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The exact solution of the Riemann problem
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We discuss the procedure for the exact solution of the Riemann problem in special
relativistic magnetohydrodynamics (MHD). We consider both initial states leading
to a set of only three waves analogous to the ones in relativistic hydrodynamics, as
well as generic initial states leading to the full set of seven MHD waves. Because of
its generality, the solution presented here could serve as an important test for those
numerical codes solving the MHD equations in relativistic regimes.

1. Introduction
As first formulated by Riemann more than a hundred years ago, the solution of

the one-dimensional Riemann problem in hydrodynamics consists of determining the
temporal evolution of a fluid which, at some initial time, has two adjacent uniform
states characterized by different values of uniform velocity, pressure and density.
These initial conditions completely determine the way in which the discontinuity will
decay after removal of the barrier separating the initial ‘left’ and ‘right’ states.

The Riemann problem has ceased to be merely academic and gained enormous
importance when it was realized that its numerical solution can serve as the building
block of hydrodynamical codes based on Godunov-type finite difference methods
(Godunov 1959). In such methods, the computational domain is discretized and each
interface between two adjacent grid zones is used to construct the initial left and right
states of a ‘local’ Riemann problem. The evolution of the hydrodynamical equations
is then obtained through the solution across the computational grid of the sequence
of local Riemann problems set up at the interfaces between successive grid zones
(see Godunov 1959, and also Martı́ & Müller 2003 and Font 2003 for the use of the
Riemann problem in relativistic regimes).

In general, the Riemann problem requires the solution of a nonlinear algebraic
system of equations written as a function of a single unknown quantity (e.g. the total
pressure at the contact discontinuity in purely hydrodynamical problems). With the
exception of few trivial initial configurations, the solution of the Riemann problem
cannot be obtained analytically but requires a numerical approach. The solution
found in this way is referred to as the ‘exact’ solution of the Riemann problem,
to distinguish it from the ‘approximate’ solution of the Riemann problem, which is
instead obtained when the system of equations is reduced to a locally linear form (an
exhaustive discussion of approximate Riemann solvers can be found in Toro 1999). It
is therefore useful to stress that although named ‘exact’, the solution of the Riemann
problem is necessarily obtained with a small but non-zero truncation error.
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224 B. Giacomazzo and L. Rezzolla

The exact solution of the Riemann problem in relativistic hydrodynamics was
obtained only quite recently and was proposed by Martı́ & Müller (1994) for flows
that are purely along the direction normal to the initial discontinuity. This work was
extended to the case in which tangential velocities are present (Pons, Martı́ & Müller
2000) and improved in efficiency by exploiting the relativistic invariant relative
velocity between the two states to predict the wave pattern produced (Rezzolla &
Zanotti 2001; Rezzolla, Zanotti & Pons 2003). The relevance of these calculations
has not been restricted to fundamental issues of relativistic hydrodynamics. Quite the
opposite: these solutions have been of great importance for the testing of complex
multidimensional codes implementing high resolution shock capturing (HRSC)
methods, which are based on the approximate or exact solution of Riemann problems
at the interfaces between the numerical cells (LeVeque 1992). These codes have then
been used in various simulations in either fixed (Aloy et al. 1999; Font & Daigne
2002; Zanotti, Rezzolla & Font 2003) or dynamical space–times (Duez, Shapiro &
Yo 2004; Shibata & Sekiguchi 2005; Baiotti et al. 2005).

This intense and recent development of numerical codes for the solution of the
relativistic hydrodynamic equations has been accompanied by an equally intense
development of codes solving the equations of magnetohydrodynamics (MHD) in
relativistic regimes. The reason behind this activity is the widespread expectation that
strong magnetic fields are crucial in the study and explanation of several puzzling
astrophysical phenomena such as relativistic jets or γ -ray bursts. As a result, and in
the hope of clarifying issues in relativistic astrophysics which cannot be described
satisfactorily through analytic techniques, several groups have recently constructed
numerical codes solving the equations of relativistic MHD on either fixed space–times
(see, for example, Del Zanna, Bucciantini & Londrillo 2003 and Komissarov 1999
for a flat background and Gammie, McKinney & Tóth 2003; De Villiers & Hawley
2003; Komissarov 2004; Mizuno et al. 2004; Fragile 2005; Antón et al. 2006 for a
black-hole background) or in fully dynamical space–times (Duez et al. 2005).

Just like their hydrodynamical counterparts, some of these codes are based on
the solution of a local Riemann problem suitably formulated for a magnetized
fluid, and all are meant to be used for ultrarelativistic flows. However, unlike their
hydrodynamical counterparts, these codes cannot benefit from the comparison with
the exact solution of the Riemann problem in relativistic MHD. The literature on
the Riemann problem in MHD is much more limited and a general exact solution
was found quite recently and for a Newtonian fluid only (Ryu & Jones 1995;
Falle, Komissarov & Joarder 1998). The background knowledge in this area is even
more scarce for a relativistic fluid and while no general exact solution has been
proposed yet, recent work has derived an exact solution in the particular case
in which the magnetic field of the initial states is tangential to the discontinuity
and orthogonal to the fluid velocity (Romero et al. 2005). Besides having a larger
set of equations than the corresponding problem in relativistic hydrodynamics, a
considerable addition to the complexity of the Riemann problem in relativistic MHD
is that the mathematical structure of the problem itself is modified and the system
of equations is no longer strictly hyperbolic (Lichnerowicz 1967).† The possibility of
having coincident eigenvalues poses the question of the uniqueness of the solutions
and this thus represents a problem within the problem. As we will note also later

† Recall that a systems of m quasi-linear partial differential equations is said to be hyperbolic if
the matrix of coefficients has m real eigenvalues; furthermore, the system is said to be totally or
strictly hyperbolic if the eigenvalues are real and also all distinct.
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Exact solution of the Riemann problem in relativistic magnetohydrodynamics 225

on, a lively debate on these issues is currently underway and progress is starting to
be made, although first results are known in Newtonian MHD only (see Torrilhon
2003b). Because the focus of this work is the exact solution of the Riemann problem
in relativistic MHD as an aid to the development of numerical codes, hereafter we
will adopt the working assumption that the Riemann problems considered here have
a solution and that this solution is unique. Clearly, this hypothesis avoids the issue
rather than solving it, but it allows marked progress at least in those cases in which
compound waves are not found in numerically approximate solutions.

A direct and important consequence of the scarcity of work in this area of
fundamental relativistic MHD is that modern complex MHD codes for the most
elementary and yet demanding tests have not been validated in a quantitative
manner for generic initial conditions. Rather, it has been done through a qualitative
comparison with the large set of test problems in relativistic MHD meticulously
collected over the years (see, for instance, Komissarov 1999 and Balsara 2001). It
should be recognized, however, that for non-generic initial states it is sufficient to
have exact solutions for MHD shocks and rarefactions as this covers all types of
basic hyperbolic waves of the system and exact solutions of this type were used by
Komissarov (1999) for quantitative testing.

The purpose of this paper is to present the procedure for the exact solution of the
Riemann problem in relativistic MHD with generic initial conditions. Our approach
considers both initial states with a zero component of the magnetic field along the
flow and leading to a set of only three waves analogous to the ones in relativistic
hydrodynamics, and generic initial states leading to the full set of seven MHD waves.
The approach discussed for the numerical solution is based on a ‘hybrid’ approach
which adopts different sets of equations according to the values of the normal
magnetic field and which has turned out to be crucial for a successful solution.

The paper is organized as follows: § 2 contains the basic equations of relativistic
MHD, while § 3 describes the strategy used to solve the Riemann problem numerically
and which combines the methods discussed in § 4 and § 5. Section 6 focuses on the
details of the numerical implementation and discusses the solution of a number
of tests that have become standard references. Finally, the conclusions are collected
in § 7.

We use a space-like signature (−, +, +, +) and a system of units in which c = 1.
Greek indices are taken to run from 0 to 3, Latin indices from 1 to 3 and we adopt
the standard convention for the summation over repeated indices. Finally we indicate
3-vectors with an arrow and use bold letters to denote 4-vectors and tensors.

The numerical code computing the exact solution is available from the authors
upon request.

2. Equations of relativistic MHD
Consider an ideal but magnetized relativistic fluid with an energy-momentum tensor

given by

T µν = (ρ + ρε + pg + 2pm)uµuν + (pg + pm)ηµν − bµbν, (2.1)

where ρ is the rest mass density, ε the specific internal energy, pg the gas
pressure, pm the magnetic pressure, uµ ≡ W (1, vx, vy, vz) the 4-velocity, W ≡
1/

√
1 − vivi = 1/

√
1 − v2 the Lorentz factor and the 4-vector b has components

bα ≡
{

W (�v · �B),
�B

W
+ W (�v · �B)�v

}
. (2.2)
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Here �B is the magnetic field 3-vector and

b2 ≡ bibi =
B2

W 2
+ (�v · �B)2 = 2pm. (2.3)

The general relativistic equations of MHD are then simply obtained after requiring
the conservation of baryon number

∇µ(ρuµ) = 0, (2.4)

where ∇ represents a covariant derivative, the conservation of energy and momentum

∇µT µν = 0, (2.5)

together with the relevant pair of Maxwell equations. If the fluid is assumed to
have an infinite electrical conductivity (i.e. ideal MHD limit), the Maxwell equations
reduce to ∂[αFβγ ] = 0, where F is the Faraday tensor and the square brackets refer
to antisymmetrised indices. Using the definition (2.2), the Maxwell equations can be
simply written as

∇µ(bµuν − uµbν) = 0. (2.6)

The system of equations (2.4)–(2.6) is completed with an equation of state (EOS)
relating the pressure to the rest-mass density and/or to the energy density. Although
hereafter we will use an ideal-gas EOS, pg = ρε(Γ − 1), where Γ is the polytropic
index, the procedure described for the solution of the Riemann problem is valid for
a generic EOS.

