ⊥,DNS
≈ τDNS. More precisely,

the difference between uimp and uDNS is approximately 0.1 %, and the difference
between τ imp and τ exp should be at a similar level. However, the condition number
with regard to the nonlinear differential operator L is large for the flows at high
Reynolds numbers, and thus a small difference between τ imp and τ exp can lead to a
large difference between the solved mean velocities uimp and uexp.

In addition, the better solution of uimp with the implicit treatment of the Reynolds
stress can be explained by the improved model conditioning, i.e. the condition number
is smaller with regard to the linear differential operator L̃=L− νm

t ∇
2 for the implicit

treatment of the Reynolds stress. Specifically, we first define an optimal Reynolds
stress τ op that can lead to uDNS by solving the RANS equations

L(uDNS)=∇ · τ op
−∇p, (D 3)

where τ op denotes the true Reynolds stress that provides uDNS by solving the RANS
equations. The errors ‖τDNS

− τ op
‖ and ‖τ⊥,DNS

− τ⊥,op
‖ are of the same order

of magnitude. Therefore, ‖uimp
− uDNS

‖ is smaller than ‖uexp
− uDNS

‖ due to the
smaller sensitivity of solving the mean velocity by using the implicit treatment of the
Reynolds stress.

Notation
We use [φ] to indicate the n-vector obtained by discretizing the field φ on the mesh,

where n is the number of cells/grid points; ‖[φ]‖ denotes the norm of vector [φ]
resulting from the discretization. Since the norm is always taken on the discretized
n-vector, we abbreviated ‖[φ]‖ as ‖φ‖ without ambiguity. When mentioning function
norm and n-vector norm simultaneously, we used ‖ · ‖Ω and ‖ · ‖n to distinguish them,
with Ω denoting the domain on which the norm is defined.
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u mean velocity field
U discretized mean velocity (n-vector)
τ Reynolds stress tensor
S rate-of-strain tensor
b imbalance vector between Reynolds stress divergence and pressure gradient
A n× n coefficients matrix of discretized RANS equations
N nonlinear differential operator
L linear differential operator
G Green’s function corresponding to L
KA condition number of matrix A
α ratio between Reynolds stress divergence and the total source term
Kτ matrix-norm condition number associated with Reynolds stress perturbation
Kj local condition number vector approximated on a CFD mesh (n-vector)
Kx volume-averaged local condition number (scalar)
δUrms volume-averaged r.m.s. error of solved mean velocity
UDNS

rms volume-averaged r.m.s. DNS mean velocity
⊥ superscript indicating the nonlinear part of Reynolds stress
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