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Named after the French–Belgian mathematician Eugène Charles Catalan, Catalan’s num-
bers arise in various combinatorial problems [12]. Catalan’s triangle, a triangular array
of numbers somewhat similar to Pascal’s triangle, extends the combinatorial meaning of
Catalan’s numbers and generalizes them [1,5,11]. A need for a generalization of Catalan’s
triangle itself arose while conducting a probabilistic analysis of the Asymmetric Simple
Inclusion Process (ASIP) — a model for a tandem array of queues with unlimited batch
service [7–10]. In this paper, we introduce Catalan’s trapezoids, a countable set of trape-
zoids whose first element is Catalan’s triangle. An iterative scheme for the construction
of these trapezoids is presented, and a closed-form formula for the calculation of their
entries is derived. We further discuss the combinatorial interpretations and applications
of Catalan’s trapezoids.

1. CATALAN’S NUMBERS AND CATALAN’S TRIANGLE

Consider a string of numbers composed of n (+1)’s and n (−1)’s, arranged in a row from
left to right, such that the sum over every initial substring is non-negative. What is the
total number of different such strings? Consider equivalently a path that: (i) starts at the
origin of a two dimensional lattice; (ii) consists of n right (→) steps and n up (↑) steps; (iii)
does not go above the line y = x. What is the total number of different such paths? As it
turns out, the solution to these combinatorial problems is given by the nth Catalan number
(Thomas) [12]:

C(n) =
(

2n
n

)
−
(

2n
n − 1

)
(1.1)

(n = 1, 2, 3, . . .), with C(0) = 1 by definition. Specifically, the first Catalan numbers are
given by: 1, 1, 2, 5, 14, 42, 132, 429.

One can generalize the combinatorial problem mentioned above by considering strings
of n (+1)’s and k (−1)’s or, alternatively, paths of n right steps and k up steps. In this case,

c© Cambridge University Press 2014 0269-9648/14 $25.00 353

https://doi.org/10.1017/S0269964814000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964814000047


354 S. Reuveni

Table 1. Some entries of Catalan’s triangle.

the number of different strings for which the sum over every initial substring is non-negative
is given by:

C(n, k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 k = 0,(
n + k

k

)
−
(

n + k

k − 1

)
1 ≤ k ≤ n,

0 k > n,

(1.2)

(n = 0, 1, 2, . . . ; k = 0, 1, 2, . . .), and the same is true for the number of paths that start at
the origin of a two dimensional lattice and do not go above the line y = x.

The numbers C(n, k) are referred to in combinatorial mathematics as the entries of
Catalan’s triangle (Thomas, Bailey [1,12]). These entries facilitate the solution to Bertrand’s
famous ballot problem (Feller [4]): “In an election where candidate A receives n votes
and candidate B receives k votes, what is the probability that A will not trail behind B
throughout the entire count of votes?”. Indeed, the answer to this version of Bertrand’s
problem is given by the ratio C(n, k)/

(
n+k

k

)
.

Catalan’s triangle, illustrated in Table 1, has the following iterative construction. By
definition, all entries that are positioned on the left boundary of the triangle (k = 0) are
given by the boundary condition C(n, 0) = 1. In Table 1, these entries are highlighted in
bold. Entries positioned to the right of the main diagonal k = n are zero. In Table 1, these
entries are indicated by empty squares. All the other entries of Catalan’s triangle follow the
recursion

C(n, k) = C(n − 1, k) + C(n, k − 1), (1.3)

i.e., each entry is a sum of the entry above it and the entry to its left. In Table 1, a specific
example, 9 + 5 = 14, is highlighted in magenta. Entries on the diagonal of Catalan’s triangle
(k = n) are the Catalan numbers: C(n, n) = C(n). In Table 1, these entries are highlighted
in blue.