We next assume that the system has a planar symmetry, i.e. that in a Cartesian
coordinate system (t, x, y, z) all the variables depend only on t and x, and that the
space–time is flat so that covariant derivatives in equations (2.4)–(2.6) can be replaced

by partial derivatives and Ai = Ai for any 3-vector �A. In this case, the complete set
of MHD equations can be written as a set of first-order partial differential equations
in a flux-conservative form

∂U
∂t

+
∂ F
∂x

= 0, (2.7)

where U and F are respectively the vectors of conserved quantities and fluxes, defined
as

U ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

D

τ − b0b0

Sx − b0bx

Sy − b0by

Sz − b0bz

By

Bz

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, F ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Dvx

Sx − b0bx − Dvx

Sxvx + p − bxbx

Syvx − bxby

Szvx − bxbz

Byvx − Bxvy

Bzvx − Bxvz

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (2.8)

and where the following definitions have been used:

τ ≡ wW 2 − p − D, (2.9)

D ≡ ρW, (2.10)

Sj ≡ ρhW 2vj , (2.11)

p ≡ pg + pm = pg + 1
2
b2, (2.12)

w ≡ ρh, (2.13)

h ≡ hg +
b2

ρ
= 1 + ε +

pg

ρ
+

b2

ρ
, (2.14)

where h is the total specific enthalpy and hg that of the gas only.
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Bx = 0 

Left state Right state

R2

R1 R4

FWFW TD

t

x

R3

p-method

Figure 1. Space–time structure of the MHD Riemann problem in the case in which the
magnetic field has tangential components only, i.e. Bx = 0. The ‘Riemann-fan’ in this case
is composed of only two fast waves (FW) and a central tangential discontinuity (TD), thus
resembling structure of the Riemann problem in pure hydrodynamics. Indicated with R1–R4
are the four regions into which the Riemann problem can be decomposed, each representing
a different state.

Note that the divergence-free condition for the magnetic field and the Maxwell
equation for the evolution of the x-component of the magnetic field imply that
∂tB

x = 0 = ∂xB
x , i.e. Bx is uniform in space, constant in time and thus always maintains

its initial values.

3. Solution strategy
The general Riemann problem in relativistic MHD consists of a set of seven

nonlinear waves: two fast waves (FW), two slow waves (SW), two Alfvèn waves (AW),
and a contact discontinuity (CD) at which only the density may be discontinuous. The
fast and slow nonlinear waves can be either shocks or rarefaction waves, depending
on the change in the pressure and in the norm of the magnetic field across the wave.

Building on experience with relativistic hydrodynamics, our general strategy in the
search for the solution consists of expressing all of the variables behind each wave as
functions of the values of the same variables ahead of the wave and of an unknown
variable behind the wave. When considering the Riemann problem in relativistic
hydrodynamics, the solution is found after expressing all of the quantities behind the
wave as functions of the value of the pressure at the contact discontinuity. In this
way, the problem is reduced to the search for the value of the pressure that satisfies
the jump conditions at the contact discontinuity.

When considering the Riemann problem in relativistic MHD, on the other hand,
two different cases need to be distinguished. Assuming the initial discontinuity to
have a normal along the x-axis, the initial magnetic field in this direction can either
be zero (i.e. Bx = 0) or not (i.e. Bx �= 0). In the first case, the structure of the solution
is very similar to the hydrodynamical one, with only two fast waves and a tangential
discontinuity (TD) along which only the total pressure and the x-component of the
velocity are continuous. The space–time structure of the Riemann problem in this
case is sketched in figure 1, where the ‘Riemann-fan’ is shown to be composed of
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Bx = 0

R3 R4R2

SW AWAW SW

R8
Right stateLeft state

R1

x

CD FW

R6R5 R7

FW
t

–

p-method Bt-method p-method

Figure 2. Space–time structure of the MHD Riemann problem in the general case in which
the magnetic field has also a normal component, i.e. Bx �=0. The ‘Riemann-fan’ is here
composed of two fast waves (FW), two Alfvèn waves (AW), two slow waves (SW) and a
central contact discontinuity (CD). Indicated with R1–R8 are the eight regions into which the
Riemann problem can be decomposed, each representing a different state. Indicated are also
the different methods used to compute the solutions in the different regions (i.e. Bt -method in
regions R4 and R5 and p-method in regions R2–R3 and R6–R7).

only two fast-waves (FW) and of a central tangential discontinuity (TD). Because of
this analogy, the numerical solution of the Riemann problem when Bx = 0 follows
the same procedure implemented in relativistic hydrodynamics. We refer to this as
the ‘total-pressure approach’ or simply, the ‘p-method’.

A detailed investigation of the exact solution of the Riemann problem with

tangential magnetic fields and when the additional condition�v · �B = 0 is imposed, has
been recently proposed by Romero et al. (2005). Among the many points discussed,

that work has shown that when Bx = 0 =�v ·�B the Riemann problem in relativistic
MHD can be assimilated to that in relativistic hydrodynamics and that all of the
corrections introduced by the magnetic field can be incorporated in the definition of
a new, effective EOS.

In the second case, on the other hand, the Riemann problem is considerably more
complex and all of the seven waves are allowed to form when the initial discontinuity
is removed. The space–time structure of the Riemann problem in this case is sketched
in figure 2, where the ‘Riemann-fan’ is shown to be composed of two fast waves (FW),
two Alfvèn waves (AW), two slow waves (SW) and a central contact discontinuity
(CD)

It is important to bear in mind that across the Alfvèn discontinuities only the total
pressure, the gas pressure and the density are continuous, while there could be jumps
in the other quantities. As a result, if the total pressure is used as unknown, there
would be three different values for the total pressure (two between the fast and the
slow waves and one between the two slow waves) but five conditions to be satisfied at
the contact discontinuity: the continuity of the three components of the velocity and
the continuity of the tangential components of the magnetic field. The resulting system
of five equations in three unknowns is over-constrained and there is no guarantee that
a global convergent solution is found at the contact discontinuity. Indeed, experience
has shown that small numerical imprecisions at the level of round-off errors are in
general sufficient to prevent the simultaneous solution of the five constraints.
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To circumvent this difficulty and inspired by the procedure followed in the exact
solution of the corresponding Riemann solver in non-relativistic MHD (Ryu & Jones
1995), when Bx �= 0 we have implemented a ‘hybrid’ approach in which the total
pressure is used as the unknown variable between the fast and the slow waves (i.e.
in regions R2–R3, and R6–R7 of figure 2), while the tangential components of the
magnetic fields (By and Bz) are used between the slow waves (i.e. in regions R4–R5
of figure 2). In this way, the continuity of the tangential components of the magnetic
field By and Bz is automatically guaranteed through the contact discontinuity and
only the continuity of the total pressure and of the three components of the velocity
needs to be satisfied. The resulting system consists of four equations in four unknowns
and, being closed, it can be solved numerically through root-finding techniques for a
nonlinear system of equations (e.g. using a Newton–Raphson method). We refer to
this as the ‘tangential magnetic field approach’ or simply, the ‘Bt -method’

As mentioned in the Introduction, hereafter we will assume that the Riemann
problem has a solution and that this is unique. As a result, we will not discuss in
any detail compound waves which seem to develop in the numerical solution of some
special initial states (one of these is shown in § 6.2.1) and whose admissibility as
solution of the Riemann problem is still debated.

4. Total-pressure approach: ‘ p-method’
In the following Sections we describe in detail the approach in which we calculate

all of the variables in the Riemann fan using as unknown the total pressure, i.e.
the p-method. Different sets of equations will be derived according to whether the
solution is across a shock or a rarefaction wave.

4.1. Solution across a shock front

Consider Σ to be a hypersurface in flat space–time across which ρ, u and T are
discontinuous. Let n be the unit 4-vector normal to Σ so that the Rankine–Hugoniot
conditions for relativistic MHD can be expressed as

[[ρuα]]nα = 0, (4.1)

[[T αβ]]nα = 0, (4.2)

[[bαuβ − uαbβ]]nα = 0, (4.3)

where we use the double-bracket notation to express the jump of a quantity F across
the hypersurface Σ , i.e.

