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Scalings of the streamwise velocity energy spectra in turbulent boundary layers
were considered in Part 1 (Baars & Marusic, J. Fluid Mech., vol. 882, 2020,
A25). A spectral decomposition analysis provided a means to separate out attached
and non-attached eddy contributions and was used to generate three spectral
sub-components, one of which is a close representation of the spectral signature
induced by self-similar, wall-attached turbulence. Since sub-components of the
streamwise turbulence intensity u2 follow from an integration of the velocity energy
spectra, we here focus on the scaling of the former. Wall-normal profiles and
Reynolds-number trends of the three individual, additive sub-components of the
streamwise turbulence intensity are examined. Based on universal trends across
all Reynolds numbers considered, some evidence is given for a Townsend–Perry
constant of A1= 0.98, which would describe the wall-normal logarithmic decay of the
turbulence intensity per Townsend’s attached-eddy hypothesis. It is also demonstrated
how this constant can be consistent with the Reynolds-number increase of the
streamwise turbulence intensity in the near-wall region.

Key words: turbulent boundary layers, boundary layer structure

1. Introduction and context

Wall-normal trends of the streamwise turbulence intensity (TI), denoted as u2, are
a prerequisite to modelling efforts of wall-bounded turbulence. Several models for
u2 are hypothesis based. For instance, the model of Marusic & Kunkel (2003) was
inspired by the attached-eddy hypothesis (AEH, Townsend 1976), while Monkewitz
& Nagib (2015) constructed a model via asymptotic expansions and Chen, Hussain
& She (2018) via a dilation symmetry approach. The works of Vassilicos et al.
(2015) and Laval et al. (2017) derived a model for the streamwise TI by introducing
a new spectral scaling at the very large-scale end of the spectrum, beyond the
scales associated with a k−1

x region, where kx is the streamwise wavenumber. All
models require validation and calibration for the streamwise TI (Monkewitz, Nagib
& Boulanger 2017) and assumptions are inevitable for extrapolated conditions. More
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importantly, validation of the underlying spectra is often avoided, which could result
in questioning of the model assumptions. Even with available wall-normal profiles of
u2 and its spectral distribution, from both numerical computations and experiments
(e.g. Marusic, Mathis & Hutchins 2010a), definitive scalings remain elusive and
continue to be of research interest. The difficulty in finding empirical scaling trends
is mainly due to the weak dependence of u2 on the Reynolds number, the limited
Reynolds-number range over which direct numerical simulations are feasible/available
and the practical challenges associated with experimental acquisition of fully resolved
data.

Velocity energy spectra give information on how the streamwise TI is distributed
across wavenumbers, because the streamwise TI (the velocity variance or normal
stress) equates to the integrated spectral energy via Parseval’s theorem (e.g. u2 =∫
φuu dkx, where φuu is the streamwise velocity spectrum). Part 1 (Baars & Marusic

2020) considered the streamwise velocity energy spectra – and in particular by way
of a spectral decomposition to separate out several wall-attached and non-attached
eddy contributions – thus allowing an evaluation of the wall-normal profiles
and Reynolds-number trends of three individual, additive sub-components of the
streamwise TI.

First, this introduction addresses the widely researched logarithmic decay of the
streamwise TI within the outer region of turbulent boundary layers (TBLs) in § 1.1.
Then, we discuss the contentious issue of the k−1

x scaling in the streamwise velocity
spectrum φuu(kx), where kx is the streamwise wavenumber (and λx ≡ 2π/kx is the
streamwise wavelength). We briefly review Part 1 in § 1.2, which presented a data-
driven spectral decomposition.

Notation in this paper is identical to that used in Part 1. Coordinates x, y and
z denote the streamwise, spanwise and wall-normal directions of the flow, whereas
the friction Reynolds number Reτ ≡ δUτ/ν is the ratio of δ (the boundary layer
thickness) to the viscous length scale ν/Uτ . Here ν is the kinematic viscosity and
Uτ =

√
τo/ρ is the friction velocity, with τ0 and ρ being the wall-shear stress and

fluid density, respectively. When a dimension of length is presented in outer-scaling,
it is normalized with scale δ, while a viscous-scaling with ν/Uτ is signified with
superscript ‘+’. Lower-case u represents the Reynolds decomposed fluctuations and
U the absolute mean.

1.1. Townsend–Perry constant A1 in the context of the turbulence intensity
and spectra

Townsend (1976) hypothesized that the energy-containing motions in TBLs are
comprised of a hierarchy of geometrically self-similar eddying motions, that are
inertially dominated (inviscid), attached to the wall and scalable with their distance
from the wall (Marusic & Monty 2019). According to the classical model of attached
eddies (Perry & Chong 1982), the wall-normal extents of the smallest attached
eddies scale with inner variables, e.g. 100ν/Uτ , while the largest scale with δ.
Consequently, Reτ is a direct measure of the attached-eddy range of scales. Following
the attached-eddy modelling framework, the streamwise TI within the logarithmic
region adheres to

u2+ = B1 − A1 ln
( z
δ

)
, (1.1)

where A1 and B1 are constants; A1 was dubbed the Townsend–Perry constant. A
scaling of φuu ∝ k−1

x (or a plateau in the premultiplied spectrum k+x φ
+

uu) is consistent
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FIGURE 1. (a) Premultiplied energy spectrogram k+x φ
+

uu (filled iso-contours 0.2 : 0.2 : 1.8)
at Reτ ≈ 14 100 (Baars, Hutchins & Marusic 2017a). Triangle ‘N’ refers to the k−1

x region
identified by Nickels et al. (2005). (b) Turbulence intensity profile and (1.1) with A1 =

1.26 and B1 = 2.30.

with the presence of a sufficient range of attached-eddy scales. Such a spectral scaling
for the energy-containing, inertial range of anisotropic scales can be predicted with
the aid of dimensional analysis, a spectral overlap argument and an assumed type
of eddy similarity (e.g. Perry & Abell 1975; Davidson & Krogstad 2009). Perry,
Henbest & Chong (1986) related the plateau magnitude of the premultiplied spectrum
back to (1.1), resulting in

k+x φ
+

uu = A1. (1.2)

An underlying assumption of (1.1), in combination with (1.2), is that all energy is
induced by self-similar attached-eddy motions. And so, from detailed studies on the
streamwise turbulence kinetic energy, from which profiles of u2(z) and streamwise
spectra φuu are available, the Townsend–Perry constant A1 inferred via either (1.1)
or (1.2) must be equal, of course provided that attached-eddy turbulence dictates the
scaling.

