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A new law of thinning in foam dynamics
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A new law for the thinning of surfactant-free lamellae (applicable to metallic and
ceramic foams with mobile interfaces) in a cross-section of an arid gas–liquid foam is
derived using matched asymptotic analysis. Two limiting cases are identified at small
capillary number: the well-known semi-arid foam having unit-order liquid fraction
and the arid foam in which it is small. The lamellar thinning rates in both cases
exhibit t−2 power-law behaviour at long times even though the foam liquid area
fractions have different orders of magnitude in capillary number. At early times, arid
foam thinning is slowed because the curvature of the capillary quasi-static interfacial
region must decrease in order to accommodate the flow from the films. Therefore, the
thinning of lamellae feeding into a given Plateau border is coupled and the dynamics
is distinct from that of the semi-arid foam.

Approximations of rupture times in arid and semi-arid foams are found by calculat-
ing the times for lamellae to thin to a pre-specified thickness. For given initial lamellar
thicknesses, and for arid and semi-arid foams that have identical initial lamellar liquid
areas, the arid foam ruptures more quickly than the semi-arid foam. On the other hand
the rupture of lamellae is significantly delayed in arid foam compared to semi-arid
foam if the initial lamellar thickness and capillary number are the same.

1. Introduction
A foam is composed of gas bubbles in a liquid, the bubbles being polygonal due to

crowding if the mass fraction of liquid is small enough. The bubbles are separated
from each other by thin liquid films connected by junctions. The lifetime of a foam is
determined by the thinning and the rupture of the films, resulting in the coalescence
of adjacent bubbles into, ultimately, a single gas bubble in a liquid bath. This process
occurs in parallel with the draining of liquid along the axes of the lamellar junctions, a
process driven by gravity and ignored in the present analysis. The thinning and rupture
processes stand as the fundamental building blocks of a theory of the behaviour of
foams on the large scale.

For pure metallic or water-like liquids, the rupture times can be measured in milli-
seconds. In aqueous foams the films are laden with surfactants to immobilize the
interfaces and hence to slow the rupture of the films by orders of magnitude, as detailed
in the work of Breward (1999) and Breward & Howell (2002). In metallic foams
surfactants are ineffective and only some control of the viscosity of the liquid metal
can slow the process. For example, alumina particles are dispersed in aluminium foam
to increase the viscosity and decrease the drainage sufficiently so that solidification
can occur (Yang & Nakae 2003), though the addition of impurities to the melt, a
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Figure 1. Schematic representation of the cross-sections of foams for (a) a square array
and (b) an hexagonal array of bubbles showing a set of adjacent gas bubbles and the lamellar
(L), transition (T ) and Plateau border (PB) regions. The dot-dash lined sections within each
diagram are the periodic domains within which asymptotic analyses are carried out for each
geometry. The symmetry of the array of bubbles fixes the angle Ψ : Ψ = π/4 in (a) and π/6
in (b).

common practice in processing of gas–liquid metallic foams, is not a generally viable
technique. Finally, in highly viscous melts such as molten glass, rupture times of thin
films can be many orders of magnitude longer as shown by Howell (1999) in a study
of the drainage of a bubble.

The foam considered in this work is surfactant free and has an area fraction of
liquid of a couple of percent or less. At these small liquid fractions, within the foam
between polygonal bubbles, the liquid forms elongated thin-film regions, lamellae (L),
separated by rounded regions of (nearly) constant curvature, Plateau border cross-
sections (PB). Liquid flows from the higher pressure L regions to the lower pressure PB
regions promoting continuous L thinning. Breward & Howell (2002) have analysed
foam thinning and have estimated thinning times in foam both with and without
surfactant, in the absence of gravitational drainage. In their work, the radius of
curvature of the PB is assumed fixed, which describes the semi-arid foam in the
low-capillary-number asymptotic limit. For smaller liquid fractions at leading order
in the asymptotic analysis, the PB radius of curvature must be allowed to increase in
time in order that liquid be conserved within a two-dimensional cross-section. This
leads to the arid limit which has different lamellar thinning dynamics.

In the present work asymptotic solutions within a cross-section of foam are
determined, in which the dynamics of the geometrical features, such as the radius
of curvature of the PB, and the length and the thickness of the lamella that fully
characterize the foam geometry, are determined as part of the solution to the problem.
This is accomplished by considering conservation of liquid and strict periodicity of
the array of bubbles within the two-dimensional cross-section.