[[F ]] ≡ Fa − Fb,

where Fa and Fb are respectively the values ahead of (a) and behind (b) the shock.
In particular, if Σ is the four-dimensional hypersurface describing the evolution of

a shock wave normal to the x-axis, the unitary condition on n can be used to derive
the components

nα = Ws(Vs, 1, 0, 0), (4.4)

where Vs is the coordinate velocity of the shock, Ws ≡ (1 − V 2
s )−1/2 its Lorentz factor,

and we can rewrite equations (4.1)–(4.3) explicitly as

[[J ]] ≡ [[ρW (Vs − vx)Ws]] = 0, (4.5)

[[b0b0 − τ ]]Vs + [[Sx − b0bx − Dvx]] = 0, (4.6)

[[b0bx − Sx]]Vs + [[Sxvx + p − bxbx]] = 0, (4.7)
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[[b0by − Sy]]Vs + [[Syvx − bxby]] = 0, (4.8)

[[b0bz − Sz]]Vs + [[Szvx − bxbz]] = 0, (4.9)

[[Bx]] = 0, (4.10)

[[By]] Vs + [[Bxvy − vxBy]] = 0, (4.11)

[[Bz]] Vs + [[Bxvz − vxBz]] = 0, (4.12)

where J is the (rest) mass flux across the shock.
After a number of tedious but otherwise straightforward algebraic manipulations,

equations (4.5)–(4.12) can be recast as

[[vx]] +
J

Ws

[[
1

D

]]
= 0, (4.13)

J

Ws

[[
W 2η2

D

]]
− Bx [[η]] − J

Ws

[[ τ

D

]]
+[[pvx]] = 0, (4.14)

JBx

Ws

[[ η

D

]]
−Bx[ηvx]+

J

Ws

[[
W 2η2vx

D

]]
−

[[
B2

x

W 2

]]
− J

Ws

[[
Sx

D

]]
+ [[p]] = 0, (4.15)

J

Ws

[[
ηBy

D

]]
+

J

Ws

[[
W 2η2vy

D

]]
− Bx

[[
By

W 2

]]
− Bx [[ηvy]] − J

Ws

[[
Sy

D

]]
= 0, (4.16)

J

Ws

[[
ηBz

D

]]
+

J

Ws

[[
W 2η2vz

D

]]
− Bx

[[
Bz

W 2

]]
− Bx [[ηvz]] − J

Ws

[[
Sz

D

]]
= 0, (4.17)

[[Bx]] = 0, (4.18)

J

Ws

[[
By

D

]]
+ Bx [[vy]] = 0, (4.19)

J

Ws

[[
Bz

D

]]
+ Bx [[vz]] = 0, (4.20)

where we have defined η ≡�v · �B and exploited the property

[[F (Vs − vx)]] =
J

Ws

[[
F

D

]]
,

valid for any scalar quantity F .
The next step to take is to express all of the variables as functions of J and pb

only. We start by using equation (4.13) to obtain

1

Db

=
(
vx

a − vx
b

) Ws

J
+

1

Da

, (4.21)

so that equation (4.14) yields

τb

Db

= −W 2
a η2

a

Da

+
W 2

b η2
b

Db

+
Ws

J

[
Bx (ηa − ηb) − pav

x
a + pbv

x
b

]
+

τa

Da

, (4.22)

which depends on vx
b , pb but also on B

y
b , Bz

b , v
y
b , vz

b. To remove the dependence on
these latter quantities we employ equations (4.19) and (4.20) to obtain B

y
b and Bz

b as
functions of vx

b , v
y
b vz

b and pb, i.e.

B
y
b = Db

(
By

a

Da

+
Ws

J
Bxvy

a − Ws

J
Bxv

y
b

)
, (4.23)
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Bz
b = Db

(
Bz

a

Da

+
Ws

J
Bxvz

a − Ws

J
Bxvz

b

)
. (4.24)

We can now solve equation (4.15) and finally obtain vx
b as a function of v

y
b , vz

b, pb

and J :

vx
b =

Da

{
B2

xWs + W 2
a

[
Ws(pb − pa) − B2

xWs

(
1 − vy

av
y
b − vz

av
z
b

)
+ vx

a (J + BxWsηa)
]}

W 2
a

{
Da

[
J − Ws

(
B2

x + pa − pb

)
vx

a + BxWsηa

]
− J

(
B2

x − pb + W 2
a η2

a − τa

)}

+
J
[
Bx

(
By

a v
y
b + Bz

av
z
b − ηa

)
+ vx

a

(
pa − W 2

a η2
a + τa

)]
Da

[
J − Ws

(
B2

x + pa − pb

)
vx

a + BxWsηa

]
− J

(
B2

x − pb + W 2
a η2

a − τa

) , (4.25)

where it should be noted that equation (4.25) reduces to the corresponding

hydrodynamical expression in the limit of �B = 0 (cf. equation (4.12) of Pons et al.
(2000) or equation (3.13) of Rezzolla et al. (2003)). Note also that using equations
(4.16) and (4.17) it is possible to obtain expressions for v

y
b and vz

b in terms of the
post-shock quantities p and J ; the corresponding expressions are rather lengthy and
uninspiring; for this reason we report them in Appendix A.

When all of the post-shock quantities are expressed as functions of only pb and J

(i.e. Vs), it is still necessary to express Vs as function of the post-shock pressure pb.
To do this we follow Pons et al. (2000) and use the original jump conditions (4.1),
(4.2) and (4.3) to obtain

[[p]] + J 2

[[
hg

ρ

]]
= 0, (4.26)

[[
h2

g

]]
−

((
hg

ρ

))
[[p]] − H [[b2]] + 2

[[
b2 hg

ρ

]]
− 2J 2H

[[
hg

ρ

]]
= 0, (4.27)

where ((F )) ≡ Fa + Fb and H ≡ B2
n/J

2 − b2/ρ2 is a shock-invariant quantity (i.e.
[[H ]] = 0, Anile 1989). Note that Bn is not just the normal component of the magnetic
field but, rather, the projection of b along n, i.e.

Bn ≡ bµnµ = − η

ρ
J +

Ws

W
Bx. (4.28)

Equation (4.27) is also known as the Lichnerowicz adiabat, and represents the
relativistic MHD counterpart of the Hugoniot adiabat.

A couple of remarks should be made. First, equations (4.26)–(4.27) can be used for
fast and slow shocks but not for an Alfvèn discontinuity. In this case, [[h/ρ]] = 0,
equations (4.26)–(4.27) are simple identities and the shock velocity Vs is trivially
given by the local Alfvèn velocity V

A
. Secondly, for purely hydrodynamical shocks

it is possible to find an analytic expression for Vs as a function of the post-shock
pressure (cf. equation (4.14) of Pons et al. (2000)). In relativistic MHD, however,
the corresponding analytic expression has not been found and equation (4.26) needs
to be solved numerically using a standard root-finding algorithm, increasing the
computational costs considerably. To guarantee that we are using the right shock
velocity, the root is sought in the approriate physical interval, i.e. |Vs | ∈ (|VA|, 1) for
fast shocks and |Vs | ∈ (|vx |, |VA|) for slow shocks.

4.2. Solution across a rarefaction wave

Rarefaction waves are self-similar solutions of the flow equations, i.e. equations in
which all of the fluid quantities depend on x and t through the combination ξ ≡ x/t .
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Using this as the independent variable, the set of partial differential MHD equations
can be rewritten as the following set of ordinary differential equations (ODEs):

ξ
dD

dξ
− d(Dvx)

dξ
= 0, (4.29)

ξ
d(τ − b0b0)

dξ
− d(Sx − b0bx − Dvx)

dξ
= 0, (4.30)

ξ
d(Sx − b0bx)

dξ
− d(Sxvx + p − bxbx)

dξ
= 0, (4.31)

ξ
d(Sy − b0by)

dξ
− d(Syvx − bxby)

dξ
= 0, (4.32)

ξ
d(Sz − b0bz)

dξ
− d(Szvx − bxbz)

dξ
= 0, (4.33)

ξ
dBx

dξ
= 0, (4.34)

ξ
dBy

dξ
− d(Byvx − Bxvy)

dξ
= 0, (4.35)

ξ
dBz

dξ
− d(Bzvx − Bxvz)

dξ
= 0. (4.36)

Equation (4.29) can be further decomposed as

(vx − ξ )
dρ

dξ
+ ρ[(vx − ξ )W 2vx + 1]

dvx

dξ
+ (vx − ξ )ρW 2vy dvy

dξ
+ (vx − ξ )ρW 2vz dvz

dξ
= 0,

(4.37)

while combining equation (4.30) with equations (4.31)–(4.33) provides us with the
relations

wW 2(vx − ξ )
dvx

dξ
+ (1 − ξvx)

dp

dξ
− vxξ

d(b0b0)

dξ
+ (vx + ξ )

d(b0bx)

dξ
− d(bxbx)

dξ
= 0,

(4.38)

wW 2(vx − ξ )
dvy

dξ
− ξvy dp

dξ
− ξvy d(b0b0)

dξ
+ vy d(b0bx)

dξ
+ ξ

d(b0by)

dξ
− d(bxby)

dξ
= 0,

(4.39)

wW 2(vx − ξ )
dvz

dξ
− ξvz dp

dξ
− ξvz d(b0b0)

dξ
+ vz d(b0bx)

dξ
+ ξ

d(b0bz)

dξ
− d(bxbz)

dξ
= 0.