Thus far, evidence for (1.2) has been inconclusive, mainly due to the limited
spectral range over which this region may exist. It is instructive to present an energy
spectrogram: premultiplied spectra at 40 logarithmically spaced positions within the
range 10.6 . z+ . δ+ are presented with iso-contours of k+x φ

+

uu in figure 1(a). These
spectra were obtained from hot-wire measurements at Reτ ≈ 14 100 in Melbourne’s
TBL facility (Baars et al. 2017a). Near-wall streaks (Kline et al. 1967) dominate the
inner-spectral peak in the TBL spectrogram (identified with the × marker at λ+x = 103

and z+ = 15), while large-scale organized motions induce a broad spectral peak
in the log region, indicated with a × marker at λx = 4δ and z+ = 3.9Re1/2

τ ≈ 464
(Mathis, Hutchins & Marusic 2009). Nickels et al. (2005) determined a k−1

x
region as z+ > 100, λx > 15.7z (wall-scaling) and λx < 0.3δ (outer-scaling) at
Reτ ≈ 14 000 (triangular region ‘N’ in figure 1a). This region satisfied (1.2)
with k+x φ

+

uu = A1 ≈ 0.92. In Part 1 it was determined from a coherence analysis
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(Baars, Hutchins & Marusic 2017b), relative to a wall-based reference, that
wall-attached self-similar motions only become spectrally energetic at λx & 14z.
It is important to note here that this result was derived from a stochastic analysis of
the streamwise velocity component only. It was furthermore suggested that φuu ∝ k−1

x
is unlikely for Reτ . 80 000. This is consistent with the study of Chandran et al.
(2017), where experimentally acquired streamwise–spanwise two-dimensional spectra
of u at Reτ ∼ O(104) were examined for a k−1

x . They concluded that an appreciable
k−1 scaling region can only appear for Reτ & 60 000. Moreover, even for the highest
Reτ laboratory data, the presence of a φuu ∝ k−1

x has been inconclusive (Morrison
et al. 2002; Rosenberg et al. 2013; Vallikivi, Ganapathisubramani & Smits 2015),
while this region must grow with Reτ .

We now switch our attention to evidence for (1.1). A caveat in determining A1

from u2(z) profiles is that, generally, all turbulent scales are lumped together as one
(integral of the entire spectrum). This approach inherently assumes that the attached-
eddy structures dominate u2. Now, if one accepts that the attached-eddy contribution
to the overall turbulence intensity grows with Reτ , this assumption should become
more valid. For this reason, Marusic et al. (2013) considered high Reτ data in the
range 2 × 104 < Reτ < 6 × 105 (Hultmark et al. 2012; Hutchins et al. 2012; Winkel
et al. 2012; Marusic et al. 2015) and inferred that A1 = 1.26 (see figure 1b). It is
worth noting that the value for A1 has changed significantly over time. For instance,
values for A1 have been quoted as 1.03 (Perry & Li 1990), 1.26 (Hultmark et al. 2012;
Marusic et al. 2013; Örlü et al. 2017) and 1.65 (Yamamoto & Tsuji 2018). These
variations in A1 are largely due to the varying TI slope with Reτ and the different
fitting regions for (1.1).

The previous discussion illustrates that A1 values found from u2 profiles vary,
while the AEH envisions a constant A1 in (1.1): one that is invariant with Reτ .
Moreover, A1 values found from u2 profiles do not agree with values for A1 inferred
from spectra via (1.2), despite the fact that this is expected per the attached-eddy
model (Perry et al. 1986). A central facet of this mismatch is the simple fact that
(1.1) and (1.2) are restricted to attached-eddy turbulence only, while in measures of
the total streamwise turbulence kinetic energy more contributions are present. For a
quantitative insight into what portion of the turbulence kinetic energy is representative
of attached-eddy turbulence, a spectral decomposition method was introduced in Part 1
(and is summarized next).

1.2. Streamwise energy spectra and the triple decomposition
Data-driven spectral filters were empirically found with the aid of two-point
measurements and a spectral coherence analysis. A first filter, denoted as fW ,
was based on a reference position deep within the near-wall region (or at the
wall). Such a reference position allows us to determine the degree of coherence
between the u fluctuations within the TBL and the fluctuations that are present at
the reference position. The other filter, fL, was based on a reference position in
the logarithmic region. It was verified that both spectral filters were universal for
Reτ ∼O(103)−O(106). Filter fW was formulated as

f p
W (z; λx)=



0, λx < Rz,

min
{

C1 ln
(
λx

z
1
R

)
, 1
}
, Rz 6 λx 6 Tnδ,

min
{

C1 ln
(

Tnδ

z
1
R

)
, 1
}
, λx > Tnδ.

(1.3)
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FIGURE 2. Dataset W with Reτ ≈ 14 100. (a–c) Premultiplied energy spectrograms of
the three spectral sub-components (for z< zL), each of them overlaid on the total energy
spectrogram (filled iso-contours 0.2 : 0.2 : 1.8). Following figure 14 of Part 1.

Subscript W signifies the wall-based reference, on which this filter is based, and the
three constants are: C1 = 0.3017, R= 14.01 and Tn = 10 (table 2, Part 1). A smooth
filter fW(z; λx) was generated by convoluting (1.3) with a log-normal distribution,
g(λx), spanning six standard deviations, corresponding to 1.2 decades in λx (details are
provided in Part 1). Filter fW(z;λx)∈[0,1] and equals a wavelength-dependent fraction
of energy that is stochastically coherent with the near-wall region. Consequently,
(1− fW) is the incoherent energy fraction. Filter fL employs a reference position zL
in the logarithmic region,

f p
L(zL; λx)=



0, λx < R′zL,

min
{

C′1 ln
(
λx

zL

1
R′

)
, 1
}
, R′zL 6 λx 6 Tnδ,

min
{

C′1 ln
(

Tnδ

zL

1
R′

)
, 1
}
, λx > Tnδ.

(1.4)

Filter constants are C′1=0.3831, R′=13.18 and Tn=10. A smooth filter fL(zL;λx) was
formed in a similar way as fW(z; λx). Of the fraction of energy that is stochastically
coherent with the near-wall region (via fW ), a sub-fraction of that energy is also
coherent with zL in the logarithmic region (and this fraction is prescribed by fL).