The combinatorial meaning of Eq. (1.3) and its validity for 1 ≤ k ≤ n become imme-
diately clear after conducting a binary partition of all valid strings according to their last
digit +1 or −1. Indeed, since k ≤ n the sum over a string of n (+1)’s and k (−1)’s is non-
negative. Moreover, if the string ends with +1 there are exactly C(n − 1, k) ways to choose
the order of the first n − 1 (+1)’s and k (−1)’s such that the sum over every initial substring
is non-negative. Similarly, if the string ends with a −1 there are exactly C(n, k − 1) ways to
choose the order of the first n (+1)’s and k − 1 (−1)’s such that the sum over every initial
substring is non-negative. Equation (1.3) readily follows.
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Table 2. Some entries of Catalan’s trapezoid of order m = 2 (top)
and m = 3 (bottom). Entries on the left and upper boundaries are
marked in bold. Null entries positioned to the right of the diago-
nal k = n + m − 1 are indicated by empty squares. All other entries
follow the recursive rule given in Eq. (2.1). Two specific examples,
429 + 572 = 1001 and 117 + 83 = 200, are highlighted in magenta.

2. CATALAN’S TRAPEZOIDS

The need for a generalization of Catalan’s triangle naturally arose while conducting a proba-
bilistic analysis of the Asymmetric Simple Inclusion Process (ASIP) — a model for a tandem
array of queues with unlimited batch service (Reuveni, Eliazar and Yechiali [7–9]). Analyz-
ing the ASIP, it so turned out that steady state occupation probabilities in the model can
be written in terms of entries taken from trapezoid number arrays whose iterative construc-
tion is identical to that of Catalan’s triangle, albeit a small change in boundary conditions
(Reuveni et al. [10]). Hence, we set out to construct the family of Catalan’s trapezoids.

Let Cm(n, k) denote the (n, k) entry of the Catalan’s trapezoid of order m (m =
1, 2, 3, . . .). Defining Catalan’s trapezoid of order m = 1 to be Catalan’s triangle we have
C1(n, k) = C(n, k). The iterative construction of higher order trapezoids is similar to that of
Catalan’s triangle. All elements on the left boundary (k = 0) of the trapezoid are given by
the boundary condition Cm(n, 0) = 1, all elements on the upper boundary of the trapezoid
(n = 0; 0 ≤ k ≤ m − 1) are given by the boundary condition Cm(0, k) = 1, and all elements
positioned to the right of the diagonal k = n + m − 1 are set to zero. The rest of the ele-
ments in the trapezoid follow a recursive rule similar to the one given in Eq. (1.3), albeit
replacing the numbers C(n, k) by the numbers Cm(n, k):

Cm(n, k) = Cm(n − 1, k) + Cm(n, k − 1), (2.1)

i.e., each entry is a sum of the entry above it and the entry to its left. Some entries of
Catalan’s trapezoid of order m = 2 and of order m = 3 are given in Table 2.
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A closed form expression for Cm(n, k) is given by

Cm(n, k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
n + k

k

)
0 ≤ k < m,

(
n + k

k

)
−
(

n + k

k − m

)
m ≤ k ≤ n + m − 1,

0 k > n + m − 1,

(2.2)

(n = 0, 1, 2, . . . ; k = 0, 1, 2, . . . ;m = 1, 2, 3, . . .). Indeed, substituting Eq. (2.2) into (2.1) and
making use of the well-known Pascal’s rule [4] one can easily verify that the recursion rule
in Eq. (2.1) holds. The validity of the trapezoid boundary conditions can be easily verified
as well.

We will now show that Cm(n, k) is the number of different strings of n (+1)’s and
k (−1)’s for which the sum over every initial substring is larger than, or equal to, a
threshold level 1 − m (m = 1, 2, 3, . . .). Setting m = 1, we note that this combinatorial
interpretation generalizes the combinatorial interpretation given for the entries of Catalan’s
triangle.

In order to prove that our combinatorial interpretation is correct we will consider an
equivalent path counting problem. In the non-negative quadrant of a two-dimensional lattice
{(x, y)—x, y = 0, 1, 2, 3, . . .}, what is the total number of paths that: (i) start at the origin
(0, 0); (ii) are composed out of n right steps (→) and k up steps (↑); (iii) do not go above the
line y = x + m − 1 (m = 1, 2, 3, . . .)? The formulation of this path counting problem asserts
that if a path meets the above-mentioned requirements then at any point along the path
the number of right steps minus the number of up steps is larger than or equal to 1 − m.
Noting the one-to-one correspondence between (+1)’s and right steps and (−1)’s and up
steps, it is clear that the path counting problem we have introduced is equivalent to the
string counting problem used to combinatorialy interpret the entries of Catalan’s trapezoid
of order m. Our proof will be concluded by showing that Eq. (2.2) is the answer to the path
counting problem presented above.

