
The Journal of Agricultural
Science

cambridge.org/ags

Animal Research Paper

Cite this article: Herrera-Ojeda JB,
Ramírez-Valverde R, Núñez-Domínguez R,
Lopez-Villalobos N, Vázquez-Armijo JF, Orozco-
Durán KE, Parra-Bracamonte GM (2022). Use of
an aridity index to classify season with an
application in genetic evaluation of Braunvieh
cattle. The Journal of Agricultural Science 160,
397–403. https://doi.org/10.1017/
S0021859622000454

Received: 1 September 2021
Revised: 9 May 2022
Accepted: 18 July 2022
First published online: 8 August 2022

Key words:
Climatic season; contemporary grouping;
genetic models; live weight traits

Author for correspondence:
G. M. Parra-Bracamonte,
E-mail: gparra@ipn.mx

© The Author(s), 2022. Published by
Cambridge University Press

Use of an aridity index to classify season with
an application in genetic evaluation of
Braunvieh cattle

J. B. Herrera-Ojeda1 , R. Ramírez-Valverde2 , R. Núñez-Domínguez2 ,

N. Lopez-Villalobos3,4 , J. F. Vázquez-Armijo3 , K. E. Orozco-Durán5

and G. M. Parra-Bracamonte6

1Departamento de Ciencias Básicas, Instituto Tecnológico del Valle de Morelia, Instituto Tecnológico Nacional,
Morelia, Michoacán, México; 2Departamento de Zootecnia, Universidad Autónoma Chapingo, Texcoco, México;
3Centro Universitario Temascaltepec, Universidad Autónoma del Estado de México, Temascaltepec, México;
4School of Agriculture and Environment, Massey University, Palmerston North, New Zealand; 5Facultad de
Agrobiología, Universidad Michoacana de San Nicolás de Hidalgo, Uruapan, Michoacán, México and 6Centro de
Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Tamaulipas, México

Abstract

One of the most important aspects of genetic evaluation (GE) is the definition of contempor-
ary groups (CG), commonly defined as animals of the same sex born in the same herd, year
and season. The objective of this study was to use an aridity index (AI) to classify season and
evaluate the implications on the GE of Braunvieh cattle. A data set with 32 777 and 22 448
birth weight (BW) and weaning weight adjusted to 240 days (WW) records, respectively,
was used to compare two methods of classification of climatic seasons to be used in the def-
inition of CG for GE models. The first method considered rain season criterion (RC), and the
second method is a proposed classification using an AI. Both methods were compared using
two approaches. The first approach examined differences in mixed models using the RC and
AI season to select the best model for BW and WW, evaluated by different goodness of fit
measures. The second approach considered fitting a GE model including the season classifi-
cations into the CG structure. Lower probability values for season effect and better goodness
of fit measures were obtained when the season was classified according to the AI. Results
showed that although differences are small, the AI allows a better model fitting for live-weight
traits than RC and revealed a re-ranking effect on expected progeny differences data. Further
analysis with other traits would demonstrate the extended utility of AI indicators to be con-
sidered for fitting models under a climatic change environment.

Introduction

There is a need to identify different sources of phenotypic variation to manage or control them
in agricultural research. Those sources of variation may be of genetic or environmental nature.
Statistical models identify the factors and their contribution that explain the variation of phe-
notypes of interest. In genetic evaluations (GE) to predict animals’ breeding values, the con-
temporary (herd-mate) comparison was proposed to allow more accurate accounting for
environmental factors. Such contemporary comparisons represented a considerable increase
in the accuracy of GE because of their ability to account for the specific management and
environmental conditions affecting phenotypes (Robertson et al., 1956; Weigel et al., 2017).
A critical consideration in designing contemporary groups (CG) was the balance between a
precise definition of the animal’s environmental conditions and the need for enough herd-
mates to provide an accurate estimate of the CG effect (Weigel et al., 2017).

GE of beef cattle for traits of economic importance, such as birth, weaning and yearling
weights, considers the CG as a fixed effect. A common technical definition of a CG is the
group of animals born within the same year and season, raised in the same herd, of the
same sex, and managed alike from birth until the time of measurement.