In figure 1 are schematic diagrams of the types of arrays of passive gas bubbles
and surrounding liquid regions that are considered in this work. Figure 1(a) is a
square array of bubbles which in general is not observed but serves as illustration.
Figure 1(b) shows an hexagonal array of bubbles which is commonly seen in foams.
Our theory applies to either geometry. No drainage is allowed orthogonal to the PB
cross-sectional areas in this analysis.

The gas bubbles are assumed to form a periodic array in space. Therefore, it is
possible to characterize microscale flow and interface evolution by focusing on a
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periodic domain denoted as the region contained within the dashed line in figure 1(a)
and within the dot-dash line in figure 1(b). A domain includes one ‘corner’ of a gas
bubble along with the adjacent PB and L liquid regions. In figure 1 four geometrical
parameters are depicted: the PB radius of curvature a, the lamellar thickness 2h, the
lamellar length 2L and Ψ , an angle which is set by the symmetry of the bubble array.
These geometrical factors completely characterize the geometry of the foam at the
microscale in this analysis, and because of periodicity, also at the macroscale.

The area fraction of the liquid and the size of the PB, L and transition (T) regions are
functions of the geometrical parameters. These quantities vary significantly depending
on the foam processing method, of which there is a variety. It is therefore crucial to
examine the dependence of the dynamics of foam on these geometrical parameters
since this is linked to the processing technique.

The results of this work reveal fundamental differences in foam dynamics, including
L thinning and the dynamics of PB interfaces, depending on the ratios of the foam
geometrical parameters.

2. The model
The equations governing change in the components of the liquid velocity (u(x, z, t),

w(x, z, t)) and the pressure p(x, z, t) are

ρ(ut + uux + wuz) = −px + µ(uxx + uzz), (2.1)

ρ(wt + uwx + wwz) = −pz + µ(wxx + wzz), (2.2)

ux + wz = 0, (2.3)

where ρ and µ are the density and viscosity of the liquid. At the gas–liquid interface
z = h(t, x) the kinematic condition is written

w = ht + uhx. (2.4)

The normal stress at the interface obeys

−p + PG +
2µ(

1 + h2
x

)[(
uxh

2
x + wz

)
− hx(uz + wx)

]
= σ

hxx(
1 + h2

x

)3/2
, (2.5)

where PG is the hydrostatic pressure in the passive gas phase and σ is the gas–liquid
surface tension. The shear stress at the gas–liquid interface vanishes:

−2µ(ux − wz)hx + µ(uz + wx)
(
1 − h2

x

)
= 0. (2.6)

The free film is assumed to be symmetric about the coordinate contour z = 0, and
along the centreline, uz =0 and w = 0. (For a general review of models of thin films
including a wide variety of physical effects, see Oron, Davis & Bankoff (1997).)

Within PBs, flow and interface shape are controlled by capillary effects whereas in
L regions by viscous effects. Separate asymptotic solutions for the flow of liquid and
the dynamics of the gas–liquid interface are calculated for each region. However, the
leading-order solutions within the adjacent PB and L regions can only be matched
by introducing an intermediate transition region (T), as done initially by Bretherton
(1961). The solutions within each of the L, T and PB regions are considered in the
subsections below.
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2.1. The Plateau borders

Governing equations appropriate for the capillary static region are derived by trans-
forming (2.1) to (2.6) according to

(x̃, z̃) =

(
x

Lo

,
z

Lo

)
, (ũ, w̃) =

(
u

Uo

,
w

Uo

)
, t̃ =

(
Uo

Lo

)
t, P̃ =

(
Lo

σ

)
p, (2.7)

where Lo is the initial lamella half-length, and Uo is a velocity which will be determined
as part of the solution to the problem. To leading order in capillary number C = µUo/σ

the governing equations are reduced to a single equation for the shape:

−�P̃ =
h̃x̃x̃(

1 + h̃2
x̃

)3/2
. (2.8)