Firstly, consider the case 0 ≤ k < m. In this case, paths cannot go above the line y = x +
m − 1, so every path is legitimate and the total number of paths is

(
n+k

k

)
. Secondly, consider

the case k > n + m − 1. In this case, all paths will end at a point, which is positioned
above the line y = x + m − 1, thus yielding no legitimate paths. Thirdly, note that when
m ≤ k ≤ n + m − 1 some paths will go above the line y = x + m − 1 (illegitimate paths)
while others will not (legitimate paths). Clearly, the number of legitimate paths is given by
the total number of paths minus the number of illegitimate paths. In order to count the
number of illegitimate paths we apply a reflection principle.

An illegitimate path connecting the origin with the point (n, k) is illustrated in Figure 1.
Every illegitimate path must hit the line y = x + m at least once and we denote the first
(leftmost) hitting point by P . The point P divides the illegitimate path into two seg-
ments. The path segment positioned to the left of P connects it with the origin (the dashed
blue segment in Figure 1). The path segment positioned to the right of P connects it
with the point (n, k) (the solid magenta segment in Figure 1). Reflecting the blue seg-
ment with respect to a mirror plane placed along the line y = x + m results in a new
path segment that connects the point (−m,m) with the point P (the dashed red seg-
ment in Figure 1). Concatenating the red segment with the magenta segment results in
a semi-reflected path that connects the point (−m,m) with the point (n, k) via P . Since
k ≤ n + m − 1, the point (n, k) lies below the line y = x + m and hence every path that

https://doi.org/10.1017/S0269964814000047 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964814000047


CATALAN’S TRAPEZOIDS 357

Figure 1. (Color online) An illustration of the reflection principle (m = 3).

starts at (−m,m) and ends at (n, k) must cross this line at least once. Denoting the first
(leftmost) crossing point by P asserts a one-to-one correspondence between illegitimate
paths and paths that: (i) start at (−m,m); (ii) are composed of n + m right steps and
k − m up steps. The number of illegitimate paths is thus given by

(
n+k
k−m

)
. In turn, since the

total number of paths is
(

n+k
k

)
, we conclude that the number of legitimate paths is given

by
(

n+k
k

)− ( n+k
k−m

)
.

3. APPLICATIONS

In this section, we consider the application of Catalan’s trapezoids to the analysis of three
different problems.

3.1. A Generalized Ballot Problem

Consider a generalized ballot problem in which candidate A begins the race m − 1 votes
ahead of candidate B (m = 1, 2, 3, . . .), and collects n more votes for a total of n + m − 1
to B’s k votes (n = 0, 1, 2, . . . ; k = 0, 1, 2, . . .). What is the probability that candidate A
will not trail behind candidate B throughout the entire count of votes? We note in passing
that an equivalent problem is one in which the voting starts off with no head start, and the
probability that candidate A will not trail behind candidate B, by more than m − 1 votes,
is the one of interest.

Catalan’s trapezoids facilitate a solution to the above-mentioned generalization of the
ballot problem. Indeed, this can be seen by shifting Figure 1’s path and reflection line m − 1
units to the right, for a path from (m − 1, 0) to (n + m − 1, k) and a semi-reflected path
starting at (−1,m). The reflecting boundary line is now given by y = x + 1 and its crossing
deems a path illegitimate from the stance of B’s tally exceeding A’s at the point of reflection
(even with A’s initial vote lead). It is thus clear that the solution to the problem is precisely
Cm(n, k)/

(
n+k

k

)
.
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3.2. Random-Walk Hitting Probabilities

The problems described in this subsection and in the consecutive one, naturally arose in
the course of the probabilistic analysis of the ASIP model, and are in a sense two sides
of the same coin. Readers who are interested in the ASIP model [7–9] and its connections
to Catalan’s trapezoids are referred to [10] for a more elaborate discussion.

Consider a random walk in the non-negative quadrant of a two dimensional lattice
{(x, y)|—x, y = 0, 1, 2, 3, . . .}. The point (x, y) will be called a boundary point of the non-
negative quadrant if x = 0 and/or y = 0. Assume that the walk starts at an non-boundary
point (k,m) (k = 1, 2, 3, . . . ;m = 1, 2, . . .), and that at every time step the walker chooses
between a down step (↓) and an up-left step (↖) with equal probability. What is the
probability, P k,m

hit (k′,m′), that the random walker hits a specific boundary point (k′,m′)
before it hits any other boundary point?