In México, national GE of Braunvieh’s growth traits have been performed every year start-
ing in 2003, determining that the best alternative of CG definition was the inclusion as a fixed
effect in the model, considering dry and rainy seasons according to the data of rainfall distri-
bution over the years, recorded in the meteorological stations closest to each herd (Ramírez
Valverde et al., 2008). Currently, Mexican Braunvieh cattle breeders perform GE for live-
weight traits (Núñez et al., 2021) using rain season criterion (RC) in the CG definition
(herd, and year-season of birth). However, the search of the most convenient criteria to define
the specific seasons required the exploration of different options, considering astronomical or
meteorological conventionally seasons among other criteria (Herrera-Ojeda et al., 2018a), as

https://doi.org/10.1017/S0021859622000454 Published online by Cambridge University Press

https://www.cambridge.org/ags
https://doi.org/10.1017/S0021859622000454
https://doi.org/10.1017/S0021859622000454
mailto:gparra@ipn.mx
https://orcid.org/0000-0001-5293-1550
https://orcid.org/0000-0002-3185-8494
https://orcid.org/0000-0002-1447-4632
https://orcid.org/0000-0001-6611-907X
https://orcid.org/0000-0003-4888-969X
https://orcid.org/0000-0002-9341-4055
https://orcid.org/0000-0002-9327-2042
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0021859622000454&domain=pdf
https://doi.org/10.1017/S0021859622000454


descriptors of environmental factors under extensive ranch condi-
tions, specifically related to pluvial precipitation and feed
availability.

Herrera-Ojeda et al. (2018a, 2018b) proposed the use of the
aridity index (AI), based on Food and Agriculture Organization
of the United Nations (FAO’s) scale (Middleton and Thomas,
1992; Spinoni et al., 2015) to define CG for GE of productive
traits and comparing them to astronomical seasons usually used
by some breeds associations in their season classifications. They
found significant differences in explaining phenotypic variability
and changes in estimated parameter and predicted genetic values,
suggesting improvement of fitting models and predictions. A cen-
tral implication of this approach is the recalibration of evapo-
transpiration suggested by Lobit et al. (2018) used in estimating
the AI, considering the direct effects of solar radiation and tem-
peratures. However, these assessments considered small data
sets for the evaluation and comparison of season definition and
their effects on estimating genetic parameters and breeding values
for live-weight traits in Charolais cattle.

The Mexican Braunvieh Cattle Association runs a GE for live-
weight traits on a yearly basis using a much larger data set than
the data set of Charolais cattle (Herrera-Ojeda et al., 2018a,
2018b). The definition of CG for the Braunvieh cattle considers
the rainy season definition; therefore, the objective of this study
was to evaluate the effect of incorporating AI in the definition
of CG for the GE of Braunvieh’s live-weight traits.

Materials and methods

For comparing season definition on GE of live-weight models, a
data set of Mexican Braunvieh cattle was used. The data set
included animal, sire, dam, sex, herd, date of birth, date of wean-
ing, age of dam and Braunvieh purity percentage, birth weight
(BW, n = 32 777) and weaning weight (WW, n = 22 448). BW
was recorded within the first week of birth with a roman weight
scale, and WW was recorded from 195 to 285 days among the dif-
ferent herds included in data set using chute weight scales, hence-
forth adjusted to WW at 240 days.

The month of birth and weaning information was used to clas-
sify the season using the RC and AI criteria. Pedigree data
included 46 233 animals, born from 2001 to 2015; with 491 inbred
animals with average inbreeding coefficient of 0.15. Number of
sires was 1433 with an average of 22.3 progeny per sire.
Number of dams was 16 832 with an average of 1.9 progeny per
dam. The pedigree file covered approximately six generations.

Aridity index and rain season classifications

Definition of CG using the RC criterion considered the average of
pluvial precipitation of the herd site and considering only rainy
and dry categories to classify each month-season according to
their weather classification (Magaña and Segura, 1997; Rivera
et al., 2013; Nuñez et al., 2021). The RC criterion is currently
used for national GE of Braunvieh cattle (Nuñez et al., 2021).