A triple decomposition for φuu was formed from fW and fL (§ 5.1, Part 1),
following

φc
L(z; λx)≡ φuu(z; λx)fL(z; λx), (1.5)

φi
W(z; λx)≡ φuu(z; λx)[1− fW(z; λx)], (1.6)

φWL(z; λx)≡ φuu(z; λx)[ fW(z; λx)− fL(z; λx)]. (1.7)

Consequently, φuu = φc
L + φWL + φi

W and figure 2 illustrates this decomposition
for Reτ ≈ 14 100 (duplicate of figure 14, Part 1). The three energy spectrograms
of (1.5)–(1.7) are overlaid on the premultiplied energy spectrogram k+x φ

+

uu. Here,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

83
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.835


882 A26-6 W. J. Baars and I. Marusic

zL = 0.15δ and the triple decomposition is performed for z < zL. In the near-wall
region, here taken as z+ . z+T (nominally z+T = 80 is used, approximately the
wall-normal position at which the near-wall spectral peak becomes indistinguishable
from the spectrogram), fW is z-invariant and taken as fW(z+T ; λx). Throughout this
work, the exact value of z+T is of secondary importance, since small variations in
this location do not affect the conclusions, given a lower bound of the logarithmic
region in viscous-scaling, zT = O(100ν/Uτ ). In § 2.2 of Part 1 we discussed that
a classical scaling of the lower limit of the logarithmic region (as opposed to a
mesolayer-type scaling via z+ ∝ Re0.5

τ ) should not be discarded. In fact, in this paper
we show that when we accept such a classical scaling, the growth of the near-wall
peak in u2 can be explained via the increasingly intense energetic imprint of the
Reynolds-number-dependent outer motions onto the near-wall region.

Component φc
L (figure 2a) comprises the energy that is coherent via fL: large-scale

wall-attached energy that is coherent with zL = 0.15δ. This component includes
spectral imprints of self-similar, wall-attached structures reaching beyond zL and
non-self-similar wall-attached structures that are coherent with zL (e.g. some very
large-scale motions (VLSMs)). Component φi

W (figure 2c) is formed from the
fW -based incoherent energy. This small-scale energy is wall detached and includes
detached (non)-self-similar motions, such as phase-inconsistent attached eddies,
incoherent VLSMs, etc. The remaining component, φWL, equals the wall-coherent
energy below zL and consists of self-similar and non-self-similar contributions.
However, the non-self-similar contributions are likely to reside at large λx (reflecting
global modes, Bullock, Cooper & Abernathy 1978; del Álamo & Jiménez 2003).

1.3. Present contribution and outline

Coming back to § 1.1, we can now argue that A1 can be inferred from u2(z) profiles
via (1.1), as long as the streamwise TI contributions, other than that from the self-
similar wall-attached motions, are removed. This step is crucial, because Part 1 already
addressed that the other contributions (e.g. φc

L in figure 2a and φi
W in figure 2c)

result in additions to the streamwise TI that constitute a clear z-dependence. And,
the Reynolds-number-dependent outer-spectral peak seems to mask a possible φuu ∝

k−1
x (see spectra in Morrison et al. 2002; Nickels et al. 2005; Marusic et al. 2010b;

Baidya et al. 2017; Samie et al. 2018). When re-assessing A1 in this paper, both the
spectral view and u2(z) are considered simultaneously, while recognizing that A1 must
solely be associated with the turbulence that obeys the AEH.

Next, in §§ 2.1–2.2, decompositions of the streamwise TI are presented for a range
of Reτ . Data used are the same as in Part 1 (Baars & Marusic 2020, § 3.2). Findings
on the Townsend–Perry constant A1 are reconciled in § 2.3, after which its relation
to the near-wall TI growth, with Reτ , is presented in § 3. Empirical trends within the
wall-normal profiles for all three additive sub-components of the streamwise TI are
presented in § 4, together with a discussion of their scalings.

2. Decomposition of the streamwise turbulence intensity
2.1. Methodology and logarithmic scalings

Figure 3(a) shows the three sub-components φc
L, φWL and φi

W for the spectrum
at z+ ≈ 101 (slice through figure 2). When integrated, these sub-components form
three contributions to the streamwise TI, being u2L, u2WL and u2W , respectively. In
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FIGURE 3. (a) Triple-decomposed energy spectrum at z+ ≈ 101 and Reτ ≈ 14 100,
reproduced from figure 13(e) in Part 1. (b) Streamwise TI profile with the three TI
sub-components following (2.2). (c) Similar to (b) but for all wall-normal locations.

summary,

u2(z) =
∫
φuu(z; kx) dkx (2.1)

=

∫
φi
W(z; kx) dkx

u2W

+

∫
φWL(z; kx) dkx

u2WL

+

∫
φc
L(z; kx) dkx

u2L

. (2.2)

Figure 3(b) presents these three sub-components of the TI at z+ ≈ 101, together with
u2(z) (open diamonds). Wall-normal profiles of the three sub-components are obtained
when this integration is performed for each z (figure 3c). Note that the contributions
are shown in a cumulative format; the bottom profile (squares) represents u2W , the
intermediate profile (circles) encompasses u2W + u2WL, whereas the final profile
(diamonds), u2W + u2WL + u2L, equals u2 by construction. Regarding the full u2(z)
profile, it is well known that the near-wall streamwise TI is attenuated due to spatial
resolution effects of hot-wires (Hutchins et al. 2009). Here the spanwise width of
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FIGURE 4. (a) Streamwise TI at Reτ ≈ 14 100. Component u2W is shown with the square
symbols, while the sequence of lines with increasing colour intensity represents u2W +

u2WL for increasing zL; locations of zL are indicated with the vertical lines. (b) Profiles
of u2+

WL.

the hot-wire sensing length was l+ ≈ 22. A corrected profile for the streamwise TI
is superposed in figure 3(b) with filled diamonds, following the method of Smits,
McKeon & Marusic (2011). Samie et al. (2018) confirmed that this correction scheme
is valid for Reynolds numbers up to Reτ ≈ 20 000. Because the TI above the near-wall
region (say z> zT) is unaffected by spatial resolution issues, we proceed our analysis
without hot-wire corrections.

The wall-incoherent component, u2W , exhibits an increase in its energy magnitude
with increasing z throughout the logarithmic region. Section 4 addresses the wall-
normal trend of this TI component in more detail. Components u2WL and u2L have to
be considered in relation to one another. Figure 4(a) illustrates the dependence of the
two TI sub-components on zL, by presenting u2W (squares) and u2W + u2WL (lines)
for a range of zL (indicated with the vertical lines). Part 1 addressed how their spectral
equivalents, φWL and φc

L, varied with zL and here we describe what implications
that has on the streamwise TI. At low zL, the wall-attached motions smaller than
z= zL contribute to φWL, but the wall-normal range of φWL is limited (per definition,
φWL is non-existent above zL). With increasing zL, the range of wall-attached motions
increases, but global modes (or imprints of non-self-similar VLSMs/superstructures)
that are restricted to z < zL also start to contribute significantly to φWL (due to the
inherent difficulty in spectrally decomposing the two, see § 5.2 in Part 1). Hence, φWL
does not just contain energy from wall-attached self-similar motions. When zL resides
in the intermittent region, all global modes are being assigned to φWL (and thus to
u2WL). This is reflected by the highest zL profile in figure 4(a); in the process of
increasing zL, a hump has appeared in the streamwise TI (approaching u2 for zL→ δ).

