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Abstract. Magnetic reconnection is one of the most efficient ways of transforming
magnetic into kinetic and thermal energies. We prove a general identity relating the
energy transfer in a neighborhood of a current sheet, where reconnection is assumed
to occur. With some reasonable hypotheses regarding the geometry of stream and
field lines, we prove that for a constant rate of transformation of magnetic energy,
the width of the current sheet must grow with the plasma conductivity. Hence an
enhanced diffusivity seems necessary for certain classical models of fast reconnec-
tion to work.

1. Introduction
Some spectacular astrophysical phenomena, such as solar flares and geomagnetic
substorms, occur because of the sudden conversion of magnetic energy due to re-
connection of magnetic field lines. While this is a practically undisputed fact, the
details of how reconnection takes place are an active area of research. One of the
main problems is to identify configurations that permit the fast rate of conversion
of magnetic in kinetic and thermal energy observed in real phenomena. The most
obvious way to release magnetic tension is to connect field lines going in opposite
senses, which naturally leads to a large gradient in the tangential component of
the field and therefore to a current sheet. The presence of a positive resistivity
precludes a true discontinuity of the field (and makes reconnection possible), but
nevertheless the gradient of the field is sharp enough to call the set with vanishing
field a current sheet. This configuration was the first to be studied and still is the
usual object of modelling. The Sweet–Parker model [1–3] of two masses of plasma
colliding head-on, while possessing a slow reconnection rate, did present some of the
main features of later studies: plasma flow approaching a sheet and escaping later-
ally, with a magnetic field tangent to the sheet and of opposite senses at both sides
of it. Petschek [4] presented a variant where the reconnection region is narrow and
slow magnetosonic shocks occur, obtaining a faster reconnection rate. This model
was later extended and made rigorous [5–9]. However, some authors [10–12] argued
that Petschek-like geometries cannot hold in the highly relevant limit of small re-
sistivity, since the current sheet will rapidly grow in size; others disagree [13], but
most numerical models seem to present this feature. It is not clear, however, how
dependent these results are on the choice of boundary conditions. It is also likely
that several physical processes may enhance the diffusivity near the sheet: in this
case, the presence of fast reconnection is very convincing both in modelling and
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observation [14]. Still, the problem of finding a geometry where the size of the
current sheet does not increase with (uniform) conductivity is still an open one.
This is not the same as saying that the sheet width must be constant in time for
a certain resistivity, which is not likely to happen [14]. Also, the models described
before are naturally as simplified as possible: they are mostly two-dimensional and
quasistatic. We will instead study a general configuration, obtaining rigorously an
integral identity relating the main parameters of the induction equation. The study
of its terms will tell us whose characteristics govern the sheet size. Boundary con-
ditions at the domain boundary will not play any role, since we will localize the
main identity into a neighbourhood of the current sheet.

2. General estimates
Assume that the magnetic field B in a plasma of velocity u and uniform resistivity
η in an N -dimensional domain Ω satisfies the MHD induction equation(

∂

∂t
+ u ·∇− η∇2

)
B = B ·∇u− B∇ · u. (1)

Let Φ be any real-valued smooth function of N variables, and f a real smooth func-
tion defined in Ω. Define F = f (Φ ◦ B). After some tedious but essentially straight-
forward algebra [15], it is found that F satisfies(

∂

∂t
+ u ·∇− η∇2

)
F

= f (∇Φ ◦ B) · (B ·∇u)− f (∇Φ ◦ B) · B(∇ · u) + (Φ ◦ B)(u ·∇f )

−η(Φ ◦ B)∇2f − 2η∇f · [(∇Φ ◦ B) ·∇B]− ηf∇B · (Φ′′ ◦ B) ·∇B, (2)

where the last term means −ηf∑i,j,k(∂2
j,kΦ ◦ B)∂iBj∂iBk. Since f and F have

compact support contained in Ω, the integral of the left-hand term is

∂

∂t

∫
Ω
F dV,

whereas ∫
Ω

(Φ ◦ B)∇2f dV = −
∫

Ω
∇f · [(∇Φ ◦ B) ·∇B] dV.

Also, ∫
Ω
f (∇Φ ◦ B) · (B ·∇u) dV

= −
∫

Ω
(B ·∇f ) · [(∇Φ ◦ B) · u] + f (B ·∇(∇Φ ◦ B)) · u dV.

Let us choose as Φ a smooth function g of the field magnitudeB. Notice that B→ B
is not differentiable at 0, but, by taking g with g(0) = g′(0) = g′′(0) = 0, Φ is of
class C2, as needed. After some algebra, one gets

∇Φ ◦ B = g′(B)b, (3a)

∇B · (Φ′′ ◦ B) ·∇B = g′′(B)|∇B|2 + g′(B)B|∇b|2, (3b)

where b is the unit magnetic field vector B/B; notice that wherever B = 0 and b
is not defined, it is multiplied by g′(0) = 0, and although ∇B does not exist there
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either, it is multiplied by g′′(0) = 0, so that the expressions in (3) are admissible
everywhere.

A well-known theorem [16] asserts that the level surfaces (or curves, if N = 2)
Sr :B = r are smooth for almost every r and∫

Ω
fg′′(B)|∇B|2 dV =

∫ ∞
0

g′′(r) dr
∫
Sr

f |∇B| dσ, (4)

where dσ stands for the area measure forN = 3 and the arclength forN = 2. Assume
that the set S0 is a true surface (N = 3) or curve (N = 2), so that its N -dimensional
measure is 0, and that the function

r →
∫
Sr

f |∇B| dσ

tends to

2
∫
S0

f |∇B| dσ.
This means that since Sr enfolds the surface (curve) S0, as it tends to S0 the integral
should tend to twice the integral at S0 (one for every side of it).