In the other hand, a new approach based on an AI estimates,
was used to classify season for inclusion into contemporary
grouping for BW and WW dates based on herd localization
using Pro.Clima V.1.0 App (Parra et al., 2020). This approach is
described as follows:

Climatological information from the historical data bank of
the National Water Commission (Comisión Nacional del Agua,
by its Spanish letters) was extracted by the daily information

quick extractor (ERICIII) and adapted to an R script for further
analysis (R Core Team, 2018).

Meteorological data from 4500 weather stations from 1985 to
2015 were extracted, including daily rain, temperatures
(minimum, maximum and means), solar radiation, relative
humidity and wind velocity records. The information included
all meteorological stations from Mexico. The evapotranspiration
(ETo) was estimated and recalibrated by the formula suggested
by Lobit et al. (2018), which was based on the Penman–
Monteith method as follows:

ETo = 0.1555 Ra
������������������
(Tmax− Tmin)

√

× 9.967 10−2 + 4.280 10−3 Tmax+ Tmin
2

( )

where Ra = solar radiation, Tmax =maximum temperature,
Tmin =minimum temperature.

After the ETo recalibration, the AI was calculated for each day
and meteorological station according to the formula proposed by
Middleton and Thomas (1992) and Spinoni et al. (2015) as
follows:

AI =
∑m

i=1
Pi

EToi

( )

m

where AI = aridity index, P = daily pluvial precipitation and
ETo = recalibrated ETo, for i = 1 to the mth day of the month.

Posteriorly, average estimates by month were used to classify
each season in four categories suggested by Middleton and
Thomas (1992), 0–0.20 = arid, 0.21–0.50 = semiarid, 0.51–0.65 =
subhumid and > 0.65 = humid.

Model comparisons

Two approaches were used to compare the effect of season classi-
fication for the definition of CG. First, four linear mixed models
were fitted, one for each trait studied (BW; WW). Models
included the fixed effects of herd, year, sex and season, the linear
and quadratic covariate effect of dam age, the linear covariate
effect of Braunvieh purity percentage and the random effects of
sire and dam. The only difference between the two models was
the classification of the season according to the RC and AI cri-
teria. The solutions of the mixed-model equations were obtained
using maximum likelihood, as implemented in the MIXED pro-
cedure of the SAS package version 9.1 (SAS Institute Inc., Cary,
NC, USA). The goodness of fit measures of the models was eval-
uated through: −2LogL (log-likelihood), AIC (Akaike information
criterion; Akaike, 1973), corrected AIC and BIC (Bayesian infor-
mation criterion; Schwarz, 1978). The AIC and BIC goodness of
fit measures were estimated as follows: AIC =−2LogL + 2k, and
BIC = −2LogL + Log(n) × k, where LogL is the log-likelihood esti-
mated from each assessed genetic model, k is the number of para-
meters (Akaike, 1973) and n is the number of records. The lower
these statistics the better the models.

The second approach considered fitting a bivariate model
including the season classifications into the CG herd-year-season
structure, this structure was selected considering the current
structure of GE for Braunvieh cattle in Mexico. The bivariate ani-
mal model used a pedigree size of 46 233 animals and included
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the random effects of sire and dam and covariance between them.
For each model, fixed effects of CG (herd-year-season) and sex,
the linear and quadratic covariate effect of dam age, and the linear
covariate effect of purity percentage were included. These analyses
were carried out using the software MTDFREML (Van Vleck and
Boldman, 1993).

Since the difference among models was the RC and AI in the
CG structure, and the number of parameters for each model was
the same, an exploratory comparison between models was consid-
ered using, −2LogL and computing AIC and BIC goodness of fit
measures, to choose best model as previously described.

Estimates of (co)variance components, direct and maternal
heritabilities, the genetic correlation between direct and maternal
genetic effects, and environmental proportion effects were com-
puted. Genetic correlations between direct and maternal effects
for both traits were also estimated.