We now focus exclusively on u2WL as this sub-component is closely aligned with
the scaling following (1.1). Figure 4(b) shows u2WL for z+ > z+T (the near-wall TI
is irrelevant in this discussion). Although it was pointed out above that wall-normal
profiles of u2WL do comprise a signature of wall-attached non-self-similar motions,
two trends of its statistics are reflective of wall-attached self-similar motions:
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FIGURE 5. (a) Value of u2+
WL at z+T = 80 from figure 4(b); the line, following (2.3), is

the fit to the data at zL< 0.15δ (its slope A′WL is listed). (b) Value of AWL, as indicated
in figure 4(b), superposed on the line corresponding to its mean for data at zL < 0.15δ
(value listed).

(i) First, the magnitude of u2WL at zT is displayed in figure 5(a), with zL forming
the abscissa (with a finer zL-discretization than used in figure 4). When assuming
that the non-self-similar, large-scale motions have a negligible influence on the
TI-trend at zT , and that u2WL obeys Townsend’s AEH, we arrive at

u2WL ∝ A′WL ln
(zL
δ

)
. (2.3)

That is, an increase of zL mimics an increase in Reτ through the inclusion
of more wall-attached scales in u2WL. Data in figure 5(a) adhere to (2.3) for
approximately one decade in zL and fitting of the data at zL < 0.15δ results
in A′WL ≈ 0.956 (note that zL = 0.15δ is often taken as the upper edge of the
logarithmic region).

(ii) A second measure that is reflective of self-similar wall-attached motions is the
decay of u2WL(z) following (1.1), which is now used to quantify the trend in
u2WL. It is impossible to perform a direct fit of a logarithmic decay to the data
of u2WL in figure 4(b), because of the aforementioned issues (for large zL, the
profiles are influenced by non-self-similar, global-mode turbulence). Instead, a
logarithmic slope AWL is defined from the two endpoints of the profile, u2WL(zT)

and u2WL = 0, via

AWL ≡
u2WL(z+T )

ln
(

z+|u2WL=0

)
− ln(z+T )

. (2.4)

Figure 4(b) displays the logarithmic slope for one profile (discrete point
measurements were interpolated to exactly z+T = 80 and the z+ position at which
u2WL becomes zero). Data in figure 5(b), and their mean value AWL ≈ 0.973,
are in close agreement to A′WL ≈ 0.956 from figure 5(a). This is expected when
u2WL obeys an attached-eddy scaling.

2.2. Reynolds-number variation
We now assess how the identified logarithmic scalings via (2.3) and (2.4) depend on
the Reynolds number. Single-point hot-wire measurements at a range of Reynolds
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FIGURE 6. (a) Streamwise TI profiles for Reτ ≈ 2800, 3900 and 7300 (Hutchins et al.
2009) and Reτ ≈ 13 000 and 19 000 (Samie et al. 2018). (b–f ) Profiles of (a) decomposed
into various TI sub-components: u2W is shown with the square symbols, while the
sequence of lines with increasing colour intensity represents u2W + u2WL for increasing
zL (similar to figure 4a).

numbers were employed in § 6 of Part 1 to address the Reynolds-number variation of
the triple-decomposed energy spectrograms. These same single-point hot-wire data are
here processed via the procedure described previously (§ 2.1). First, the u2(z) profiles
for these data are shown in figure 6(a). For the three lowest Reynolds numbers
(Reτ ≈ 2800, 3900 and 7300: Hutchins et al. (2009)), data were corrected for spatial
attenuation effects (Smits et al. 2011), whereas the two other profiles (Reτ ≈ 13 000
and 19 300: Samie et al. (2018)) comprise fully resolved measurements. An energy
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FIGURE 7. (a) Value of u2+
WL at z+T = 80 from figure 6(b–f ); lines, following (2.3), are

fit to the data at zL< 0.15δ (their slopes A′WL are listed). (b) Value of AWL, superposed
on the line corresponding to its mean value for data at zL < 0.15δ (values listed). Each
subsequent Reτ case is vertically offset by 2 and 0.6, starting with the second from the
bottom, in (a) and (b), respectively.

growth in the outer region presents itself through the emergence of a local maximum
in u2 (Samie et al. 2018), whereas at the same time, the near-wall TI grows with
Reτ (Marusic, Baars & Hutchins 2017).

Data of each Reynolds-number case are spectrally decomposed to generate a similar
output as presented in figure 4(a). For each of the five Reτ profiles in figure 6(a),
the result is shown in figure 6(b–f ). Additionally, with the aid of (2.3) and (2.4),
figure 5(a,b) is constructed for each of the five Reynolds numbers, as shown in
figure 7(a,b).

Especially at the two largest Reynolds numbers (Reτ ≈13 000 and 19 300), there is a
consistent agreement between AWL and A′WL, which is indicative of the slopes being
a reflection of attached-eddy type turbulence. At the two lowest Reynolds numbers
(Reτ ≈ 2800 and 3900), the AWL slope extracted from the two profile endpoints of
u2WL exhibits a decreasing trend (top two profiles in figure 7b). This is ascribed to
the fact that the upward trend of u2W (square symbols in figures 6b,c) changes rapidly
near the upper edge of the logarithmic region: its magnitude starts to decrease around
z/δ ≈ 0.15 in order to merge with the TI profiles in the wake region. Because of
this decrease, there is a less rapid decay of the u2WL profiles near z/δ≈ 0.15. When
slope AWL is determined from the two profile endpoints, it causes a decreased slope.
Generally, the limited scale separation in the triple-decomposed spectrograms at low
Reynolds numbers exacerbates this issue (see also the spectrograms in figure 18 of
Part 1).
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2.3. Reconciling A1 from trends in the turbulence intensity and spectra
Having re-assessed the wall-normal decay of the TI sub-component associated with
Townsend’s attached eddies (§§ 2.1–2.2), we can now proceed with reconciling the
status quo. Recall that (1.1) is restricted to the streamwise TI that is generated by
inviscid, geometrically self-similar and wall-attached eddies only. Because both A′WL
and AWL were inferred by considering the sub-component of the TI that complies with
Townsend’s assumptions only, those slopes are interpreted as A1. Figure 8 displays
A′WL, for all Reynolds numbers, with the open square symbols. Uncertainty estimates
are shown with the error bars and are based on 95 % confidence bounds from the
fitting procedure of (2.3). Alongside, with the solid square symbols, values of AWL
are shown with the uncertainty estimates based on the 95 % confidence interval of
the data points residing at zL < 0.15δ in figures 5(b) and 7(b). Numerical values
are summarized in table 1. To complete quantification of (1.1) by considering u2WL
energy only, offset B1 can be determined. For this we have to introduce a new quantity
u2