(4.40)

Finally, rewriting the definition of the local sound speed

c2
s ≡ 1

hg

∂pg

∂ρ

∣∣∣∣
s

, (4.41)

where s is the specific entropy, in terms of the self-similar variable

dpg

dξ
= hgc

2
s

dρ

dξ
, (4.42)
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and collecting the different terms in equations (4.29)–(4.36), we obtain the following
system of seven ODEs in the seven variables ρ, p, vx, vy, vz, By, Bz, fully determining
the solution across a rarefaction wave:

0 = (vx − ξ )
dρ

dξ
+ ρ[(vx − ξ )W 2vx + 1]

dvx

dξ
+ (vx − ξ )ρW 2vy dvy

dξ

+(vx − ξ )ρW 2vz dvz

dξ
, (4.43)

0 =
dp

dξ
− hgc

2
s

dρ

dξ
+ (B2vx − Bxη)

dvx

dξ
+ (B2vy − Byη)

dvy

dξ
+ (B2vz − Bzη)

dvz

dξ

−
(

By

W 2
+ vyη

)
dBy

dξ
−

(
Bz

W 2
+ vzη

)
dBz

dξ
, (4.44)

0 = (1 − vxξ )
dp

dξ
+

[
B2

x (v
x + ξ ) − 2Bxη + W 2(vx − ξ )(w − η2)

] dvx

dξ

+ 2B2
x

{[
vy +

By(ξ − vx)

2Bx

]
dvy

dξ
+

[
vz +

Bz(ξ − vx)

2Bx

]
dvz

dξ

− (vx − ξ )

2Bx

[
vy dBy

dξ
+ vz dBz

dξ

]}
, (4.45)

0 = ξvy dp

dξ
− BxBy

{[
(vx + ξ ) − η

Bx

]
dvx

dξ

+

[
2vy +

By(ξ − vx)

Bx
+

W 2(vx − ξ )(w − η2)

BxBy
− η

By

]
dvy

dξ

}

− By[2Bxvz + Bz(ξ − vx)]
dvz

dξ
+

[
Bx + W 2(vx − ξ )(Byvy + η)

W 2

]
dBy

dξ

+ Byvz(vx − ξ )
dBz

dξ
, (4.46)

0 = ξvz dp

dξ
− BxBz

{[
(vx + ξ ) − η

Bx

]
dvx

dξ

+

[
2vz +

Bz(ξ − vx)

Bx
+

W 2(vx − ξ )(w − η2)

BxBz
− η

Bz

]
dvz

dξ

}

− Bz[2Bxvy + By(ξ − vx)]
dvy

dξ
+ Bzvy(vx − ξ )

dBy

dξ

+

[
Bx + W 2(vx − ξ )(Bzvz + η)

W 2

]
dBz

dξ
, (4.47)

0 = By dvx

dξ
− Bx dvy

dξ
+ (vx − ξ )

dBy

dξ
, (4.48)

0 = Bz dvx

dξ
− Bx dvz

dξ
+ (vx − ξ )

dBz

dξ
. (4.49)

The system of equations (4.43)–(4.49) can be recast into a simple matrix form
and non-trivial similarity solutions exist only if the determinant of the matrix of
coefficients is zero. This condition leads to a quartic equation in the self-similar
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variable ξ :

b̃2
xc

2
s − ζ 2v2

xW
2 − (ζ 2 − 1)v4

xW
4 +

[
2ζ 2vxW

2 − 2b̃0b̃xc
2
s + 4(ζ 2 − 1)v3

xW
4
]
ξ

+
[
(b̃0 − b̃x)(b̃

0 + b̃x)c
2
s + ζ 2

(
v2

x − 1
)
W 2 − 6(ζ 2 − 1)v2

xW
4
]
ξ 2

+
[
2b̃0b̃xc

2
s − 2ζ 2vxW

2 + 4(ζ 2 − 1)vxW
4
]
ξ 3

+
[
W 4 + W 2ζ 2(1 − W 2) − (b̃0)2c2

s

]
ξ 4 = 0, (4.50)

where

b̃ ≡ b√
w

, ζ 2 ≡ c2
s + b̃2

(
1 − c2

s

)
, (4.51)

and whose roots coincide with the eigenvalues of the original system of equations
(2.4)–(2.6). When Bx = 0, equation (4.50) reduces to a second-order equation whose
roots provide the velocities of the left- and right-going fast waves. In the more
general case when Bx �= 0, however, the quartic cannot be recast as the product of two
quadratic equations (as is the case in Newtonian hydrodynamics) and the solution
must be found numerically. The corresponding roots provide the velocities of the left-
and right-going slow and fast magnetosonic rarefaction waves, respectively.

Using the appropriate root for ξ , the system of ODEs (4.43)–(4.49) can be rewritten
in terms of the total pressure to obtain a new system of six ODEs to be integrated
from the value of pressure ahead of the rarefaction wave to that behind it.† The
explicit expressions for these equations are rather lengthy and do not provide any
important information; for this reason we report them in Appendix B.

4.3. Solution across an Alfvèn discontinuity

The solution across Alfvèn discontinuities is found by imposing the continuity of ρ

and p and then solving the system of equations (4.15)–(4.17) and (4.19)–(4.20), using
Vs =VA, where VA ≡ vx + Bx/[W

2(η ∓
√

w)] is the Alfvèn velocity for left- (−) and
right- (+) going waves, respectively. Since ρ and p are continuous across the Alfvèn
discontinuity, a solution needs to be found only for the three components of�v and for
the tangential components of the magnetic field By and Bz. In general, and because no
analytic solution was found, we solve the corresponding system of equations (4.15)–
(4.17), (4.19)–(4.20) numerically with a Newton–Raphson scheme. No major difficulties
have been found in determining an accurate solution provided that the waves are all
well separated and that a sufficiently accurate initial guess is provided (cf. the solution
in figure 12 in § 6.2.1). For the latter we have used an approximate Riemann solver
based on the Harten–Lax–van Leer–Einfeldt (HLLE) algorithm (Harten, Lax &
van Leer 1983; Einfeldt 1988) and a moderate truncation error (i.e. using about 800
gridpoints for the tests reported here). However, considerable difficulties have been
encountered if the waves are very close to each other. This is the case, for instance,
of test number 5 of Balsara (2001), in which the left-going Alfvèn discontinuity and
the left-going slow rarefaction wave have very similar propagation velocities (cf. the
solution in figure 11 in § 6.2.1). The exact solution found in this case has a truncation
error which is small, but larger that those reached in the other tests (cf. the data in
table 11).

† The number of equations to be solved reduces from seven to six because when using the total
pressure as the self-similar variable one equation becomes then trivial, i.e. dp/dp = 1.
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5. Tangential magnetic field approach: ‘Bt-method’
As in § 4, in what follows we describe in detail the approach referred to as the

Bt -method, in which we calculate all of the variables in the Riemann fan using as
unknowns the values of the tangential components of the magnetic field, i.e. By and
Bz. As mentioned in the Introduction, much of the inspiration for the development
and use of this method comes from the corresponding approach developed by Ryu
& Jones (1995) in non-relativistic MHD. However, important differences are also
present.

In particular, in Newtonian MHD the problem can be solved using the norm of the

tangential component of the magnetic field Bt ≡
√

B2
y + B2

z and the rotation angle

ψ ≡ arctan(Bz/By) across Alfvèn discontinuities. This is because Bt is conserved
across Alfvèn discontinuities and ψ is constant across fast and slow waves (see Jeffrey
1966). As a result, the relevant system of equations is solved using as unknowns
the values of Bt in regions R2–R3, R4–R5, R6–R7 of the Riemann fan in figure 2
and the angle ψ in regions R3–R6. At the contact discontinuity it is then necessary
to solve a system of four equations, given by the continuity of �v and of p, in the
same four unknowns. This can be solved using root-finding techniques such as the
Newton–Raphson method. Finally, when Bx =0, the presence of only two fast waves
and a tangential discontinuity makes the solution of the problem even simpler (see
Ryu & Jones 1995 for details).

In relativistic MHD, on the other hand, the value of Bt can be discontinuous across
Alfvèn waves and the angle ψ can vary across fast and slow waves; it is then not
possible to solve the system using the method above. Note also that the equations
reported below both for shock and rarefactions waves are strictly valid only if Bx �=0
and indeed should be used only in regions R4 and R5 of the Riemann fan shown in
figure 2. In these regions, only slow waves are present and these do not appear when
Bx = 0.

5.1. Solution across a shock front

To calculate the solution across a shock front with the Bt -method we start by
considering the same system of equations as in § 4.1, but we solve equations (4.1)–
(4.3) considering By and Bz as the unknown quantities. From equations (4.19) and
(4.20) we express the post-shock values of vy and vz:

v
y
b =

1

Bx

[
By

a

J

WsDa

− B
y
b

(
J

WsDa

+ vx
a − vx

b

)
+ Bxvy

a

]
, (5.1)

vz
b =

1

Bx

[
Bz

a

J

WsDa

− Bz
b

(
J

WsDa

+ vx
a − vx

b

)
+ Bxvz

a

]
. (5.2)

Using equation (4.13) to obtain the post-shock value of D,

Db =
DaJ

J + DaWs

(
vx

a − vx
b

) , (5.3)

and calculating the post-shock value of the total pressure using the invariance of hgBn,
i.e. [[hgBn]] = 0 (see Anile 1989), we can express all of the quantities as a function
of the post-shock values of vx , By , Bz, and of the shock velocity Vs . An analytic
solution for the post-shock value of vx in terms of the other post-shock quantities
was sought but not found, forcing the numerical solution of one of the equations
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(4.15)–(4.17). Furthermore, in analogy with the p-method, we calculate the value of
the shock velocity by solving numerically equation (4.26).

Finally, it may be useful to point out that the numerical solution of equation (4.26)
is at times complicated by the existence of two acceptable roots in the interval of
velocities in which the value of the slow shock velocity has to be found (i.e. between
the value of vx and the value of the Alfvèn velocity). Because only one of these two
roots will lead to a convergent exact solution, a careful selection needs to be made.
The existence of these two roots could be related to a known problem in Newtonian
MHD where the use of the tangential components of the magnetic field as the
post-shock independent variables can lead to the presence of more than one solution
(cf., for instance, Jeffrey & Taniuti 1964). This problem seems to be present also in
relativistic MHD (Komissarov 2003), but it has not represented a serious drawback
for the approach followed here. More work is needed to determine whether the use
of the tangential components of the magnetic field as the post-shock independent
variables is really optimal or whether different choices are preferable.