The effect of criteria to define season on the GE was evaluated
on the changes of expected progeny differences (EPD), accuracies
(ACC) and prediction error variances (PEV) for BW and WW of
the top 10% animals selected based on EPD for WW. A paired t

test analysis was performed between EPD, ACC and PEV of both
models, considering the 10% top animals selected independently
by WW direct (WWd) EPD or ACC, using the TTEST procedure
of SAS version 9.1 (SAS, 2017). Finally, the regression of WWd
EPD and ACC from those sires with more than 15 offspring
was fitted to graphically illustrate those changes.

Results

Table 1 shows the goodness of fit of the models for the analysis of
variance of BW and WW considering CG with the season defined
according to RC or AI. The models with CG based on the AI had
lower best-fitting values than those based on season classified
according to RC for both traits. Classified of season according
to RC had no significant effect on BW. In contrast, classification
of season according to the AI had a significant effect (P < 0.001)
on BW. Season effects for WW were significant regardless of
classification criteria.

Table 2 presents the estimates of variance components
obtained by the bivariate models using two different criteria to

Table 1. Goodness of fit measures for mixed models used for the analysis of variance of birth (BW) and weaning weight (WW) in Braunvieh cattle classifying season
according to a rainy season criterion (RC) and an aridity index (AI)

Goodness of fit BWRC BWAI WWRC WWAI

−2LogL 160 232 160 218 216 995 216 932

AIC 160 708 160 698 217 497 217 438

AICC 1 607 121 160 702 217 502 217 444

BIC 160 232 160 218 216 995 216 932

P value of season effect 0.004 0.007 0.102 0.012

−2LogL, log-likelihood; AIC, Akaike information criterion; AICC, corrected Akaike information criterion; BIC, Bayesian information criterion; BW, birth weight; WW, weaning weight at 240 days.

Table 2. Variance components and genetic parameters obtained from bivariate analysis for birth (BW) and weaning weight (WW) in Braunvieh cattle using different
criteria to classify season for the definition of contemporary groups

Variance component and parametera

Criteria to classify season

Rainy season classification Aridity index season

BW WW BW WW

s2
a 3.0 134.4 2.9 144.3

s2
m 1.2 63.0 1.1 71.4

σam −1.1 −45.5 −0.98 −58.8

s2
e 7.9 466.5 7.9 450.7

s2
p 11.1 618.3 10.9 607.6

h2 0.27 ± 0.02 0.22 ± 0.02 0.26 ± 0.02 0.24 ± 0.03

m2 0.11 ± 0.02 0.10 ± 0..02 0.10 ± 0.02 0.12 ± 0.02

ram −0.55 ± 0.06 −0.49 ± 0.06 −0.55 ± 0.10 −0.58 ± 0.09

e2 0.71 ± 0.02 0.75 ± 0.02 0.72 ± 0.02 0.74 ± 0.02

−2Log L 260 881 253 693

BIC 260 889 253 751

AIC 260 900 253 720

−2LogL, log-likelihood; AIC, Akaike information criterion; AICC, corrected Akaike information criterion; BIC, Bayesian information criterion.
as2

a = direct genetic variance, s
2
m = maternal genetic variance, σdm = direct and maternal genetic covariance, s2

c = maternal permanent variance, s2
e = environmental variance, s2

p = phenotypic
variance, h2 = direct heritability, m2 = maternal heritability, rdm = direct-maternal genetic correlation, e2 = proportion of environmental variance relative to phenotypic variance.
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classify season. The bivariate model-fitting CG with season
defined according to the AI had lower −2LogL, AIC and BIC
values than the bivariate model-fitting CG with season defined
according to the RC; however, the estimates of variance compo-
nents and genetic parameters obtained by the two models were
similar. Some differences were distinguishable between genetic
correlations (Table 3) estimated by the two bivariate models.