AE, which is the TI decay with a pure logarithmic decay,

u2+
AE(z/δ)= B1(zL = 0.15δ)− A1 ln

( z
δ

)
, for z+ > z+T . (2.5)

Although offset B1 depends on zL (see figure 4b), we only have to consider the
scenario for one specific zL to infer its Reynolds-number trend (here we take
zL = 0.15δ). Values for B1(zL = 0.15δ) are shown on the bottom of figure 8. Mean
values for both A1 and B1 are found from the mean values of A1 = A′WL and B1 in
table 1, resulting in

A1 = 0.975, B1(zL = 0.15δ)=−2.267. (2.6a,b)

To indicate the effect of the variation in A1 and B1 with Reτ , six lines according
to formulation (2.5), with the six values of A1 = A′WL and B1 (down to z+T = 80)
are shown in the inset in figure 8, together with the TI profiles of figure 6(a). The
scatter in A1 and B1 (as well as the uncertainty estimates from the fitting procedure,
listed in table 1), result in indistinguishable logarithmic trends in relation to typical
experimental uncertainty in the TI profiles (e.g. Winkel et al. 2012; Vincenti et al.
2013; Marusic et al. 2017; Örlü et al. 2017; Samie et al. 2018). Both A1 and B1 are
thus considered to be Reynolds-number invariant for 2800 . Reτ . 19 300.

A last set of data points in figure 8 comprises the peak values of k+x φ
+

WL at
z+ = 100, duplicated from figure 20 in Part 1. These data consider A1 in the context
of the energy spectra. Because the scale separation in spectral space is still relatively
limited at these Reynolds numbers, the peak value in the associated spectra (k+x φ

+

WL)
keeps maturing with Reτ (detailed in § 6.2, Part 1). At Reτ ≈ 19 300 there is a
consistency between the value for A1 found from the TI trend and the peak/plateau in
the associated spectrum. However, it is acknowledged that no complete similarity has
been observed in the associated φWL spectra (e.g. figure 19, Part 1). Furthermore, the
three Princeton HRTF data points of the peak in the φWL spectrum are not conclusive
on whether the spectral peak plateaus. The difficult conditions in the Princeton HRTF
and the challenging aspects associated with the acquisition of repeatable statistics
with miniature hot-wire probes (e.g. Samie et al. 2018) require more research to
settle this issue. Only fully resolved, higher-Reynolds-number data at z+ = O(100)
can provide definitive answers on whether a distinguished k−1

x region develops (in
which case the peak has to plateau to a Reynolds-number-invariant A1, consistent
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WL (duplicated
from figure 20, Part 1). Values of B1 are plotted at the bottom. TI profiles of figure 6(a)
are shown in the inset, together with (2.5) for all six cases of A1 = A′WL and B1.

Turbulence intensity-based Spectrum-based
Reτ A′WL AWL Part,§ B1 Section k+x φ

+

uu|peak Part,§

2 000 — — — — — 0.195 1, § 1.1
2 800 0.975± 0.056 0.985± 0.040 2, § 2.2 −2.224± 0.122 2, § 2.3 0.344 1, § 6.2
3 900 0.998± 0.041 0.970± 0.022 2, § 2.2 −2.340± 0.095 2, § 2.3 0.466 1, § 6.2
7 300 0.999± 0.020 0.951± 0.014 2, § 2.2 −2.388± 0.053 2, § 2.3 0.685 1, § 6.2

13 000 0.986± 0.010 0.980± 0.017 2, § 2.2 −2.290± 0.030 2, § 2.3 0.851 1, § 6.2
14 100 0.956± 0.013 0.973± 0.010 2, § 2.1 −2.189± 0.038 2, § 2.3 0.900 1, § 6.2
19 300 0.937± 0.011 0.940± 0.009 2, § 2.2 −2.168± 0.036 2, § 2.3 0.938 1, § 6.2

TABLE 1. Values of A′WL, AWL and B1, which were inferred from the u2WL profiles.
Uncertainty estimates for A1=A′WL and B1 are based on 95 % confidence bounds from the
fitting of (2.5), while the uncertainty estimates for AWL are based on the 95 % confidence
interval of the data points residing at zL < 0.15δ in figures 5(b) and 7(b).

with the TI trends). In the interim, figure 8 does not exclude that possibility: a
rough extrapolation of the φWL peak values approaches A1 ≈ 1, consistent with (2.6).
Finally, to the authors’ knowledge, our current work indicates for the first time
that a Reynolds-number-invariant A1 could be consistent with a potential k−1

x at
ultra-high Reτ . Previously, A1 = 1.03 (Perry & Li 1990; Marusic & Kunkel 2003)
found from u2(z) profiles was in close agreement with the spectral-based value of
A1≈ 0.95 by Nickels et al. (2005), but this was strictly coincidental. The former was
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obtained at significantly lower Reynolds numbers (highest Reτ ≈ 4400) than the latter
(Reτ ≈ 14 000).

3. Value of A1 in relation to the turbulence intensity in the near-wall region
Consistent scaling laws have recently emerged for the inner peak of the streamwise

TI. Samie et al. (2018) considered the maximum in the TI profiles, denoted as u2
max,

from direct numerical simulation (DNS) data and fully resolved measurement data, to
conclude that

u2+
max =C+ Amax ln(Reτ ), (3.1)

with C = 3.54 and Amax = 0.646. Nominally, the maxima reside at z+max = 15. Lee
& Moser (2015) observed (3.1) through DNS channel flow up to Reτ ≈ 5200 and
an increase of u2+

max with Reτ is consistent with earlier studies (DeGraaff & Eaton
2000; Hutchins et al. 2009; Klewicki 2010). Peak values of the streamwise TI at
zmax, as a function of Reτ , are shown in figure 9. DNS data include the channel
flow of Lee & Moser (2015) and TBL flow of Sillero, Jiménez & Moser (2013).
Experimental data of TBLs are from studies performed in Melbourne’s boundary
layer facility (Marusic et al. 2015; Samie et al. 2018), UNH’s Flow Physics Facility
(Vincenti et al. 2013) and at Utah SLTEST (Metzger et al. 2001). All these data
(aside from Samie et al. 2018) were corrected for spatial resolution effects via
Smits et al. (2011). Atmospheric surface layer (ASL) data of Metzger et al. (2001),
with a relatively small hot-wire length of l+ . 10, are uncorrected (Hutchins et al.
2009). High-Reynolds-number experimental pipe flow data are also included from the
CICLoPE facility (Örlü et al. 2017; Willert et al. 2017), reaching up to Reτ ≈ 40 000.
Hot-wire data of Örlü et al. (2017) were again corrected for spatial resolution effects,
whereas the particle image velocimetry (PIV) data of Willert et al. (2017) were
nearly fully resolved. Given the measurement uncertainty, (3.1) appears to represent
the trend well for all the data (solid line).

