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1. Introduction

Following [1], we define the hypergeometric series by
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where (2),, is given by
(2)o=1,(2)n=2(2+1)--- (2 +n—1).

The truncated hypergeometric series are defined by
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i.e. the truncation of the series after the z™ term. Thus, each truncated hypergeo-
metric series is a rational function in a;, b; and z if it is well defined.
Recall that the function I'(z) is a meromorphic function in C defined by [1]
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where + is the Euler constant defined as
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600 B. He
One of the most important properties of I'(z) is the Euler reflection formula,

s

I'z)I'1—z2) = .
(2)I( ) sinmz

Let p be an odd prime and n a positive integer. We define the p-adic Gamma
function as

Ip(n) == (=1)" H J-
i<n
pti
Then we extend this to all € Z,, (where Z,, denotes the set of all rational numbers
a/b with a € Z, b € Z~¢, ged(a,b) = 1 and ptb) by setting

I(x) = lim I3, (n),
where n runs through any sequence of positive integers p-adically approaching x and
I',(0) = 1. The fact that the above limit exists is independent of how n approaches
2 and determines a continuous function on Z,,.

The topic of congruences is related to the p-adic Gamma function, Gauss and
Jacobi sums, hypergeometric series [5], modular forms, Calabi—Yau manifolds and
some sophisticated combinatorial identities involving harmonic numbers (see, for
example, [8]). Actually, many congruences have been obtained by using the Wilf-
Zeilberger method (see [3,16]). Various supercongruences were conjectured by many
mathematicians including van Hamme [17,18], Zudilin [19], Chan et al. [2], Z.-W.
Sun [13-15] and Z.-H. Sun [9-12]. In particular, van Hamme [18, (C.2)] conjectured
the following congruence.

CONJECTURE 1.1. If p is an odd prime, then

(p—1)/2 C1n\d
> (4k+1)< k?) =p (mod p?). (1.1)

k=0

Here and below, we use the notation A = B (mod p') to denote that, for A, B €
Q, (A — B)/p' is a p-integer, where p-integers are rational numbers of the form
a/b with a € Z, b € Zop, ged(a,b) = 1 and p 1 b. We shall give a new proof of
congruence (1.1) by using a formula for basic hypergeometric series (see [1, §10.9]
for the definition of basic hypergeometric series).

Our main results are the following congruences.

THEOREM 1.2. Let p > 5 be a prime. Then

5 1 11 0 ifp=1 d4
4F3 {4 22 % 1] = 54 z‘fp (mod 4) (mod p?), (1.2)
7 L1 1, —16I,(3)* ifp=3 (mod 4)
1 1 1 T (2)3 ifp=1 d6
1F3 {6 ‘;’ 3 3;1] = b p(3)2 5 z'fp (mod 6) (mod p?), (1.3)
s 1 1 ], —6I,(3)° ifp=5 (mod 6)
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pIu(3)I(2)3 ifp=1,7 (mod 8)

9 1 1 1

BT L] =1 #p=3 (mods)  (modp?)
) " —8I,(5)(3)* fp=5 (modS8)
(1.4)

and

S k(2kk)3 _ i)t ifp=1 (mod4) )

= 64 - {_4Fp(i>4 ifp=3 (mod 4) (mod p7), (1.5)
p—1 1\3 1 213 16 L

(3)k _ s (5)° —Ip(5)°) ifp=1 (mod6) . )

o (=12 {Fp(§)3 ifp=>5 (mod 6) (mod p7). (1.6)

1 ~L(2P,(3) ifp=1 (mod8)
11; 1} = %pr(é)BFp(é) ifp=3,5 (mod 8) (mod p2)
. ifp=7 (mod 8)

w
>
| —|
|
e

(1.7)

k=1
sOL ()3 + L(3)°1,(8))  #fp=1 (mod8)
_ ) —aapln(3)°1n(3) ifp=3 (mod 8) odo (1s
- _Fp(%)Fp(%)s - 614pr(§)3];(%) ifp=>5 (mod 8) ( ). (18)
s (§)1p(3)° ifp="7 (mod 8)

THEOREM 1.4. Let p > 5 be a prime. Then we have the following.