�P̃ is a constant jump in pressure across a gas–liquid interface of constant curvature.
A solution is found by integrating the leading-order (C = 0) set of equations. For
any array of gas bubbles the solution is a circular arc. The span or total arc of the
PB region is fixed by the angle Ψ which is dictated by the symmetry of the array;
an array with an n-fold rotational axis must satisfy n = π/Ψ . For bubble centres
configured as a two-dimensional square lattice the interface shape is

h̃(x̃, t̃) = h̃o + ã

(
1 −

√
2

2

)
− 1√

2�P̃
+

1

�P̃

[
1 −

(
1√
2

− �P̃

[
x̃ − L̃ − 1√

2
ã

])2
]1/2

(2.9)

where h̃o is an undetermined constant. The parameters L̃ and ã are the dimensionless
lamellar length and radius of curvature, respectively. The solution (2.9) obeys the
symmetry conditions

h̃x̃ = 1 at x̃ = ˜S{t} := L̃ +
ã√
2

(2.10)

and

h̃ = h̃o + ã

(
1 − 1√

2

)
at x̃ = ˜S{t} := L̃ +

ã√
2
. (2.11)

The values of �P and h̃o and ã are related by means of matching conditions with the
T solution, and through conservation of liquid. First, the solutions in the thin-film L
and T regions must be determined.

2.2. Thin-film regions: lubrication approximation

In order to determine the flow and interface evolution in the thin-film regions between
adjacent gas bubbles away from the PB where viscous effects are important and the
lubrication approximation is valid, variable rescaling is required. The analysis of this
section is similar in spirit to that of Breward & Howell (2002).

The thin-film region may be subdivided into lamellar (L) and transition (T) regions.
The T region lies between the PB and L regions. Let ε = ho/Lo � 1 be the ratio of
the length by which (dimensional) z is scaled to the length by which (dimensional) x

is scaled. The coordinate shift L∗(T ) and the coordinate stretching parameter δ are
defined below. The variable transformations

X =
x − L∗(T )

δLo

, Z =
z

ho

, T =
tUo

Lo

, U =
u

Uo

,

W =
wLo

hoUo

, P =
ε2Lo

µUo

p, H =
h

ho


 (2.12)
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convert (2.1)–(2.6) to a form appropriate for a free film. The result is a coupled set
of equations for the axial component of the fluid velocity U (X, T ) and the interface
shape H (X, T ):

HT +
1

δ
((U − L∗

T )H )X = 0, (2.13)

−
(

C−1ε

δ3

)
HHXXX =

4

δ2
(HUX)X. (2.14)

Inertial effects are assumed negligible. All other quantities derive from U (T , X) and
H (T , X). The choice δ = 1 and L∗(T ) = 0 gives a set of equations appropriate for the L
region. In the T region viscous and capillary forces balance only if the X coordinate is
stretched by δ = ε/C, so that ε � δ � 1. It follows that Uo =(σ/µ)(ho/ao)

1/2, where ao

is the initial radius of the PB region. With this choice of δ and the choice L∗(T ) = L(T )
a set of equations appropriate for the T region is given.

In the L region the appropriate solution is a flat interface H (T ) that obeys

dHL

dT
= −Q(T )

L(T )
, (2.15)

where Q(T ) = U (L, T )H (T ) is the liquid flow rate at the L/T border. U (T , X) =
QX/(LHL) is the fluid velocity throughout the L region. The flow rate Q, which is
not known a priori, will be determined by matching at the T/PB border.

From (2.13) and (2.14) it is seen that the leading-order solution in the T region
is quasi-static. These equations may be integrated and matched at both the L/T
border and at the T/PB border. The results show that the transition solution has the
same thickness as the lamella and a vanishing slope at the L border. Matching also
reveals that to leading order the PB circular arc joins the adjacent lamellar regions by
fitting exactly into the corner formed by the centrelines of two adjacent intersecting
lamellae. Thus �P̃ = −1/ã and h̃o =0 in (2.9). Finally the matching conditions also
link the constant flow rate Q= UH at any time through the T region to the radius
of curvature of the PB region:

1

2

(
8

3

)2
Q

2

H 3
L

= h̃x̃x̃(L̃)

[
δ2

ε

]
. (2.16)

Here, h̃x̃x̃(L̃) is the curvature, 1/ã, of the PB portion of the interface. This result
has been written for LT = 0 which is valid here as will be shown below. Since the
quasi-static condition applies, the matching conditions hold at any instant in time.