Some differences in EPD were the most evident for WW
between the criteria to define the season, showing possible
re-ranking among the top 10% of selected animals (Table 4).
With the exception of WWd comparison when the selection
criterion was accuracy, all paired t test comparisons were highly
significant (Table 5).

Figure 1 shows the correlation between WWd EPD and WWd
accuracies for sires with more 15 progeny obtained from the
mixed models fitting CG with season defined using different cri-
teria. The rank-correlation between EPDs was 0.81 and the correl-
ation between accuracies was 0.98. A paired t test indicated
significant differences between models except for direct BW
EPDs (Table 5).

Discussion

This study evaluated the potential use of an AI to classify season
and its implications on the GE of Braunvieh cattle. Herrera-Ojeda
et al. (2018a) compared AI season with astronomical season

classification, conventionally used to classify season of birth.
They used a small data set of Charolais cattle fitting univariate
animal models for BW and WW traits. They found large effects
on estimating genetic parameters and re-ranking animals based
on their EPDs, with a considerable effect of AI explaining the
phenotypic variance. Similarly, Herrera-Ojeda et al. (2018b)
used a slightly greater data set and also fitted appropriate univari-
ate animal models for live weight traits in Charolais cattle. They
found that mixed models including CG with season defined
using an AI produced better goodness of fit measures compared
to mixed models that included CG with season defined using
RC, with no differences in genetic parameter estimates but signifi-
cant differences in re-ranking animals in both BW and WW
traits. They concluded that the definition of season to build con-
temporary grouping can produce re-ranking of animals hence
possible biases when selecting animals. Additionally, this might

Table 3. Genetic correlations between direct (d) and maternal (m) genetic
effects for birth (BW) and weaning (WW) weight in Braunvieh cattle obtained
with a bivariate model using different criteria to classify season for the
definition of contemporary groups

BWd BWm WWd WWm

BWd −0.55 0.50 −0.30

BWm −0.55 −0.31 0.50

WWd 0.54 −0.33 −0.49

WWm −0.22 0.38 −0.33

Above diagonal: genetic correlations estimated with the model that classified season
according to rain criterion. Below diagonal: genetic correlations estimated with the model
that classified season according to the aridity index.

Table 4. Mean ± standard deviation, of expected progeny differences, predicted error variance and accuracies between same traits of the top 10% animals selected
based on direct expected progeny difference for weaning weight in Braunvieh cattle using mixed linear models that included contemporary group with season
classified according to a rainy season criterion (RC) and an aridity index (AI)

Predictions BWRC BWAI WWRC WWAI

Direct genetic effects

EPD 1 ± 0.8 1 ± 0.8 9 ± 3.3 9 ± 3.7

ACC 0.6 ± 0.07 0.5 ± 0.07 0.5 ± 0.08 0.5 ± 0.08

PEV 1 ± 0.1 1 ± 0.1 10 ± 0.6 10 ± 0.6

Maternal genetic effects

EPD −0.2 ± 0.43 −0.3 ± 0.40 −2 ± 2.6 −2 ± 2.6

ACC 0.4 ± 0.09 0.4 ± 0.09 0.3 ± 0.09 0.3 ± 0.09

PEV 1 ± 0.1 1 ± 0.1 8 ± 0.3 8 ± 0.3

EPD, expected progeny differences; ACC, accuracy; PEV, prediction error variance; BW, birth weight; WW, weaning weight at 240 days.
Estimates in the column with subscript RC were obtained with the model that classified season according to rain criterion. Estimates in the column with subscript AI were obtained with the
model that classified season according to the aridity index.