Figure 9 also presents u2 at z+T = 80, except for the unavailable Utah SLTEST data
at this location. When the data at z+T = 80 adhere to an attached-eddy scaling, the
Reynolds-number growth of the streamwise TI can be described by A1, since (1.1) or
(2.5) can be reformulated as

u2+(z+T )=D+ A1 ln(Reτ ). (3.2)

When fitting (3.2) to the data in figure 9 with A1=0.975 (2.6), the offset constant D is
determined as D=−2.60. Figure 9 shows that (3.2) represents the data well, meaning
that the Reynolds-number behaviour of the streamwise TI, at a lower bound of the
logarithmic region fixed in viscous-scaling, e.g. 80ν/Uτ , is predicted well through
an attached-eddy scaling alone. This thus implies that energy footprints from large-
scale, global-mode VLSMs and small-scale wall-incoherent turbulence (reflected in
u2L and u2W , respectively) do not, or negligibly, contribute to the Reynolds-number
trend over the range of Reτ investigated here. That is, an energetic footprint is still
present (clearly observed in component φc

L in figure 2c, for instance), but its Reynolds-
number trend seems weak as an attached-eddy scaling of self-similar turbulence alone
can explain the growth of the streamwise TI at zT and z+ = 15. Interactions between
the outer- and inner-region turbulence, however, are not insignificant. They are most
pronounced in the near-wall region due to the co-existence of near-wall turbulence

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

83
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.835


Decomposition of the streamwise TKE in boundary layers. Part 2 882 A26-15

103 105 107102 104 106 108

18

16

14

12

10

8

6

4

2

0

-2.60 + A1 ln(Re†); A1 = 0.975

3.94 + ln(15)/ln(80)A1 ln(Re†)

3.54 + 0.646 ln(Re†) (S18)

Re† £ 3.2 ÷ 107

Re†

u2+

DNS channel (LM15)
DNS TBL (SJM13)
Melbourne TBL (M15)
Melbourne TBL (S18)
FPF TBL (V13)
CICLoPE pipe (Ö17)

Current (H09 and S18)
Utah SLTEST z+ = 15 (M01)
CICLoPE pipe (W17)

Data at z
+max =

 15

Data
 at 

z+ T =
 80

FIGURE 9. Turbulence intensity, u2, at the nominal wall-normal location of the inner peak,
z+max= 15, and at z+T = 80. For the z+T data, a dashed line shows a Reynolds-number growth
according to the attached-eddy scaling with A1 = 0.975 (2.6a,b). For the z+max data, the
dash-dotted line has a slope of ln(15)/ ln(80)A1 = 0.603, while the solid line represents
(3.1). Data are from LM15: Lee & Moser (2015), SJM13: Sillero et al. (2013), M15:
Marusic et al. (2015), S18: Samie et al. (2018), V13: Vincenti et al. (2013), Ö17: Örlü
et al. (2017), W17: Willert et al. (2017), M01: Metzger et al. (2001) and H09: Hutchins
et al. (2009).

and energetic footprints of larger-scale, wall-attached outer motions (e.g. Marusic et al.
2010a; Cho, Hwang & Choi 2018).

The question now remains how (3.1) and (3.2) are compatible (or how Amax =

0.646 is consistent with A1 = 0.975). Marusic & Kunkel (2003) proposed that the
near-wall viscous region is influenced by the Reynolds-number-dependent, outer-layer
streamwise TI. The validity of this proposition was strengthened by the superposition
framework detailed in the literature (Hutchins & Marusic 2007; Marusic et al. 2010a;
Mathis, Hutchins & Marusic 2011; Baars, Hutchins & Marusic 2016) and studies
focusing on a near-wall component that is free of motions not scaling in inner units
(e.g. Hu & Zheng 2018). Note, however, that a complex scale interaction and spectral
energy transfer are present (de Giovanetti, Sung & Hwang 2017; Cho et al. 2018), in
combination with an outer motion wall-shear-stress footprint (Abe, Kawamura & Choi
2004; de Giovanetti, Hwang & Choi 2016). In summary, we move forward with the
near-wall TI being composed of two contributions:

(i) A universal function that is Reynolds-number invariant when scaled in inner units,
denoted as u2+

NW(z
+). It mainly encompasses the inner peak in the spectrogram

induced by the near-wall cycle (NW cycle), but also comprises a contribution
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– that seems to be Reynolds-number invariant – from the largest, outer-region
motions (see our discussion above).

(ii) An additive component that accounts for the Reynolds-number-dependent
superposition of the outer-region TI onto the near-wall viscous region. It is
hypothesized that this Reynolds-number dependence is solely the result of the
attached-eddy turbulence at z+T = 80. In simplest form, it can be hypothesized
that the near-wall footprint drops off linearly in ln(z+), to zero at z+ = 1, so
that

u2+
AE(z

+, Reτ )=
ln(z+)
ln(z+T )

u2+
AE(z

+

T ), for 1 6 z+ 6 z+T , (3.3)

where u2+
AE(z

+

T ) is found from (2.5), which is reformulated as

u2+
AE(z

+

T )= [B1(zL = 0.15δ)− A1 ln(z+T )] + A1 ln(Reτ ). (3.4)

As u2+
NW(z

+) is Reynolds-number invariant, u2+(z+max) grows with Reτ via (3.1)
with Amax = ln(z+max)/ ln(z+T )A1 = 0.603. Refitting of (3.1) yields C = 3.94; figure 9
indicates that these constants represent the scattered data equally well as with
Amax = 0.646 and C = 3.54 (adopted earlier from Samie et al. 2018). In order to
extend the scaling validation to the entire near-wall region (not just zmax), reference
DNS data of a zero pressure gradient (ZPG) TBL are utilized (Sillero et al. 2013).
Figure 10(a) displays u2 from the DNS at Reτ = 1990. Following (3.3), part of
this near-wall TI is envisioned as the attached-eddy component, labelled as u2

AE.
The remaining TI forms u2

NW . For any Reτ , data must now collapse when the
near-wall attached-eddy contribution is subtracted from the near-wall TI profile.
Figure 10(b) visualizes this assessment: the dashed line corresponds to u2

NW from the
DNS in figure 10(a), the symbols correspond to the five Reynolds-number profiles
of figure 6(a) and the 10 blue-coloured profiles span 2800 < Reτ < 13 400 (taken
from Marusic et al. 2017, where data were also corrected for the hot-wire’s spatial
attenuation effects). The excellent collapse of all data agrees with the two-part model,
u2(z+, Reτ ) = u2

NW(z+) + u2
AE(z+, Reτ ). In conclusion, A1 = 0.975 is consistent with

the Reynolds-number increase of the near-wall TI.