2.3. Conservation of fluid and array periodicity

Designating the leading-order solutions for the L and the PB regions as hL(t) and
hPB(t, x)) respectively, the liquid area, written in dimensional form:

A =

∫ L(t)

0

hL(t) dx +

∫ S(t)

L(t)

hPB(t) dx +

∫ d

S(t)

hPB{S(t)}
(

d − x

d − S(t)

)
dx, (2.17)

is constant in time. Here S{t} =L(t)+a sinΨ , the constant length d = (hL +a) tan Ψ +
L + δLo, and a is the radius of curvature of the circular PB region. The contribution
to the area of fluid within the T region is higher order compared to the contribution
from other regions. The geometry used to derive the conservation law is represented
in figure 1(a, b). In the last integrand the value hPB{S(t)} refers to the PB solution
evaluated at the location S(t). Differentiation and evaluation of (2.17) gives at leading
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order:

−1

2
(tan Ψ − Ψ )

d
(
a2

)
dT

=
d(HLL)

dT

[
Loho

a2
o

]
. (2.18)

In addition the requirement that the time rate of change of d vanishes at leading
order gives

dL

dT
= −

[
ao

Lo

]
da

dT
sinΨ. (2.19)

The barred quantities are the dimensional variables scaled by corresponding initial
values. Initial values of variables are denoted by the subscript ‘o’. All dimensionless
variables are taken to be O(1).

Given an initial lamellar length, an initial radius of curvature, an initial lamellar
thickness, and auxiliary conditions, and noting that δ2Lo/aoε = 1, equations (2.15),
(2.16), (2.18) and (2.19) may be integrated to give HL as a function of time T .

3. Semi-arid and arid foams
The coefficients ao/Lo and Loho/a

2
o , appearing in (2.18) and (2.19), remain to be

chosen. Choosing either ratio to be unity represents a distinquished limit.
Semi-arid foam is defined by the choice ao/Lo ∼ O(1). Therefore, Loho/a

2
o ∼ O(ε),

δ =
√

aoho/Lo ∼ O(ε1/2), the area fraction of liquid is O(1) and the area of fluid in
the PB is much greater than in the L region. Given these ratios, then the right-hand
side of (2.18) is higher order and the radius of the circular arc is constant in time. It
follows from (2.19) that the length of the L region remains constant.

Arid foam is defined by the choice ao/
√

Loho ∼ O(1). Therefore, ao/Lo ∼ O(ε1/2), δ ∼
O(ε3/4), ε/δ ∼ O(ε1/4), the area fraction of liquid is O(ε) and a balance is struck
between fluid areas contained in the PB corner and in the L regions of the foam.
Therefore, according to (2.19), dL/dt vanishes, so that the length of L is constant.
However, from (2.18) there will be a change in the radius of curvature of the PB.

Using these estimates, the governing set of equations can be reduced to a single
dynamical equation for the lamellar thickness for both arid and semi-arid foam.
Dimensionless L is set to unity, consistent with the results of the previous section. Sub-
stituting ĥ = HL/(ω+1) and t̂ = T/t∗ where ω = (1/2)(tan Ψ −Ψ ) and t∗ =8ω−1/4(1+
ω)−1/4/(3

√
2) leads to the canonical law of thinning in arid foam

dĥ

dt̂
= −ĥ3/2[1 − ĥ]−1/4, (3.1)

with initial condition ĥ(0) = [1/(1 + ω)]. The solution is

2[1 − ĥ]1/4 + ĥ F
(

1
2
, 3

4
; 3

2
; ĥ

)
√

ĥ
−

2[1 − ĥ(0)]1/4 + ĥ(0) F
(

1
2
, 3

4
; 3

2
; ĥ(0)

)
√

ĥ(0)

= t̂ (3.2)

where F denotes the (Gauss) hypergeometric function. Written in the arid-foam
canonical variables, the semi-arid-foam lamellar thickness obeys

p−1 dĥ

dt̂
= −ĥ3/2 (3.3)

where p = [(1 + ω)/ω]1/4 and with the same initial thickness. The semi-arid foam
result, (3.3) and the solution ĥ = ĥ(0)(1 + t̂/2(ω1/4(1 + ω)1/4)−2 are formally identical
to the result of Breward & Howell (2002) since the PB radius of curvature is fixed.
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Figure 2. Log-log plot of the lamellar thickness of arid (full line) and semi-arid (dashed line)
foams as given by the solution to (3.1) and (3.3). The angle Ψ used in the calculations is π/6
representing lamella joining PBs at orientations π/3. t−2 power-law thinning is indicated by
the reference plot.