Table 5. P values of paired t tests between expected progeny differences,
predicted error variance and accuracies for birth (BW) and weaning weight
(WW) obtained with mixed-models fitting contemporary group with season
defined using different criteria, in top 10% Braunvieh cattle selected by WWd
expected progeny differences and accuracies

Selection by WWd EPD Selection by WWd accuracy

BWRC – BWAI WWRC –WWAI BWRC – BWAI WWRC –WWAI

(N = 3286) (N = 3286) (N = 4229) (N = 4229)

Direct genetic effects

EPD <0.001 <0.001 0.190 <0.001

ACC <0.001 <0.001 <0.001 <0.001

PEV <0.001 <0.001 <0.001 <0.001

Maternal genetic effects

EPD <0.001 <0.001 <0.001 <0.001

ACC <0.001 <0.001 <0.001 <0.001

PEV <0.001 <0.001 <0.001 <0.001

EPD, expected progeny differences; ACC, accuracy; PEV, prediction error variance; BW, birth
weight; WW, weaning weight at 240 days.
Estimates in the column with subscript RC were obtained with the model that classified
season according to rain criterion. Estimates in the column with subscript AI were obtained
with the model that classified season according to an aridity index.
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Fig. 1. Correlation between weaning weight direct expected progeny difference (WWd EPD) (panel a) and accuracies (panel b) obtained with mixed models fitting
contemporary group with season defined using different criteria, in Braunvieh cattle. Estimates in y-axis with subscript RC were obtained with the model that
classified season according to rain criterion, and estimates in the x-axis with subscript AI were obtained with the model that classified season according to an
aridity index.
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have economic implications in the case of underestimating or
overestimating breeding values.

The size of the data set used in the current study was greater
than the data set used by Herrera-Ojeda et al. (2018b) showing
that the use of the AI allows a better model fitting for live weight
traits than the season classification based on RC according to the
goodness of fit measures. Nevertheless, genetic parameters did not
show as larger differences as those reported by Herrera-Ojeda
et al. (2018a, 2018b), statistical paired t test suggested significant
differences possibly attributed to changes in CG structure and
connectedness among them, producing changes in ranking of ani-
mals (Fig. 1(a)), but not perceptible by average comparisons of
predictions. Furthermore, it is possible that the use of rainy season
classification by RC captures importantly seasonal variation, that
in the case of highly heritable traits do not yield large differences,
as showed by comparison with astronomical season classifications
observed in Herrera-Ojeda et al. (2018a, 2018b). Nonetheless, the
graphical illustration of correlation between WWd EPDs obtained
by the two models (Fig. 1(a)) confirmed a degree of re-ranking of
sires genetic values, more evident given the number of progeny of
animals included in this specific analysis with a correlation
between predictions of 0.80, evidently suggesting a degree of
genetic×environment interaction as pointed out by the classic
paper by Robertson (1959).

Nuñez et al. (2021) used the rainy season classification of
the birth season to define CG in the GE of Braunvieh cattle.
Most production systems are based on extensive management
influenced by feed availability of the temporal rainy season.
Henceforth, evapotranspiration could better indicate humidity
and grass availability (Pereira, 2005). Moreover, the AI is a
numeric indicator that measures the long-term hydric deficit
(Cherlet et al., 2018). Further assessment in traits that are
more environmentally affected (e.g. reproductive traits)
would be required to support the benefit of using the AI as
found here.

Under the present and future influence of climate change, con-
stant environmental influences must be considered to describe its
punctual effect on important traits of extensively managed live-
stock and crops (Greve et al., 2019). The AI might be estimated
on a daily scale for precision estimation in longitudinal traits
where the information is available. Under an international scen-
ario of GE, where fixed effects include the month or season fac-
tors, this strategy would represent a better definition of season
across the country.

The calculation of the AI has been implemented for Mexico’s
conditions by an open access app called Pro.Clima (Parra et al.,
2020, https://www.cbg.ipn.mx/servicios.html) to estimate seasonal
months in the whole Mexico territory based on the AI parameter.
Further analysis with other production and reproduction traits
would demonstrate the extended utility of AI indicators to be con-
sidered in the GE of animals under a climatic change
environment.

As a conclusive perspective, using this approach attempts to
cancel out differences among CG, however may not explain the
genetic part of the animal to cope with these changing condi-
tions; therefore, resilience under changing climate traits
might be of relevant consideration. Furthermore, such traits
should reflect the genetic potential for the worst situation by
country when climatic changes become more and more severe
and comparisons are made across countries. The scale to be
used under practical applications for EBVs could be of further
discussion.
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