4. Empirical trends in the decomposed turbulence intensity
Evidence for a portion of the streamwise TI in the logarithmic region adhering

to (1.1) was provided in § 2. Subsequently, § 3 highlighted its consistency with the
near-wall region scaling trends. In this section we proceed with an examination of
the empirical trends in the decomposed TI, based on the explicit assumption that
the attached-eddy turbulence obeys a perfect logarithmic decay with z. Following the
data-driven spectral decomposition, the streamwise TI was earlier analysed in terms
of its three additive components, following (2.2):

u2+ = u2+
W + u2+

WL + u2+
L. (4.1)

Wall-coherent components u2WL and u2L, computed by the data-driven approach, are
not separable in the sense that one of these consists of attached-eddy turbulence only
(the inherent difficulty of decomposing energy wall-coherent self-similar attached
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FIGURE 10. (a) Streamwise TI profile at Reτ = 1990 (DNS, Sillero et al. 2013),
together with (3.3) and (2.5). (b) Streamwise TI profiles in the near-wall region, with the
superposition component of the attached-eddies removed. Dashed line: DNS profile of (a),
markers: data from figure 7(a), blue-coloured lines: 10 profiles from figure 7 in Marusic
et al. (2017), spanning 2800< Reτ < 13 400.

eddies from that of wall-coherent, large-scale non-self-similar motions was discussed
in § 5.2 of Part 1). However, it was shown that u2WL closely represents the energy
content associated with attached eddies, by framing both (2.5) and (2.6). We now
proceed with the explicit assumption that (2.5) exists and investigate the implications
of this on the scaling of the sub-components, still totalling the non-decomposed
TI, u2. First we replace u2WL with u2

AE (e.g. u2
AE obeys pure attached-eddy scaling).

Consequently, u2L needs to be replaced by a component encompassing all remaining
energy, denoted as u2

G, where subscript G stands for global. Wall-incoherent
component u2W remains unchanged, resulting in

u2+ = u2+
W + u2+

AE + u2+
G . (4.2)

For the data considered in figure 7, with zL= 0.15δ, the three additive contributions of
(4.2) are displayed in figure 11(a–c) and figure 11(d–f ) for inner- and outer-scalings,
respectively. The scaling of each component, in the logarithmic region, is now
discussed.

The simplest approach for obtaining a scaling formulation for u2W(z) =
∫
φi
W

(z; kx) dkx is to use Kolmogorov-type modelling, as used in previous works (see
Spalart 1988; Marusic, Uddin & Perry 1997). Spectral scaling of φi

W comprises a
z-scaling at the low wavenumber end, while the higher wavenumber end adheres
to a k−5/3 scaling up to a wavenumber fixed in Kolmogorov scale η, see figures
15( f ) and 21 in Part 1. When integrating a k−5/3

x model spectrum from kxz = c1 to
kxz = c2z3/4, where c1 and c2 are constants, a scaling trend can be inferred. The
latter boundary equals kxη = M, with M being a constant and η ≡ (ν3/ε)1/4. From
the ε ∼ 1/z production–dissipation balance, we find that kxη = M → kxz = c2z3/4.
Accordingly,

u2+
W(z)=

∫ kxz=c2z3/4

kxz=c1

K0

(kxz)5/3
d(kxz)=K1 −

K2
√

z
, (4.3)
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FIGURE 11. Streamwise TI profiles at a range of Reynolds numbers. Measured TI profiles
are shown in each panel in light grey (duplicate from figure 6a). (a–f ) In each of the
three rows, TI profiles of one of the three sub-components are superposed. Inner-scaling
and outer-scaling are used in (a,c,e) and (b,d, f ), respectively.

where K0, K1 and K2 are constants. When Reτ →∞, u2+
W will tend towards K1 for

large z+. At our practical values of Reτ (figure 11c), u2+
W is seen to increase up

to z ≈ 0.10δ, after which a wake deviation occurs (Marusic et al. 1997). Fitting
of (4.3) to the data in figure 11(c), for zT 6 z 6 0.10δ, results largely in a
Reynolds-number-invariant contribution, as shown by the profiles in figure 12(a);
it was visually verified that (4.3) adequately described each experimental profile in
figure 11(c). Experimental uncertainties in Uτ can be a cause for the slight variations
observed in figure 12(a). Average values for the constants, from the five profiles,
were found to be K1 = 4.01 and K2 = 10.13 (thick light blue line in figure 12a). By
inspection, the data in figure 11(c) are not described by (4.3) above z≈ 0.10δ. This
deviation is expected since u2+

W is strictly formed from the stochastic, wall-incoherent
energy. At sufficiently large z, the wall-scaling of filter fW breaks down and u2+

W
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FIGURE 12. (a) Function fits via (4.3) to u2W in figure 11(c) over the range zT 6 z 6
0.10δ. The thick light blue line in the background presents (4.3) with the average values
of K1= 4.01 and K2= 10.13. (b) Curve fits via (4.4) to u2

G in figure 11(a) over the range
zT 6 z 6 0.15δ.

begins to include all turbulent scales (not just the scales from an inertial sub-range and
dissipative end of the cascade). At the same time, the more limited scale separation
in the wake, as well as the effects of intermittency on spectra (Kwon, Hutchins
& Monty 2016), make it impossible to physically interpret the results in the wake
region.

For the attached-eddy energy u2
AE, (2.5) was adopted. The near-wall decay trend

following (3.3) is also drawn in figure 11(b,e). The vertical offset of the attached eddy
(AE) component, being B1 in (2.5), is dependent on the chosen zL. Further research
should provide insight into what offset describes the stochastic statistics of attached
structures (at what outer-scaled location u2

AE should become zero). Conceivably,
studies extracting instantaneous attached-eddy structures from full velocity fields can
be instrumental to this (del Álamo et al. 2006; Lozano-Durán, Flores & Jiménez
2012; Hwang & Sung 2018; Solak & Laval 2018).