4. Lamellae thinning and rupture
Figure 2 is a log-log plot of the numerical solutions of (3.1) and (3.3). After an

initial transient, the thinning rates are ĥ(t̂) = Cνt̂
−2, with constants Cν referring either

to the semi-arid (ν =SA) or arid (ν = A) limits. Although at long times the lamella
exhibit similar temporal power-law behaviour, the semi-arid and arid foams represent
vastly different situations (e.g. different area fractions of liquid phase). In arid foam
the thinning behaviour requires an increase in the radius of curvature of the PB that
must occur in order that the fluid leaving the L region can be accommodated by
the PB region at leading order. Once the PB radius is sufficiently large (or lamella
sufficiently thin), 1 − ĥ → 1, the remaining liquid leaving the L region only affects the
PB region at higher order. Figure 3 is a plot of the change in the radius â of curvature
of the PB and the L thickness ĥ in arid foam as a function of time during thinning.
In terms of the canonical variables listed above, the radius of curvature of the PB is

â = (1 − ĥ)1/2 (4.1)

where â = aω1/2/(1 + ω)1/2. At leading order all fluid flow is driven by the pressure
drop which occurs entirely ‘locally’ across the asymptotically short, O(δ), transition
region. The pressure within the transition region is

P̂ =
1

â

(
−1 +

1

2

(
1

h∗

)3/2

+
1

2

(
1

h∗

)3
)

(4.2)

where dimensionless P̂ =(P −PG)δ(1+ω)1/2/ε2ω1/2, and h∗ = ĥT R/ĥL is the ratio of the
T to L thickness, which is unity at the L/T border and vanishes at the T/PB border.
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ĥ

â

Figure 3. Log-log plot of the lamellar thickness (dashed line) and the radius of curvature of
the PB (full line) for arid foam as given by the solution of (3.1) and of (4.1). The angle Ψ used
in the calculations is π/6 representing lamella joining PBs at orientations π/3.

Consequently, the pressure drop across the transition region, i.e. the difference in
pressure between the T/PB border and the L/T border, is �P̂ = −1/â. This pressure
drop varies with time in arid foam whereas in semi-arid foam the pressure drop across
the transition region is constant.

According to (3.1) and (3.3), the lamellar thickness does not vanish in finite time for
either the arid or the semi-arid foam. To properly calculate the rupture thickness one
needs to solve the linear stability problem for the film with van der Waals attractions,
interfacial curvature and flow in the thin film. Instead we obtain a crude estimate
based on lamellar thinning only, by choosing a particular value ĥr of L thickness as
a representation of the thickness at rupture.

Numerical solutions to (3.1) and (3.3) provide the dimensionless ‘rupture’ times for
given lamellar thickness. For example, using Ψ = π/6, corresponding to an hexagonal
array, thinning times for thicknesses ĥr = 0.1 and 0.01 in semi-arid (arid) foam are
t̂r = 1.7589(3.9169) and 7.3212 (17.6349), respectively. Interpretation of these results
depends on the choice of material system and foam configuration. Two cases are
considered. In Case I, the initial L thickness and the initial L length are assumed
identical, εSA = εA, i.e. the liquid area fractions of the semi-arid and arid foam L regions
are initially the same. The difference in fluid area is accounted for entirely by the size
of the PB regions. The Case II comparison is between semi-arid and arid foam of
equal initial L thicknesses and of equal initial radii of curvature of the PB. This
comparison evaluates thinning in arid and semi-arid foam having identical capillary
numbers. Table 1 lists the estimated rupture times for Cases I and II in semi-arid
and arid foam, for water, aluminium and molten glass. Relevant physical properties
are given in the caption. In all cases ho =10−7 m. For the semi-arid foam, Lo =
10−3 m and ao =10−3 m; in Case I, Lo = 10−3 m is the same in both semi-arid and
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Foam type H2O (∼ 25 ◦C) Al (> 660 ◦C) glass (� 1200 ◦C)

Semi-arid (C = 0.01) 1.16(× 10−2) 3.87(× 10−3) 2.03(× 104)
Arid (Case I) (C = 0.1) 2.589(× 10−3) 8.63(× 10−4) 4.53(× 103)
Arid (Case II) (C = 0.01) 258.9 86.3 45.3(× 107)