5.2. Solution across a rarefaction wave

To calculate the solution across a rarefaction wave with the Bt -method we use the same
set of ODEs (4.29)–(4.36) discussed in § 4.2, with the only but important difference
that we do not use ξ as self-similar variable but, rather, the norm of the tangential
components of the magnetic field Bt . More specifically, we use equations (4.29)–
(4.31) together with equations (4.35)–(4.36) and substitute the derivative with respect
to ξ with the one with respect to Bt . In addition to these equations, which provide a
solution for variables ρ, p, vx, vy and vz, we express the relation between the norm
and the tangential components explicitly in terms of the angle ψ ,

By = cosψBt, (5.4)

Bz = sinψBt, (5.5)

and rewrite them as ODEs having Bt as the self-similar variable,

dBy

dBt

= cosψ, (5.6)

dBz

dBt

= sinψ. (5.7)

Note that in deriving equations (5.6)–(5.7), an implicit assumption has been made: i.e.
that the angle ψ is constant across the rarefaction wave and thus that the tangential
magnetic field does not rotate across the rarefaction wave. With the use of the
supplementary equations (5.6)–(5.7), the resulting system of ODEs is complete and
can be solved numerically using standard techniques for the solution of a system of
coupled ODEs. In practice, the integration is started ahead of the rarefaction and is
progressed toward the contact discontinuity, where Bt is given by the values of By

and Bz chosen at the contact discontinuity. In all of the tests reported here (with
the exception of test number 5 of Balsara 2001; see § 6.2.1 for a discussion), the
assumption ψ = const. is valid. This is probably related to the choice of the initial
conditions used in these tests and in particular to the fact that v

y
A = vz

A, B
y
A = Bz

A, or
vz

A = Bz
A = 0, where A= (left, right), so that the initial states are essentially invariant

after the exchange of y with z or the z-components of v and B remain equal to zero
in all the regions.
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It should be noted that in relativistic hydrodynamics the velocity components
tangential to a nonlinear wave can change their norm across the wave, in contrast
with what happens in Newtonian hydrodynamics. Considering for simplicity the case
of a shock wave in the limit of zero magnetic field, equations (4.16)–(4.17) reduce to
[[Sy/D]] = 0 = [[Sz/D]], indicating that the ratio vy/vz remains unchanged through
shocks so that the tangential velocity 3-vector can change its norm but does not
rotate. This property, which also applies across rarefaction waves, is not present
across Newtonian nonlinear waves, in which the tangential 3-velocity vector does not
rotate, nor changes its norm: [[vy]] = 0 = [[vz]].

Although the condition ψ = const. is exact in non-relativistic MHD, it may not
be valid in relativistic regimes, where the tangential magnetic field is instead free
to rotate across the slow rarefaction wave. In this case, a new strategy needs to be
implemented and the simplest one consists of using the angle ψ as the self-similar
variable so that the system of equations (4.29)–(4.36) can be expressed in terms of
this new integration variable. In addition, the supplementary differential equation for
one of the components of the tangential magnetic field can be obtained through the
algebraic relation

By =
cosψ

sinψ
Bz, (5.8)

and its derivative with respect to ψ

dBy

dψ
=

cos ψ

sinψ

dBz

dψ
− 1

sin2 ψ
Bz. (5.9)

The system of ODEs is integrated starting from the value of ψ given by the ratio
of the tangential components of the magnetic field ahead of the rarefaction wave,
up to the value given by the amplitudes of By and Bz at the contact discontinuity.
Furthermore, as for the p-method, also in the Bt -method the values of the variable ξ

are obtained from the quartic equation (4.50).
A representative example of this effect is shown in figure 13 in § 6.2.1, where we

plot the exact solution of the generic Alfvèn test at time t = 1.5 (cf. table 4 for the
initial conditions of this test). In particular, the left panel of figure 13 shows the norm
of the tangential magnetic field Bt , and the right panel the angle ψ ≡ arctan(Bz/By).
Note how both quantities vary across all the fast, slow and Alfvèn waves.

6. Numerical implementation and representative results
Since the properties of the magnetic field components in the initial states lead

to considerably different Riemann problems (cf. the two Riemann fans in figures 1
and 2), we will discuss separately the numerical solution in the cases in which Bx =0
and Bx �= 0, emphasizing the properties of some of the most representative tests.

6.1. Tangential initial magnetic field: Bx = 0

As discussed in § 3, when Bx = 0 the Riemann problem consists of only two fast
waves and a tangential discontinuity across which only vx and p are continuous (cf.
figure 1). It should be noted that the condition of continuity of the total pressure
across the tangential discontinuity does not necessarily extend to the gas pressure
and, indeed, the latter is in general discontinuous (cf. figures 3 and 4). In essence,
the numerical solution of the Riemann problem when Bx = 0 proceeds as follows:
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Test type ρ pg vx vy vz Bx By Bz

Komissarov: shock-tube 2 (Γ = 4/3)
left state 1.0 30.0 0.0 0.0 0.0 0.0 20.0 0.0
right state 0.1 1.0 0.0 0.0 0.0 0.0 0.0 0.0

Generic shock-tube (Γ = 5/3)
left state 1.0 0.01 0.1 0.3 0.4 0.0 6.0 2.0
right state 0.01 5000 0.5 0.4 0.3 0.0 5.0 20.0

Table 1. Initial conditions for the tests of the exact Riemann solver when the magnetic field
has zero normal component, i.e. Bx = 0.

given the initial left and right states (i.e. regions R1 and R4 of figure 1), we follow
the procedure used in relativistic hydrodynamics and determine two unknown states
as functions of the common total pressure in regions R2 and R3 (p-method). The
jump in the normal component of the velocity at the tangential discontinuity is then
checked and a new guess for the total pressure found. This procedure is iterated until
the solution is found with the desired accuracy. The numerical approach used is a
combination of Newton–Raphson and bisection methods, starting from a value for
the total pressure which is the average of the initial left and right states. Furthermore,
to decide whether the wave considered is a shock or a rarefaction, we compare the
values of the total pressure ahead of and behind the wave, solving the set of equations
across a shock if the guessed value is larger than the total pressure ahead of the wave
and thus in the initial state. We note that this procedure could be improved if an
approach similar to the one discussed by Rezzolla & Zanotti (2001) and Rezzolla
et al. (2003) is implemented, which would exploit the values of the initial relative
velocity to predict the wave pattern produced.

It is also worth noting that even though the numerical strategy discussed so far
is very similar to the one used in relativistic hydrodynamics, the equations to be
solved in MHD are much more complex and, more importantly, their computational
cost markedly larger. This is essentially because an analytic expression for the shock
velocity was not found, so that it must be determined numerically.

6.1.1. Representative tests for Bx = 0

Because initial states with a zero normal magnetic field lead to a Riemann problem
that is comparatively much simpler to solve, an independent numerical code has
been constructed for this case and it has been tested to reproduce known results in
relativistic hydrodynamics, as well as a test proposed by Komissarov (1999) (this is
referred to as the ‘shock-tube’ test 2). We have also considered an additional, more
generic shock-tube test in which all of the quantities in the initial states are non-zero

and in which �v · �B �= 0 (this is referred to as the ‘generic shock-tube’ test). (We note

that a Riemann problem with Bx =0, but with �v · �B �= 0 cannot be solved with the
exact solution recently proposed by Romero et al. (2005)).

Because the procedure for calculating the solution in this case is particularly simple
and well tested in relativistic hydrodynamics, the algorithm employed has shown to
be very robust and no failures were encountered in the calculation of any quantity.
We list in table 1 the set of initial conditions used in the tests solved, while we report
in tables 2 and 3 the first significant digits for the exact solution of the same tests,
reporting in all cases the accuracy obtained (which usually is � 10−11). Finally, the
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ρ p vx vy vz By Bz

R1 0.1000 × 101 0.2300 × 103 0.0000 0.0000 0.0000 0.2000 × 102 0.0000
R2 0.2410 0.1611 × 102 0.8497 0.0000 0.0000 0.9141 × 101 0.0000
R3 0.6426 0.1611 × 102 0.8497 0.0000 0.0000 0.0000 0.0000
R4 0.1000 0.1000 × 101 0.0000 0.0000 0.0000 0.0000 0.0000

Table 2. First significant digits for the exact solution of the shock-tube test 2 of Komissarov
(1999) computed with an accuracy of 10−12. The left column indicates the regions in which
the solution is computed (cf. figure 1).

ρ p vx vy vz By Bz

R1 0.1000 × 101 0.1819 × 102 0.1000 0.3000 0.4000 0.6000 × 101 0.2000 × 101

R2 0.1581 × 101 0.4459 × 102 −0.3073 0.3082 0.2927 0.9582 × 101 0.3194 × 101

R3 0.5489 × 10−3 0.4459 × 102 −0.3073 0.7488 0.5556 0.1023 × 101 0.4092 × 101

R4 0.1000 × 10−1 0.5138 × 104 0.5000 0.4000 0.3000 0.5000 × 101 0.2000 × 102

Table 3. The same as table 2 but for the generic shock-tube test computed with
an accuracy of 10−11.

full solutions in space of the various Riemann problems listed in table 1 and for the
quantities ρ, vx , pg, p, vy , vz, By , and Bz are shown in figures 3 and 4 at the indicated
representative times.