Finally, u2
G appears as a broad hump throughout the logarithmic region

(figure 11a,d) and was envisioned to be composed of mainly VLSMs/superstructures.
No expressions exist for wall-normal profiles of the streamwise TI induced by
such turbulence, despite the growing research interest in these types of large-scale
turbulent motions by the wall-bounded turbulence community. Two decades ago,
it was suggested that merging of self-similar large-scale motions (LSMs) may be
one of the mechanisms generating VLSMs and superstructures (Adrian, Meinhart &
Tomkins 2000). Only in recent studies however, it was concluded that wall-attached
structures are related to an invariant solution of the Navier–Stokes equations and
that those structures comprise families of self-sustaining motions that are consistent
with self-similar, wall-attached eddy-scalings (Hwang, Willis & Cossu 2016; Cossu
& Hwang 2017). Prior to that, a number of studies used linearized Navier–Stokes
equations to show that long streaky motions can be amplified at all length scales (del
Álamo et al. 2006; Hwang & Cossu 2010a,b, among others), and this is consistent
with the recent findings that the large-scale outer structures involve self-sustaining
mechanisms (de Giovanetti et al. 2017). Future studies remain necessary to reveal
Reynolds-number scalings by way of resolving their spatial and temporal dynamics
(Kerhervé, Roux & Mathis 2017) and by way of using promising techniques such
as variational mode decompositions (Wang, Pan & Wang 2018). For now, a full
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empirical formulation, judiciously chosen as a parabolic relation with logarithmic
argument ln(z) via (4.4), was found to fit the data:

u2+
G(z
+)=G1 +G2 ln(z+)+G3 ln(z+)2. (4.4)

Figure 11(b) presents the five fits of (4.4), for zT 6 z 6 0.15δ. Generally, its energy
content increases with Reτ , but a consistent monotonic trend is absent, owing to the
experimental difficulties in acquiring repeatable and converged data at very large
wavelengths (Samie 2017). Nevertheless, in light of our work, this component
is responsible for the secondary peak (or hump) in u2 (Hultmark et al. 2012;
Vallikivi et al. 2015; Willert et al. 2017; Samie et al. 2018). Marusic et al. (2013)
observed that a lower bound of the logarithmic region resembled the z+ ∝ Re1/2

τ

dependence (Sreenivasan & Sahay 1997; Wei et al. 2005; Klewicki, Fife & Wei
2009; Morrill-Winter, Philip & Klewicki 2017), which is in agreement with the
peak locations of u2

G (see figure 12b). This explains that a steeper logarithmic
decay – than one with A1 = 0.975 – has been observed in raw, non-decomposed u2

profiles (A1= 1.26 in Marusic et al. 2013). Namely, we here suggest that this steeper
decay beyond z+ ∝ Re1/2

τ included a logarithmic energy decay of global/VLSM-type
energy, superimposed on top of the attached-eddy decay. Interestingly, Hwang (2015)
identified two self-similar families of structures, described as the LSMs and VLSMs,
from channel flow simulations at relatively low Reynolds numbers up to Reτ ≈ 2000.
A self-similar structure of the VLSM content (alongside the self-similar structure of
LSMs) supports our hypothesis of two dominant logarithmic decays (and recall that
those will only be apparent at high Reτ , when there is a sufficient wall-normal range
for a logarithmic range of scales and when component u2W(z) tends to a constant
via (4.3) in the upper portion of the logarithmic layer).

5. Concluding remarks
A breakdown of the streamwise TI was assessed through the use of data-driven

spectral filters for the streamwise velocity fluctuations u (derived and applied in
Part 1). Within the logarithmic region, here taken from z+T = 80 up to z/δ = 0.15,
the streamwise TI from three additive contributions is summarized in figure 13. The
main outcomes of this work are listed as follows.

(i) Scaling trends of the TI reflecting wall-attached, self-similar eddying motions,
revealed evidence for a logarithmic scaling following (2.5) with A1 = 0.975
(constant over for the range of investigation: 2800.Reτ . 19 300). A logarithmic
decay via u2

AE ∝ A1 ln(z/δ) had to be assumed, because the wall-attached
turbulence does comprise a signature of global/VLSM-type energy. It was
hypothesized that this energy masks a true logarithmic region in the TI profiles,
due to a bulge of u2

G energy (figure 13b).
(ii) Constant A1= 0.975 is consistent with the growth of the near-wall TI, under the

following assumptions: (I) the lower bound of the logarithmic region at which
attached-eddy structures become influenced by viscosity scales in inner units (e.g.
z+T = 80); (II) below z+T the energy footprint of wall-attached turbulence decays
following (2.3); (III) the near-wall TI growth with Reτ is solely caused by the
footprint of the self-similar attached eddies. Assumption (III) implies that the
very large-scale outer motions make a negligible contribution to the streamwise
TI in the near-wall region (recall § 3), at least for the Reτ range considered in

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

83
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.835


Decomposition of the streamwise TKE in boundary layers. Part 2 882 A26-21

u2
+

u2
+

u2
+

Increasing Re†

∞ Amax ln(Re†)

Re
† =

 O
(1

04
)

Re
† =

 O
(1

03
)

z +
max = 15

z +
T  = 80

log(z/∂)

log(z/∂)
log(W)

NW

A1

A1

(3.1): C1 + Amax ln(Re†)

(3.4): D1 + A1 ln(Re†)

u2
+

∞ A1 ln(Re†)u2
+

u2
+
G

u2
+
w

u2
+
AE

log(z+
max/Re†) log(z+

T/Re†)

(a)

(b)

FIGURE 13. Decomposed structure of u2(z) in ZPG turbulent boundary layers. (a) A low-
and high-Reynolds-number turbulent boundary layer profile and (b) a breakdown of the
streamwise turbulence intensity into three additive contributions in the logarithmic region
(zT < z<W/δ), and two contributions in the near-wall region (z< zT).

this study. When accepting these assumptions, the maximum in the near-wall TI
profile at z+max≈ 15 disappears as a global maximum at Reτ ≈ 3.2× 107 following
a simple extrapolation (figure 10). Figure 13(a) illustrates the attached-eddy
scaling in relation to the growth of the near-wall TI.

(iii) Two components other than the attached-eddy energy are present in the
logarithmic region. The stochastically wall-incoherent energy scales following
u2+

W(z
+) = K1 − K2/

√
z+, with K1 = 4.01 and K2 = 10.13. This semi-empirical

relation describes Kolmogorov turbulence residing at scales bounded by a z-scaled
limit and a dissipation limit. When Reτ→∞, this energy asymptotes to K1=4.01
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at large z+. A large-scale component u2
G comprises global/VLSM-type energy.

Other than that this energy seems weakly dependent on Reτ (figure 12b), definite
scaling trends cannot be provided and require future research.

Our current work may assist in the development of future data-driven models
for the streamwise TI in ZPG TBL flow. Due to dissimilar scalings present over
different ranges of the velocity energy spectra of the streamwise velocity u, an
approach of considering individual sub-components of the streamwise TI, each
having their spectral scaling, may be promising for new models. Our current work
presented a breakdown of the streamwise TI in the logarithmic region into three
components: a semi-empirical small-scale component comprising Kolmogorov-type
turbulence, a model-based component following the AEH and a remaining contribution
from non-self-similar global/VLSM-type energy. When in the near-wall region, the
footprint of the self-similar attached-eddy contribution is superposed on a universal
contribution u2

NW , the Reynolds-number growth of the near-wall TI can be related to
an attached-eddy scaling.
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