(i) If p=1 (mod 3), then

11 1
pF[ g;l] = L2 (mods®).  (19)
6 3 d(p-1)/3
(ii) If p=2 (mod 3), then
11 1
p-3Fy {6 3 3;1] = pl,(3)°T,(2)®  (mod p?). (1.10)
6 3 J(2p-1)/3

We shall provide some auxiliary results in the next section. A new proof of congru-
ence (1.1) will be given in § 3. Section 4 is devoted to our proof of theorems 1.2-1.4.
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2. Some auxiliary results

In order to prove theorems 1.2-1.4, we need some auxiliary results. We first mention
the following result, which is crucial in the derivation of theorem 1.4.
Let ¢ = e*™/3 for a # 0 and j € {0,1,2}. Then, from the fact that

(a4 blp)p = (a+bCp)a+blp+1)---(a+blp+k—1)
= (a)r(1 4+ b{7pA(k) + b*¢¥p*B(k)) (mod p?),

where

and

1
B(k) = Z<k(a+l—1)(a+m—l)’

1<l<mg
we have, for any a,b € R,
(a+bp)x(a+bCp)i(a+bC?p), = (a);  (mod p?). (2.1)
We recall some basic properties of the Morita p-adic Gamma function.

LEMMA 2.1 (Cohen [4, §11.6]). Let p be an odd prime and x € Z,,. Then

L1 =1, (2.2)
Lx+1) [~z ifegpl,

Fp(x) - {_1 fo c pr, (23)

L) I(1 = z) = (=1)™®), (2.4)

where ag(x) € {1,2,...,p} such that ap(x) =z (mod p).

Actually, (2.3) is a p-adic analogue of the well-known property I'(z+1) = zI'(x),
and (2.4) is a p-adic analogue of Euler’s reflection formula.

We now mention an important result, which follows readily from the definition
of I',(x), and which Long and Ramakrishna [7] used but did not state explicitly.

LEMMA 2.2 (Long and Ramakrishna [7, lemma 18]). Let p be an odd prime, m > 3
be an integer and let ( be the mth primitive root of unity. Suppose a € Zy[C] and
n € N such that a + k & pZ,[C] for all k € {0,1,...,n —1}. Then

(@), = (-1,

The following result on the (p-adic) expansion of p-adic Gamma function is also
very important in the proof of theorems 1.2-1.4.

https://doi.org/10.1017/5030821051600024X Published online by Cambridge University Press


https://doi.org/10.1017/S030821051600024X

Congruences concerning truncated hypergeometric series 603

LEMMA 2.3 (Long and Ramakrishna [7, theorem 15)). Forp > 5, r € N, a € Z,
and m € C, satisfying v,(m) > 0 and t € {0,1,2}, we have

Ly(a+mp") _ <~ Gla)
Ty(a) !

(mpr)k (mod p(t—&-l)r)7

where
k
_ ")

Crle) = )

€Z,

and F,Sk) (x) is the kth derivative of I',(z).

3. A new proof of (1.1)

Recall the following identity for basic hypergeometric series (see [6, theorem 11.3]):

1q*,q

(2q?,02ab/q% ¢*)m s ¢ ¢*la /b A g\
(a%a,02b;¢%) " g ¢a N g*/aPabg*™

)

_ i (L+ag*) (g™, 0% ¢*/a,¢*/b; %) n(=q. g/ X; @) (@® Aabg>™ )"
(1+ a)(q?, a2¢®>™*2 a2a, a2b; ¢%)n (o, = A; @)n

n=0

where m is a non-negative integer,

oo
ap az asz a4 as a1;9)r\a2;549)k(a359)k\04;59) k(0554 )k
s | 0] oo 55 Lo il il

bi by b3 by = (@ 0)k(br; n(b2; Qe (bs; )i (bas i~
n—1 0o
(@9o=1(aq)n=[[1-ad*) forn>1 (ag)e=][](1~aq")
k=0 k=0

and if n is finite or infinite and [ is a positive integer, we use the following notation:
l
(a1, a2, ... a1;Q)n = [ [ (ar; @)n-
k=1

Making the substitutions o — ¢%, a — ¢%, b — ¢, A — ¢* and letting ¢ — 1, we
have

1+ a)m(a+2a+ib—1),
(a+ La)m(a+ 3b),
-m 1l—2%a 1-1b 3 (14X
X 5F4 1 1
s1+a) 1+5a X 2—a-—
- i (—m)p(1 = 3a)n(1 = 20)(1+a—A),
nl(a+m+1),(a+ 2a), (o + 3b),

n=0

(3.1)
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Let ¢ = e27/3, Setting o = %, a=14+(¢p, b=1+p, m= %(p—l) and A =1 in

(3.1), we get
Py 5 3(1—-p) $(1-<p) §(1—<2p),1}
L+5p  14+50 145

_ Be-ve2GA=p)e-12
(14 5¢P) -1y 2(1 + 532P) o1 /2
3 s(1-p) $(1-¢p) 31-¢%p)