The answer to the above-mentioned question is given in terms of the entries of the
Catalan’s trapezoids. Indeed,

P k,m
hit (k′, 0) =

(
1
2

)2k+m−2k′

C1(k + m − k′ − 1, k − k′) (3.1)

(k′ = 1, 2, . . . , k),

P k,m
hit (0,m′) =

(
1
2

)2k+m−m′

Cm(k − 1,m + k − m′) (3.2)

(m′ = 2, 3, . . . , k + m), and P k,m
hit (k′,m′) = 0 otherwise.

In order to prove Eqs. (3.1) and (3.2) we must count the number of paths that: (i) are
composed out of down and up-left steps only; (ii) connect the point (k,m) with a specific
boundary point (k′,m′); (iii) do not pass through any other boundary point. Paths that
comply with conditions (i), (ii) and (iii) will be called legitimate paths. We note that the
number of up-left steps in a legitimate path is given by k − k′ and that the number of down
steps is given by k − k′ + m − m′. Thus, the total number of steps equals 2k − 2k′ + m −
m′. Hence, the probability for realizing a specific path is given by

(
1
2

)2k−2k′+m−m′
and it

follows that P k,m
hit (k′,m′) is given by

(
1
2

)2k−2k′+m−m′
times the number of legitimate paths

connecting (k,m) with (k′,m′). This idea is further illustrated in Figure 2.
In counting the number of paths we note that in every legitimate path that connects the

point (k,m) with the point (k′, 0) (k′ = 1, 2, 3, . . . , k) the last step is always a down step.
The remaining, k − k′ up-left and k + m − k′ − 1 down, steps must be ordered to form a
path that connects the point (k,m) with the point (k′, 1) without going below the line y = 1.
The total number of these orderings is clearly given by Cm(k − k′, k + m − k′ − 1). However,
Cm(k − k′, k + m − k′ − 1) = C1(k + m − k′ − 1, k − k′), this fact follows by counting the
reversed paths in which k − k′ down-right (↘) steps and k + m − k′ − 1 up (↑) steps must
be ordered to form a path that connects the point (k′, 1) with the point (k,m) without
going below the line y = 1.

Similarly, in every legitimate path that connects the point (k,m) with the point (0,m′)
(m′ = 2, 3, . . . , k + m) the last step is always an up-left step. The remaining, k − 1 up-left
and k + m − m′ down, steps must be ordered to form a path that connects the point (k,m)
with the point (1,m′ − 1) without going below the line y = 1 first. The total number of
these orderings is given by Cm(k − 1, k + m − m′).

Finally, we note that in all other cases there are no legitimate paths that connect the
point (k,m) with the point (k′,m′). Eqs. (3.1) and (3.2) now follow.
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Figure 2. (Color online) Computing the hitting probability P k,m
hit (k′,m′) requires the solu-

tion of a path counting problem. The answer is given in terms of the entries of Catalan’s
trapezoids.

3.3. Nested Sums

In this section, we will demonstrate the applicability of Catalan’s trapezoids to the algebraic
simplification of nested sums. Consider the integers m and n (m = 1, 2, 3, . . .; n = 1, 2, 3, . . .).
Consider also the n indexes j1, j2, . . . , jn such that j1 runs from 1 to m and jk+1 runs from
1 to jk + 1 (k = 1, 2, 3, . . . , n − 1). Let f be a function from the integers and consider the
sum

S =
m∑

j1=1

j1+1∑
j2=1

j2+1∑
j3=1

. . .

jn−2+1∑
jn−1=1

jn−1+1∑
jn=1

f(jn). (3.3)

We will hereby show that S can be written as

S =
m+n−1∑

j=1

Cm(n − 1,m + n − 1 − j)f(j), (3.4)

a form which is considerably simpler than the one given by Eq. (3.3). Direct observation
implies that the running index jn in Eq. (3.3) runs from 1 to m + n − 1. In order to prove
Eq. (3.4), we need to show that Cm(n − 1,m + n − 1 − j) is the exact number of times that
jn receives the value j (j = 1, 2, 3, . . . ,m + n − 1). That is, we need to show that