6.2. Generic initial magnetic field: Bx �= 0

As discussed in § 3, when Bx �=0 the Riemann problem consists of seven different
waves: two fast waves, two slow waves, two Alfvèn discontinuities and a central
contact discontinuity across which only the density can be discontinuous (cf. figure 2).
In essence, the numerical solution of the Riemann problem when Bx �= 0 proceeds
as follows: starting from the initial left and right states (i.e. regions R1 and R8 of
figure 2), we compute the states after the fast waves (regions R2 and R7), then we
determine the jumps across the Alfvèn discontinuities (regions R3 and R6) and finally
we solve the equations for the slow waves (regions R4 and R5). As a result of this
sequence, the jump conditions for all the physical variables in the two states across
the contact discontinuity are computed and if the solution obtained in this way does
not reach the desired accuracy, the procedure is iterated.

We also recall that when Bx �= 0, the numerical solution is found using a hybrid
method which adopts different sets of equations according to the region in which
the Riemann problem has to be solved. In particular, to compute the states after
the fast waves and across the Alfvèn discontinuities we use as unknown the total
pressure (p-method; § 4) and to discriminate between shocks and rarefaction waves
we evaluate the jump in the total pressure in a way similar to the case when Bx = 0.
To compute the states after the slow waves, on the other hand, we use the tangential
components of the magnetic field (Bt -method; § 5) and to decide whether a wave is
a shock or a rarefaction we evaluate the jump in the norm of the magnetic field
bearing in mind that it must decrease across slow shocks and increase otherwise.
Then at the contact discontinuity we compute the jumps in the total pressure and
in the components of 3-velocity and if they are above a certain accuracy we iterate
by changing the values of the total pressure, used in regions R2–R3 and R6–R7,
and of the tangential components of the magnetic field, used in regions R4–R5.
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Figure 3. Exact solution of the shock-tube test 2 of Komissarov (1999) at time t = 1.0.
The solution is composed of a left-going rarefaction wave, a tangential discontinuity and a
right-going shock.
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Figure 4. Exact solution of the generic shock-tube test at time t = 1.0. The solution is
composed of a left-going shock, a tangential discontinuity and a right-going rarefaction wave.
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It is worth underlining that the solution of the Riemann problem with generic
initial states is considerably more demanding than when Bx = 0 and not only because
of the more numerous waves present. Indeed, the most severe difficulty is due to the
fact that the set of equations to be solved becomes particularly stiff near the solution.
A careful investigation of the several cases considered has revealed that, in general,
the functional behaviour of the quantities whose roots are sought changes very rapidly
near the roots, stretching the ability of standards root-finding algorithms. As a result,
it is not uncommon that the solution cannot be found if the iteration for the search
of the root starts from a guess which is not sufficiently close to the exact solution. To
avoid such failures and to provide a first guess which is reasonably accurate, we have
used as a guide the solution provided by the HLLE approximate Riemann solver†.
In practice, the approximate solution should be accurate to within a few percent in
the regions away from the waves, where the states are almost constant (very close to
the waves the errors are of course much larger). Using this guess has proven to be
sufficient to obtain a solution in all of the cases considered, but of course there is no
guarantee that a solution will be straightforwardly found for all of the possible initial
states. Our experience when the solution could not be immediately obtained is that
an increase in the accuracy of the approximate Riemann solver is in general sufficient
to yield a convergent and accurate solution.

6.2.1. Representative tests for Bx �= 0

Although the numerical code developed for the exact solution of the Riemann
problem in relativistic MHD could in principle be used for generic initial data, we
have used it in particular to calculate the exact solutions of those less trivial initial
states that over the years have become standard references (e.g. Komissarov 1999;
Balsara 2001). Table 4 collects the set of initial conditions used in the tests solved,
while we report in tables 5–12 the first significant digits for the exact solution of
the same tests, reporting in all cases the accuracy obtained (which usually is ∼10−10).
Finally, the full solutions in space of the various Riemann problems listed in table 4
and for the quantities ρ, vx , pg, p, vy , vz, By , and Bz are shown in figures 5–12 at
the indicated representative times. In addition, figure 13 offers a quantitative view of
the changes in the tangential magnetic field Bt and of the rotation angle ψ across the
fast, slow and Alfvèn waves in the case of a generic Alfvèn test.

In all of the tests reported in table 4, the HLLE solver with about 800 gridpoints
was able to track rather well the exact solution in all of its waves. The only exception
is test number 1 of Balsara (2001) which represents the relativistic version of the
test proposed by Brio & Wu (1988) in Newtonian hydrodynamics (van Putten 1993).
The approximate numerical solution of this test, shows the development of a left-
going slow compound wave, that is a wave composed of a slow shock adjacent to
a slow rarefaction wave. Since we assume that a slow or fast wave can either be a
pure rarefaction or a pure shock, compound structures of this type cannot be found
by construction and thus are not present in the exact solution found (cf. table 7
and figure 7). We remark that it is not yet clear whether compound waves can be
considered acceptable physical solutions of the ideal MHD equations and a debate on
this is still underway (see, for instance, Myong & Roe 1997a, b; Falle & Komissarov
2001; Torrilhon 2003a, b; Torrilhon & Balsara 2004). We here prefer to adopt the

† Note that this is not necessary when Bx = 0 since in this case the solution can also be quite far
from the exact one and yet the iterative scheme does not show problems in converging to it.
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Test type ρ pg vx vy vz Bx By Bz

Komissarov: shock-tube test 1 (Γ = 4/3)
left state 1.0 1000.0 0.0 0.0 0.0 1.0 0.0 0.0
right state 0.1 1.0 0.0 0.0 0.0 1.0 0.0 0.0

Komissarov: collision test (Γ = 4/3)

left state 1.0 1.0 5/
√

26 0.0 0.0 10.0 10.0 0.0

right state 1.0 1.0 −5/
√

26 0.0 0.0 10.0 −10.0 0.0

Balsara test 1 (Brio & Wu) (Γ = 2)
left state 1.000 1.0 0.0 0.0 0.0 0.5 1.0 0.0
right state 0.125 0.1 0.0 0.0 0.0 0.5 −1.0 0.0

Balsara test 2 (Γ = 5/3)
left state 1.0 30.0 0.0 0.0 0.0 5.0 6.0 6.0
right state 1.0 1.0 0.0 0.0 0.0 5.0 0.7 0.7

Balsara test 3 (Γ = 5/3)
left state 1.0 1000.0 0.0 0.0 0.0 10.0 7.0 7.0
right state 1.0 0.1 0.0 0.0 0.0 10.0 0.7 0.7

Balsara test 4 (Γ = 5/3)
left state 1.0 0.1 0.999 0.0 0.0 10.0 7.0 7.0
right state 1.0 0.1 −0.999 0.0 0.0 10.0 −7.0 −7.0

Balsara test 5 (Γ = 5/3)
left state 1.08 0.95 0.40 0.3 0.2 2.0 0.3 0.3
right state 1.00 1.0 −0.45 −0.2 0.2 2.0 −0.7 0.5

Generic Alfvèn test (Γ = 5/3)
left state 1.0 5.0 0.0 0.3 0.4 1.0 6.0 2.0
right state 0.9 5.3 0.0 0.0 0.0 1.0 5.0 2.0

Table 4. Initial conditions for the tests of the exact Riemann solver when the magnetic field
has non-zero normal component, i.e. Bx �=0.

ρ p vx vy vz By Bz

R1 0.1000 × 101 0.1001 × 104 0.0000 0.0000 0.0000 0.0000 0.0000
R2 0.6984 × 10−1 0.2927 × 102 0.9115 0.0000 0.0000 0.0000 0.0000
R3 0.6984 × 10−1 0.2927 × 102 0.9115 0.0000 0.0000 0.0000 0.0000
R4 0.6984 × 10−1 0.2927 × 102 0.9115 0.0000 0.0000 0.0000 0.0000
R5 0.8846 0.2927 × 102 0.9115 0.0000 0.0000 0.0000 0.0000
R6 0.8846 0.2927 × 102 0.9115 0.0000 0.0000 0.0000 0.0000
R7 0.8846 0.2927 × 102 0.9115 0.0000 0.0000 0.0000 0.0000
R8 0.1000 0.1500 × 101 0.0000 0.0000 0.0000 0.0000 0.0000

Table 5. First significant digits for the exact solution of the shock-tube test 1 of Komissarov
(1999) computed with an accuracy of 10−10. The left column indicates the regions in which
the solution is computed (cf. figure 2).

same standpoint of Ryu & Jones (1995) in the development of their exact Riemann
solver in non-relativistic magnetohydrodynamics and not comment further on this
until a commonly accepted view has emerged.

Another test which deserves a special comment is test number 5 of Balsara (2001),
in which the left-going Alfvèn discontinuity and the left-going slow rarefaction wave
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ρ p vx vy vz By Bz

R1 0.1000 × 101 0.5292 × 102 0.9806 0.0000 0.0000 0.1000 × 102 0.0000
R2 0.6331 × 101 0.2571 × 103 0.4380 0.4069 0.0000 0.1960 × 102 0.0000
R3 0.6331 × 101 0.2571 × 103 0.4380 0.4069 0.0000 0.1960 × 102 0.0000
R4 0.2742 × 102 0.2819 × 103 0.2453 × 10−7 −0.6811 0.0000 0.2250 × 10−6 0.0000
R5 0.2742 × 102 0.2819 × 103 −0.2810 × 10−7 −0.6811 0.0000 0.2250 × 10−6 0.0000
R6 0.6331 × 101 0.2571 × 103 −0.4380 0.4069 0.0000 −0.1960 × 102 0.0000
R7 0.6331 × 101 0.2571 × 103 −0.4380 0.4069 0.0000 −0.1960 × 102 0.0000
R8 0.1000 × 101 0.5292 × 102 −0.9806 0.0000 0.0000 −0.1000 × 102 0.0000

Table 6. The same as table 5 but for the exact solution of the collision test of Komissarov
(1999) computed with an accuracy of 10−6.