3 5
1 1 1

><4F3[

By (2.3) and lemma 2.2,

Iy (5p) I(1+ 5p)
(%)(p_l)/g_ (%)(p 1)/2_( )(p 1)/2p 2 (_1)(p+1)/2pP72

(3) L)
11 _—pye-ve_ O e-np 1
G =P)ep-12=(=1) LE0—7) (=1) L=
1 - p—1 QFP(%(I—&—p—l—Cp)) _ p—1 2‘[‘(%(1_(2])))
(1+§CP)(p71)/2 = (—1)( )/ Fp(1+%Cp) = (—1)( )/ m,

Ly(z(L+p+p) Iy
14+ Le2p), = (—1)p—1)/2_P 2 — (—1)p-1)/2

Then
(3 o-1/2G0=D)p-1)/2
(1+ %Cp)(pfl s2(1 §<2p)(p—1)/2

Ly(1+ 3p) 1 (1 + 56p) 1, (1 + 5¢%p)
Sl (%(1* PO (5(1 = C2p) I (5(1 = Cp))

p
Ip(
By lemma 2.3,

L1+ 5¢p) = L) (1 + Gi(1)5¢p + G2(1)§(¢¥p%)  (mod p°),
L, (3(1+¢p) = To(5)(1+ Gi(3)5¢p + Ga(5)5(¢p?)  (mod p?),
for j € {0,1,2}. Hence,
Ly(1+ 5p) (1 + 5¢p) 1, (1 + 5¢%p) = [,(1)° (mod p?),
Ly (30 =p) (51 = Cp) (51 = Cp)) = I(3)°  (mod p?),
and so by (2.2) and (2.4),

D260 =P)ep-12  _ pr(l)3
(14 3¢p) p—1)2(1 + 3C3P) (p—1) /2 Iy(3)*
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Using (2.1), (3.3) and the fact that

n (3.2), we obtain

101 1 1 101 1 1
p'4F3|:2 12; g 2;1:| 2 2 2 2;1:|
11 U ey L1 Jpoye

=on|
zf

Taking o = %, a=1+¢p,b=1+p, m= %(p— 1) and A = 01in (3.1) and noting
that

< 5>4 (mod p?). (3.4)

3Nk 1 ifk=0,
lim =<7
A=0 (A)k 3 ifk>1
we attain
2 30-p) 3(1=¢p) ;<1¢2p>_1]
L+gp 1450 1435
( )(p 1)/2( (1- ))(p—1)/2
(1 QCp) pfl)/2(1+§C2p)(p 1)/2

< (3 gz 200D 3000 2026,

)
4 4 1

Employing (2.1), (3.3) and the facts that

(- (3)-enen(3)

in the above identity, we are led to

(P—El:)/2 1N\ 3 1 1 1
(2k+1)< 2) :4F3{2 22 2,1]
k=0 k 111 (p—1)/2

11 1
=p(3+pml? 1
1 1
In view of (3.4) and (3.5), we deduce that
(p—1)/2

> (k+1) <ké>45p (mod p?).

k=0

This concludes the proof.
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4. Proof of theorems 1.2-1.4

Proof of theorem 1.2. We recall the following identity on hypergeometric series (see
[1, exercise 25(a), p. 182]):

la+1 b
4F3[a sa+ c ;1}
5 a—b+1 a—c+1

—

_ Fla—b+1)I(a—c+ 1) (F(a+1)(3(a+1)—b—c) (41)
Fla+ 1) a—b—c+ 1) ((a+1)=b)I(3(a+1)—c) '
Letting a = 3, b= 3(1 —p), c= 1(1+p) in (4.1) yields
3 31-p) 304 ] TO+I0 - I
L I S A B i e

(
From Euler’s reflection formula and the fact that I'(x +1) = z['(x
that

) it is easily seen

r(i+3 )F(l p)  T'(3p)I(1-1ip)