Cm(n − 1,m + n − 1 − j) =
m∑

j1=1

j1+1∑
j2=1

j2+1∑
j3=1

. . .

jn−2+1∑
jn−1=1

jn−1+1∑
jn=1

δ(jn, j), (3.5)

where δ(x, y) is the Kronecker delta function.
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We start by showing that Eq. (3.5) holds for boundary entries of the Catalan’s trapezoid
of order m. Indeed, when n = 1 we have

Cm(0,m − j) =
m∑

j1=1

δ(j1, j) = 1 (3.6)

(m = 1, 2, 3, . . .;j = 1, . . . ,m). In addition, when j = m + n − 1, then δ(jn, j) = 1 if and
only if {j1 = m; j2 = m + 1; . . . ; jn−1 = m + n − 2; jn = m + n − 1}. Since this specific
configuration is unique, we have

Cm(n − 1, 0) =
m∑

j1=1

j1+1∑
j2=1

j2+1∑
j3=1

. . .

jn−2+1∑
jn−1=1

jn−1+1∑
jn=1

δ(jn,m + n − 1) = 1 (3.7)

(m = 1, 2, 3, . . .;n = 1, 2, 3, . . .).
In order to complete our proof we now show that Eq. (3.5) also holds for off-boundary

entries of the Catalan’s trapezoid of order m. Recall that Eq. (2.1) asserts that the following
recursion relation holds

Cm(n − 1,m + n − 1 − j) = Cm(n − 2,m + n − 1 − j) + Cm(n − 1,m + n − 2 − j), (3.8)

(n > 1, 1 ≤ j < m + n − 1). The Catalan’s trapezoid of order m is uniquely determined
by Eq. (3.8) and the boundary conditions specified in Eqs. (3.6) and (3.7). Substituting
Eq. (3.5) into (3.8) we have

m∑
j1=1

j1+1∑
j2=1

j2+1∑
j3=1

. . .

jn−2+1∑
jn−1=1

jn−1+1∑
jn=1

δ(jn, j)

=
m∑

j1=1

j1+1∑
j2=1

j2+1∑
j3=1

. . .

jn−3+1∑
jn−2=1

jn−2+1∑
jn−1=1

δ(jn−1, j − 1)

+
m∑

j1=1

j1+1∑
j2=1

j2+1∑
j3=1

. . .

jn−2+1∑
jn−1=1

jn−1+1∑
jn=1

δ(jn, j + 1). (3.9)

Proving that the equality in Eq. (3.9) holds will conclude our proof. Indeed the right-hand
side of Eq. (3.9) immediately gives

m∑
j1=1

j1+1∑
j2=1

j2+1∑
j3=1

. . .

jn−2+1∑
jn−1=1

⎡
⎣δ(jn−1, j − 1) +

jn−1+1∑
jn=1

δ(jn, j + 1)

⎤
⎦ (3.10)

and it is easy to check that

jn−1+1∑
jn=1

δ(jn, j) = δ(jn−1, j − 1) +
jn−1+1∑
jn=1

δ(jn, j + 1), (3.11)

(1 ≤ j ≤ jn−1 + 1). Indeed, when 1 ≤ j ≤ jn−1 we have
∑jn−1+1

jn=1 δ(jn, j) =
∑jn−1+1

jn=1

δ(jn, j + 1) = 1 and δ(jn−1, j − 1) = 0. In addition, when j = jn−1 + 1, we have∑jn−1+1
jn=1 δ(jn, j) = δ(jn−1, j − 1) = 1 and

∑jn−1+1
jn=1 δ(jn, j + 1) = 0. Substituting Eq. (3.11)

into (3.10) proves the validity of Eq. (3.9).
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4. CONCLUSIONS

Catalan’s numbers and their generalizations have found numerous applications in vari-
ous problems [1–3,5,11,12]. In this paper, we introduced Catalan’s trapezoids — a novel
combinatorial construct that naturally arose while computing the steady state occupation
probabilities of the Asymmetric Simple Inclusion Process [10]. Catalan’s trapezoids were
shown applicable to the analysis of the generalized ballot problem, the computation of ran-
dom walk hitting probabilities, and the evaluation of certain nested sums. Our work is a
generalization of Bailey’s generalization of Catalan’s numbers and joins [6] in that regard.
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