Table 1. The time (in seconds) it takes for the lamellar thickness to reach 1/10 of its initial
value for pure Al, H2O and molten glass gas–liquid systems. Times are calculated in semi-arid
foam for one value of C and in arid foam for two different values of C. The initial lamellar
thickness is ho =10−7 m in all cases. Comparing arid (Case I) with semi-arid foam corresponds
to foams having identical initial lamellar dimensions (ε fixed) and comparing arid (Case II) with
semi-arid foam corresponds to semi-arid and arid-foam both having identical capillary numbers
C for a given material. Values of σ and µ are: σH2O = 7.0(× 10−2) kg s−2, µH2O = 10−3 kg m−1 s−1

from Breward & Howell (2002), σAl =8.4(× 10−1) kg s−2, µAl =4.0(× 10−3) kgm−1 s−1 from
Hur, Park & Hiroshi (2003), and σmg = (× 10−1) kg s−2, µmg = 2.5(× 103) kgm−1 s−1 from Howell
(1999). Capillary numbers are constant for each foam type and are given in parentheses.

arid foam and in Case II, ao = 10−3 m is the same in both foams. The comparisons
are made for hr = 10−8 m ( =0.1ho). In Case I the arid foam ruptures more rapidly
than the semi-arid foam, while in Case II it is slower. In table I the capillary numbers
are provided for these limiting cases. It can also be shown that the magnitude of
the Reynolds numbers indicates that for H2O and Al in these limiting cases inertia
might become important during thinning. For the molten glass the Reynolds number
is extremely small and inertia is entirely negligible.

5. Summary
A general model for thinning of surfactant-free foam lamellae has been derived and

two distinguished limits for capillary number C → 0 have been identified. Semi-arid
foam has O(1) area fraction of liquid and arid foam has O(C4) area fraction of liquid.
In semi-arid foams, defined by the ratio ao/Lo = O(1), then for small C

hoLo

a2
o

∼ C2,
ho

ao

∼ C2, δ ∼ C, ε ∼ C2.

In arid foam, defined by the ratio hoLo/a
2
o = O(1), then for small C

ao

Lo

∼ C2,
ho

ao

∼ C2, δ ∼ C3, ε ∼ C4.

In both types of foam, the thinness of the transition region ε/δ is O(C) and the
velocity scale Uo := σC/µ = σε/µδ. The velocity scale, being proportional to σ/µ, is
representative of capillary–viscous thinning.

In figure 4 is a summary of lengths and areas of the L, T and PB regions in terms of
the capillary number C. Above the horizontal centreline are the scalings appropriate
for the semi-arid foam, which is characterized by the PB radius of curvature and
the L length of the same order in C. Below the centreline the scalings for the arid
foam are presented. The arid foam is characterized by the initial area of liquid in the
L region of the same order in C as the initial area in the corner of a bubble. The
thinning rates of L in arid foams differ from those of semi-arid foams due to the
increase in the radius of curvature of the quasi-static PB required to accommodate
the liquid arriving from the lamellar regions at leading order. Thinning of adjacent
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Figure 4. Schematic representation of the corners of adjacent gas bubbles and the L, T and
PB regions. Dimensional lengths for L, T and the radius of curvature of the PB (L, δL and a)
are indicated. The lengths and areas of regions are given in terms of capillary number C.
Scalings for the semi-arid foam are above the horizontal centreline and for the arid foam are
below the centreline. Underlined capillary numbers refer to scalings for areas of liquid and gas
regions.

lamellae in arid foams is coupled and depends on the overall geometry of the bubble
array and the geometry of the interface in the PB cross-section. Two limiting cases
are studied. Rupture of lamellae and bubble coalescence is estimated to be slower
in semi-arid foam if both foams have same initial lamellar area, whereas if the PB
regions contain the same amount of fluid the arid foam will thin significantly more
slowly.

REFERENCES

Bretherton, F. P. 1961 The motion of long bubbles in tubes. J. Fluid Mech. 10, 166–188.

Breward, C. J. W. 1999 The mathematics of foam. DPhil. thesis, Oxford University.

Breward, C. J. W. & Howell, P. D. 2002 The drainage of a foam lamella. J. Fluid Mech. 458,
379–406.

Howell, P. D. 1999 The draining of a two dimensional bubble. J. Engng Maths 35, 251–272.

Hur, B.-Y., Park, S.-H. & Hiroshi, A. 2003 Viscosity and surface tension of Al and effects of
additional element. Eco-Materials Processing and Design Materials Science Forum 439, 51–56.

Oron, A., Davis, S. H. & Bankoff, S. G. 1997 Long-scale evolution of thin liquid films.
Rev. Mod. Phys. 69, 931–980.

Yang, C. C. & Nakae, H. 2003 The effects of viscosity and cooling conditions on the foamability
of aluminum alloy. J. Mat. Proc. Tech. 141, 202–206.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

05
00

47
63

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112005004763