Let g now approach the function g(r) = 0 for r 6 0, g(r) = r for r > 0. Then g′

tends in the sense of distributions towards the Heaviside function, whereas g′′ tends
to the Dirac measure δ0. Therefore∇Φ ◦B tends weakly to b outside the measure-
zero set S0. In particular, the term f (B ·∇(∇Φ ◦ B)) · u tends to f (B ·∇b) · u =
fBk · u, where k is the normal vector to the magnetic field lines; |k| = κ is their
curvature. Finally, let f approach the characteristic function of a neighbourhoodW
of the current sheet S0. Then the terms where∇f occurs tend to become boundary
integrals at the (smooth) boundary ∂W of the neighbourhood, and∇f tends to the
inner normal ni. In the limit, therefore, integrating the identity (2) in the whole
domain, we get

2η
∫
S0

|∇B| dσ + η

∫
W

B|∇b|2 dV

= − ∂

∂t

∫
W

B dV +
∫
∂W

(
1
B

S− η∇B
)
· ni dσ −

∫
W

B(k · u +∇ · u) dV, (5)

where S = B2u− (B · u)B = −(u× B)× B denotes the (ideal) Poynting vector, i.e.
the flux of electromagnetic energy due to the plasma motion.

3. Analysis of the main equation (5)
Now take W as a neighbourhood of the current sheet where transformation of elec-
tromagnetic into kinetic and thermal energy occurs. AlthoughB does not represent
exactly the density of magnetic energy, its integral is a certain measure of it, so if
magnetic energy decreases through reconnection we may expect (∂/∂t)

∫
W
B dV 6 0;

of course in static configurations, the term vanishes. The second, and most impor-
tant, term on the right-hand side of (5) represents the flux of magnetic energy from
the surrounding plasma into the vicinity of the current sheet due to the induc-
tive effect of the plasma velocity. There is another component of the full Poynting
vector due to diffusion, but it is multiplied by the small constant η and therefore is
not significant. Since W is near S0, where B vanishes, the size of B inside W should
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Figure 1. Classical configuration of magnetic field and velocity near a current sheet.

be smaller than outside, so that∇B should point outwards at ∂W and∇B ·ni 6 0.
This term, however, is also multiplied by η, and again its value is not likely to be
relevant.

As for the remaining term on the right-hand side of (5), let us accept the view
that plasma flows towards both sides of S0 and escapes through the sides. This
configuration should, if anything, compress the plasma as it approaches S0 (i.e. in
most of the volume), so that∇ ·u 6 0 there. Hence the integral of B∇ ·u should be
negative. Of course, if the plasma is incompressible, it escapes more rapidly through
the sides and the term vanishes. The termBk·u is negative if the streamlines cut the
field lines towards the concave side. Since field lines are transported by the plasma
(and experience diffusion), these lines tend to be in the front sets of the plasma
jet approaching the current sheet, which is concave towards it. This only fails for
field lines ejected from the sheet, which form a smaller portion of the volume. This
certainly happens in all classical plane configurations [11,14] (Fig. 1).

We may therefore conclude that the right-hand side is the flux of magnetic energy
due to convection plus a positive term. The value of the geometric third summand
is probably not too high – at least for incompressible plasmas, since most models
predict field lines not highly curved. Apparently its most significant term is the
input of electromagnetic energy to be converted near the current sheet.

Let us now consider the left-hand side of (5). The size of B|∇b|2 is larger if
field lines are more highly curved: the factor in B cannot add much if we assume
that

∫
W
B dV does not increase. Certainly this is a possibility when the resistivity

decreases (E. R. Priest, personal communication, 2001). However, it is unlikely that
this effect may account for the whole factor of order 1/η needed to balance the
right-hand term when η decreases. Such high curvature does not seem to occur in
simulations, except in small regions ofW . We are led to conclude that

∫
S0
|∇B| dV is

mostly responsible for the growth of order 1/η. This could happen because S0 keeps
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its size while |∇B| grows in this order. Even without assuming a growth ofB (which
we have rejected), this could happen in principle because smaller diffusivity allows
for larger gradients of the plasma field: essentially this depends on the thickness
of the diffusion region around S0. However, one could expect a decrease of this
thickness of order at most 1/

√
η; even this moderate growth does not seem to occur,

according to simulations [11]. The most likely factor to account for the increase is
the measure of S0, which, provided that the rate of energy input within W does
not decrease, should be at least of order 1/η.

4. Conclusions
An integral identity relating the main magnetohydrodynamic parameters in the
vicinity of a current sheet has been obtained. Essentially it balances the measure of
the sheet plus the mean square curvature of field lines with a term involving the rate
of transformation of magnetic energy, the compression of plasma near the sheet,
and the geometric shape of the incoming plasma flow. Provided that this term does
not decrease with a larger plasma conductivity, either field lines become highly
curved or more likely the current sheet increases its size at least with the order
of the conductivity. This coincides with the result of most simulations performed
in simplified cases, and suggests that an enhanced diffusivity near the sheet is
necessary for an effective reconnection to occur in near-ideal plasmas.
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