ρ p vx vy vz By Bz

R1 0.1000 × 101 0.1625 × 101 0.0000 0.0000 0.0000 0.1000 × 101 0.0000
R2 0.6257 0.6989 0.3742 −0.3561 × 10−1 0.0000 0.6594 0.0000
R3 0.6257 0.6989 0.3742 −0.3561 × 10−1 0.0000 0.6594 0.0000
R4 0.7092 0.7062 0.2555 −0.6804 0.0000 −0.4285 0.0000
R5 0.2695 0.7062 0.2555 −0.6804 0.0000 −0.4285 0.0000
R6 0.1223 0.6976 −0.2080 × 10−1 −0.3460 × 10−2 0.0000 −0.9769 0.0000
R7 0.1223 0.6976 −0.2080 × 10−1 −0.3460 × 10−2 0.0000 −0.9769 0.0000
R8 0.1250 0.7250 0.0000 0.0000 0.0000 −0.1000 × 101 0.0000

Table 7. The same as table 5 but for the exact solution of test 1 of Balsara (2001) computed
with an accuracy of 10−10. This test represents the relativistic version of the test proposed by
Brio & Wu (1988).

ρ p vx vy vz By Bz

R1 0.1000 × 101 0.7850 × 102 0.0000 0.0000 0.0000 0.6000 × 101 0.6000 × 101

R2 0.4300 0.2321 × 102 0.6344 −0.9981 × 10−1 −0.9981 × 10−1 0.3045 × 101 0.3045 × 101

R3 0.4300 0.2321 × 102 0.6344 −0.9981 × 10−1 −0.9981 × 10−1 0.3045 × 101 0.3045 × 101

R4 0.3830 0.2284 × 102 0.6770 −0.5566 × 10−1 −0.5566 × 10−1 0.3205 × 101 0.3205 × 101

R5 0.2828 × 101 0.2284 × 102 0.6770 −0.5566 × 10−1 −0.5566 × 10−1 0.3205 × 101 0.3205 × 101

R6 0.1582 × 101 0.2072 × 102 0.4688 −0.2538 −0.2538 0.3971 × 101 0.3971 × 101

R7 0.1582 × 101 0.2072 × 102 0.4688 −0.2538 −0.2538 0.3971 × 101 0.3971 × 101

R8 0.1000 × 101 0.1399 × 102 0.0000 0.0000 0.0000 0.7000 0.7000

Table 8. The same as table 5 but for the exact solution of test 2 of Balsara (2001) computed
with an accuracy of 10−10.

ρ p vx vy vz By Bz

R1 0.1000 × 101 0.1099 × 104 0.0000 0.0000 0.0000 0.7000 × 101 0.7000 × 101

R2 0.1381 0.8604 × 102 0.9246 −0.3513 × 10−1 −0.3513 × 10−1 0.2238 × 101 0.2238 × 101

R3 0.1381 0.8604 × 102 0.9246 −0.3513 × 10−1 −0.3513 × 10−1 0.2238 × 101 0.2238 × 101

R4 0.9798 × 10−1 0.7653 × 102 0.9529 0.4366 × 10−1 0.4366 × 10−1 0.4670 × 101 0.4670 × 101

R5 0.1010 × 102 0.7653 × 102 0.9529 0.4366 × 10−1 0.4366 × 10−1 0.4670 × 101 0.4670 × 101

R6 0.1218 × 101 0.6363 × 102 0.4670 −0.4270 −0.4270 0.9408 × 101 0.9408 × 101

R7 0.1218 × 101 0.6363 × 102 0.4670 −0.4270 −0.4270 0.9408 × 101 0.9408 × 101

R8 0.1000 × 101 0.5059 × 102 0.0000 0.0000 0.0000 0.7000 0.7000

Table 9. The same as table 5 but for the exact solution of test 3 of Balsara (2001) computed
with an accuracy of 10−10.
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ρ p vx vy vz By Bz

R1 0.1000 × 101 0.5020 × 102 0.9990 0.0000 0.0000 0.7000 × 101 0.7000 × 101

R2 0.5175 × 102 0.1184 × 104 0.4408 × 10−1 0.3263 × 10−1 0.3263 × 10−1 0.1668 × 102 0.1668 × 102

R3 0.5175 × 102 0.1184 × 104 0.4408 × 10−1 0.3263 × 10−1 0.3263 × 10−1 0.1668 × 102 0.1668 × 102

R4 0.6148 × 102 0.1188 × 104 0.1086 × 10−7 −0.2877 −0.2877 0.8042 × 10−9 0.8036 × 10−9

R5 0.6148 × 102 0.1188 × 104 −0.1089 × 10−7 −0.2877 −0.2877 0.8042 × 10−9 0.8036 × 10−9

R6 0.5175 × 102 0.1184 × 104 −0.4408 × 10−1 0.3263 × 10−1 0.3263 × 10−1 −0.1668 × 102 −0.1668 × 102

R7 0.5175 × 102 0.1184 × 104 −0.4408 × 10−1 0.3263 × 10−1 0.3263 × 10−1 −0.1668 × 102 −0.1668 × 102

R8 0.1000 × 101 0.5020 × 102 −0.9990 0.0000 0.0000 −0.7000 × 101 −0.7000 × 101

Table 10. The same as table 5 but for the exact solution of test 4 of Balsara (2001) computed
with an accuracy of 10−7.

ρ p vx vy vz By Bz

R1 0.1080 × 101 0.2885 × 101 0.4000 0.3000 0.2000 0.3000 0.3000
R2 0.2447 × 101 0.5908 × 101 −0.1331 0.2111 0.1751 0.2662 0.5076
R3 0.2447 × 101 0.5908 × 101 −0.1215 0.1264 0.1158 −0.1182 0.2302
R4 0.2050 × 101 0.5616 × 101 −0.4547 × 10−1 −0.1463 0.2146 −0.1175 × 101 0.5852
R5 0.1884 × 101 0.5616 × 101 −0.4543 × 10−1 −0.1462 0.2149 −0.1175 × 101 0.5850
R6 0.1642 × 101 0.5488 × 101 −0.1129 −0.4606 × 10−1 0.1601 −0.1429 × 101 0.7320
R7 0.1642 × 101 0.5488 × 101 −0.1155 −0.8536 × 10−1 0.1027 −0.1272 × 101 0.9468
R8 0.1000 × 101 0.2918 × 101 −0.4500 −0.2000 0.2000 −0.7000 0.5000

Table 11. The same as table 5 but for the exact solution of test 5 of Balsara (2001) computed
with an accuracy of 3 × 10−4.

ρ p vx vy vz By Bz

R1 0.1000 × 101 0.2376 × 102 0.0000 0.3000 0.4000 0.6000 × 101 0.2000 × 101

R2 0.9219 0.2083 × 102 0.6232 × 10−1 0.3050 0.4193 0.5622 × 101 0.1892 × 101

R3 0.9219 0.2083 × 102 0.7109 × 10−1 0.3669 0.2429 0.5691 × 101 0.8502
R4 0.1263 × 101 0.2087 × 102 0.3886 × 10−1 0.1147 0.2054 0.5130 × 101 0.7680
R5 0.1099 × 101 0.2087 × 102 0.3886 × 10−1 0.1147 0.2054 0.5130 × 101 0.7680
R6 0.9130 0.2085 × 102 0.1607 × 10−1 −0.5009 × 10−1 0.1813 0.5505 × 101 0.8195
R7 0.9130 0.2085 × 102 0.1341 × 10−1 −0.6599 × 10−3 −0.2640 × 10−3 0.5073 × 101 0.2029 × 101

R8 0.9000 0.2030 × 102 0.0000 0.0000 0.0000 0.5000 × 101 0.2000 × 101

Table 12. The same as table 5 but for the exact solution of the generic Alfvèn test computed
with an accuracy of 10−10.

have very similar propagation velocities. Indeed they are so close to each other that
not even the HLLE approximate Riemann solver with 40 000 gridpoints was able to
capture the precise location of the discontinuity. As a consequence, the initial guess
for the jumps across the left-going Alfvèn discontinuity was sufficiently good to yield
a convergent solution, but not good enough to provide an exact solution with a
truncation error comparable with the one reached in all of the other tests (cf. data
in table 11). In addition, another distinctive feature of this test which has not been
found in any of the others is the rotation of the angle ψ across the left-going slow
rarefaction. To handle this we have followed the procedure discussed in § 5.2 and
used equation (5.9) to compute the changes in the tangential magnetic field across
the rarefaction wave.
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Figure 5. Exact solution of the shock-tube test 1 of Komissarov (1999) at time t = 1.0. The
solution is composed of a left-going fast rarefaction, a contact discontinuity and a right-going
fast shock.
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Figure 6. Exact solution of the collision test of Komissarov (1999) at time t = 1.22. The
solution is composed of a left-going fast shock, a left-going slow shock, a right-going slow
shock and a right-going fast shock.
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Figure 7. Exact solution of test 1 of Balsara (2001) at time t = 0.4 and which represents the
relativistic version of the Brio & Wu test (1988). The solution is composed of a left-going
fast rarefaction, a left-going slow shock, a contact discontinuity, a right-going slow shock and
a right-going fast rarefaction. Note the absence of a slow compound wave which cannot be
found by construction in our exact solver, but which appears in the solution of the HLLE
approximate Riemann solver (not shown).
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Figure 8. Exact solution of test 2 of Balsara (2001) at time t = 0.4. The solution is composed
of two left-going fast and slow rarefactions, a contact discontinuity and two right-going fast
and slow shocks.
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Figure 9. Exact solution of test 3 of Balsara (2001) at time t = 0.4. The solution is composed
of two left-going fast and slow rarefactions, a contact discontinuity and two right-going fast
and slow shocks.
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Figure 10. Exact solution of test 4 of Balsara (2001) at time t = 0.4. The solution is
composed of two left-going fast and slow shocks and two right-going fast and slow shocks.
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Figure 11. Exact solution of test 5 of Balsara (2001) at time t =0.55. The solution is composed
of a left-going fast shock, a left-going Alfvèn discontinuity, a left-going slow rarefaction, a
contact discontinuity, a right-going slow shock, a right-going Alfvèn discontinuity and a
right-going fast shock. Note that the accuracy in this test is only rather low: 3 × 10−4.
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Figure 12. Exact solution of the generic Alfvèn test at time t = 1.5. The solution is composed
of a left-going fast rarefaction, a left-going Alfvèn discontinuity, a left-going slow shock,
a contact discontinuity, a right-going slow shock, a right-going Alfvèn discontinuity and a
right-going fast shock.
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Figure 13. Exact solution of the generic Alfvèn test at time t = 1.5. The left panel shows the
norm of the tangential magnetic field Bt , while the right panel the angle ψ ≡ arctan (Bz/By).
Note that both quantities vary across all the fast, slow and Alfvèn waves as a result of a
relativistic effect.

7. Conclusions
We have presented a procedure for the solution of the exact Riemann problem

in special relativistic MHD. Special care has been taken in treating both degenerate
initial states (i.e. with zero normal magnetic field) leading to a set of only three waves
analogous to the ones in relativistic hydrodynamics, and generic initial states (i.e. with
non-zero normal magnetic field) leading to the full set of seven MHD waves.

The approach discussed for the numerical solution of the exact Riemann problem
reflects this distinction and different sets of equations are used according to the
values of the normal magnetic field. In particular, when Bx = 0, all of the equations
needed for the solution of the Riemann problem are written as a function of the total
pressure, thus following a procedure which is logically equivalent to the one adopted
in relativistic hydrodynamics (we have referred to this as the p-method). When Bx �=0,
on the other hand, an hybrid approach is adopted in which the solution across fast
waves and Alfvèn discontinuities is still computed using the p-method, but the one
across slow waves and the contact discontinuity is computed using equations which
are written in terms of the tangential components of the magnetic field (we have
referred to this as the Bt -method). The use of a combined approach for the general
case of Bx �= 0 has turned out to be crucial for a successful solution of the problem.

Because of its generality, the solution presented here could serve as a useful if
not indispensable test for those numerical codes that solve the MHD equations in
relativistic regimes. As astronomical observations become increasingly accurate, such
numerical codes will become increasingly important to explain and describe in detail
the complex physics of astrophysical compact objects.

As a final remark we note that despite the considerable improvements in the
performance of modern computers, the exact solution of the Riemann problem at
each grid interface is still computationally too expensive to be used routinely in
sophisticated multidimensional numerical codes solving the equations of relativistic
hydrodynamics or MHD in either stationary or dynamical space–times (see, for
instance, Baiotti et al. 2005; Duez et al. 2005). While a numerical code based on exact
Riemann solvers may represent at least in principle the most accurate approach to
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the solution of the hydrodynamics and MHD equations, considerable work is still
required to make it competitive with less accurate but more computationally efficient
methods. A first step in this direction would be, for instance, the search for an analytic
solution for the shock velocity and this will be the subject of future work. Another
important problem deserving equal attention is that of the uniqueness of the solution.
While a global consensus on this issue still needs to be reached, it remains essential
in order to construct a complete and consistent picture of the exact solution of the
Riemann problem in relativistic MHD.

The numerical codes computing the exact solution both when Bx = 0 and when
Bx �= 0 are available from the authors upon request. Users of the codes can give credit
by mentioning the source and citing this paper.

It is a pleasure to thank José Ma. Martı́, José A. Pons and Olindo Zanotti for useful
discussions and comments.

Appendix A
We here report the expressions for the tangential components of the velocity behind

the shock (i.e. v
y
b , v

z
b) when expressed as function of post-shock p and J . First, we

consider v
y
b as function of pb, J and vz

b.
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We next consider the expression of vz
b as function of post-shock p and J
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2
a

)]
+ 2DaJ (pa − pb)v

x
a

(
2ηa − By

a vy
a − Bz

av
z
a

)
Ws + D2

aηa(pa − pb)
(
vx

a
2 − 1

)
W 2

s

}
− B4

xD
2
aW

2
s

(
J + Dav

x
aWs

)
− W 2

a

[
J
(
Da + pb + τa − η2

aW
2
a

)
− Da(pa − pb)v

x
aWs

][
J 2

(
Da − By

a
2 − Bz

a
2 + pb + τa − η2

aW
2
a

)
− 2DaJ (pa − pb)v

x
aWs − D2

a(pa − pb)
(
vx

a
2 − 1

)
W 2

s

]
+ B3

xDaWs

[
2ηaJ

2W 2
a + 2DaηaJvx

aW
2
a Ws + D2

a

(
ηa − By

a vy
a − Bz

av
z
a

)
W 2

s

]
+ B2

x

(
J 3W 2

a

(
Da + pb + τa − η2

aW
2
a

)
+ DaJ

2vx
aW

2
a

(
Da − 2pa + 3pb + τa − η2

aW
2
a

)
Ws

+ D2
aJ

{
Da − By

a
2 − Bz

a
2 + pb + τa +

[
2ηa

(
By

a vy
a + Bz

av
z
a

)
− 3η2

a

− (pa − pb)
(
3vx

a
2 + vy

a
2 + vz

a
2 − 1

)]
W 2

a

}
W 2

s

)}
.

Appendix B
The explicit form for the system of ODEs to be solved numerically to determine

the solution across a rarefaction wave within the p-method is given by the following
set of equations in which the total pressure p plays the role of the self-similar
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variable

dρ

dp
= −ρ

(
W 2vx +

1

vx − ξ

)
dvx

dp
− ρW 2vy

dvy

dp
− ρW 2vz

dvz

dp
, (B 1)

dvx

dp
= R

{(
ρhgW

2 + B2
x

)
(ξ − vx)(vxξ − 1) + B2

x

ξvx − 1

W 2(vx − ξ )
+ B2

x ξ
(
v2

y + v2
z

)

+ Bx[η(ξ 2 − 1) − Bxvx(1 − 2vxξ + ξ 2)]

}
, (B 2)

dvy

dp
= R

{
2Bxvy(η − Bzvz)ξ − B2

xvyξ (ξ + vx)

+ vy

[
B2

z + W 2(η2 − w)
]
(vx − ξ )ξ + B2

yvy(vxξ − 1) + ByBzvz(ξ
2 − 1)

+ BxBy

(
v2

y + v2
z − 1

)
+

(
vx − 2vxv

2
y

)
ξ +

(
1 + v2

y − v2
z

)
ξ 2 − vxξ

3

(vx − ξ )

}
, (B 3)

dvz

dp
= R

{
2Bx(η − Byvy)vzξ − B2

xvzξ (vx + ξ )

+ vz

[
B2

y + W 2(η2 − w)
]
(vx − ξ )ξ + ByBzvy(ξ

2 − 1) + vzB
2
z (vxξ − 1)

+ BxBz

(
v2

y + v2
z − 1

)
+

(
vx − 2vxv

2
z

)
ξ +

(
1 − v2

y + v2
z

)
ξ 2 − vxξ

3

(vx − ξ )

}
, (B 4)

dBy

dp
= − W 2(By − Byvxξ + Bxvyξ )

B2
x + 2BxηW 2(vx − ξ ) + W 4(η2 − w)(vx − ξ )2

, (B 5)

dBz

dp
= − W 2(Bz − Bzvxξ + Bxvzξ )

B2
x + 2BxηW 2(vx − ξ ) + W 4(η2 − w)(vx − ξ )2

, (B 6)

where we have defined

R ≡ 1

ρhgW 4(η2 − w)(V +
A − ξ )(V −

A − ξ )
, (B 7)

with

V
±
A ≡ vx +

Bx

W 2(η ±
√

w)
, (B 8)

being the Alfvèn velocities in the two directions. Note that the set of ODEs has a
singular point if the characteristic velocity of the slow or fast magnetosonic waves is
equal to the Alfv́en velocity [cf. eq. (B 7)] and cannot be solved in this case without
a proper regularization. This procedure is not included in the numerical code made
available upon request.
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Aloy, M. A., Ibáñez, J. M., Martı́, J. M. & Müller, E. 1999 GENESIS: a high-resolution code
for three-dimensional relativistic hydrodynamics. Astrophys. J. Suppl. 122, 151.

Anile, A. M. 1989 Relativistic Fluids and Magneto-Fluids. Cambridge University Press.

Antón, L., Zanotti, L., Miralles, J. A., Martı́, J. M., Ibáñez, J. M
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