N TP rdye T p(=1)F~ V2, (4.3)
2 2

I'(
When p = 1 (mod 4) (2)(p—1)/2 has no multiples of p but (3 — 1p)(,—1)/2 has a

multiple of p, Wthh is —4p, while when p = 3 (mod 4), (3 )(p 1)/2 has a multiple
of p, which is 7p but (% — % )(p—1)/2 has no multiples of p. Then, by lemma 2.2
and the definition of I',(z),
(L 1
o p(4"|;2p) ifp=1 (mod 4),
F(ZJrgp) N (3) Fp(g)
re) \4 LG+ 3
3) en2 | _pLelGton) e g (noq u),
4 Iu(9)
and
(-1
} _p ”1( 41) ifp=1 (mod 4),
r-4 (1 p) ) AL 3p)
(-1 4 2) o _1
(1 —3p) (p—1)/2 _ Dty if p=3 (mod 4).
I'p(3—3p)
Hence, by (4.3),
ri+ipra-3iprE)r-i)
L35+ 50 (5 — 5p)
2 (3. (=1
N ! p({l) n( 14) - ifp=1 (mod 4),
_ ) A LG+ - 5p) (4.4)
(3 (=1 .
4 p(f) 2l 14) T if p=3 (mod 4)
(3 +3p)Ip(3 — 2p)
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It follows easily from lemma 2.3 that
Iy(3 +30) (5 — 3p) = Ip(3)* (mod p?).

Using the above congruence in (4.4) and then employing (2.3) and (2.4), we get

1
{0 ifp=1 (mod 4) (mod 7). (45)

—16,(3)* ifp=3 (mod4)

By the fact that (a + bp)(a — bp)r, = (a); (mod p?), we get

1 5 1 1 5 1 1 1
Py [2 i 5(1 127) 5(1 "‘1]3); 1} — [4 2 2 1 1} (mod p?).
R rEE R R
(4.6)
In view of (4.2), (4.5) and (4.6), we obtain
5 1 1 1 P
4F3 [4 i 1D 1} = {O - %fp =1 (mod4) (mod p?).
1 (p—l)/2 —161}1(1) lf p= 3 (mOd 4)

This proves (1.2), since (3)r =0 (mod p) for 3p < k < p.
Similarly, taking a = 3, b= 3(1 —ep), c = 5(1+¢ep) and a = 1, b= 3(1 —np),
c= 1(1+np), where
1 ifp=1 (mod 3), 1 ifp=1 (mod 4),
g = an n=
2 ifp=2 (mod 3), 3 ifp=3 (mod4),
n (4.1), we obtain (1.3) and (1.4), respectively.
By (1.2) and the fact that (3)/k! = (Qkk)/élk,

1 3 '
p (2’*?) 0 ifp=1 (mod 4) )
kz::o(% +1) 64F — ) _16I (3) ifp=3 (mod 4) (mod p?). (4.7)

According to [18, (H.2)], we have

(p=1)/2 (213 1y4 e —
I')(3 ifp=1 (mod 4
v G _{ P Hp=1 modd) e g
P 0 ifp=3 (mod4)
Then (1.5) follows easily from (4.7), (4.8) and the fact that (*) = 0 (mod p) for
%p <k <p.
It follows from (1.3) that
= 1 I3  ifp=1 (mod 6
(6k+1)(3) =P ”(3)2 L0 (mod ) odp?).  (49)
o —6I,(5)° ifp=5 (mod 6)
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According to [7, corollary 26], we attain

p—1 (%)i {Fp(é)ﬁ ifp=1 (mod 6) (mod p?). (4.10)

0 ifp=5 (mod 6)

Then (1.6) can be obtained from congruences (4.9) and (4.10). This completes the
proof of theorem 1.2. O

Proof of theorem 1.3. We recall from [1, theorem 3.4.1] the following formula for
hypergeometric series:

a —b —c
B2 ave 1+a—|—c’1}
I'(3a+1)I'(a+b+ D) (a+c+D)I(Fa+b+c+1)
CT(a+D)I(da+b+1)IEa+c+D)I(a+b+c+1)
Let

o 1 ifp=1 (mod 4),
13 ifp=3 (mod4).

Applying the above identity with a = i, b= i(sp —1),ec= i(fl —ep) gives

111 —gp) }1(1+sp).1] _ TIr@Ira+ zep)r(1- is’;) (4.11)
4

sFy |t i1 = .
l1+4ep 1—1ep I(E+ 3ep)I(L — fep)T(3)I(3)

From Euler’s reflection formula and the fact that I'(z 4+ 1) = «I'(z) it is easy to see

that
F(1+ gep)l(1—Gep)  I'(3ep)I(1— gep) ep—
;(3)F(%) : b 4F(i)p(%)4 = ep(—1)P- 1/ (4.12)

When p =1 (mod 8) (or p = 3 (mod 8)), ()(=p—1)/4 has exactly a multiple of p,
which is §p (or 2p), while when p =5 (mod 8) (or p =7 (mod 8)), (2)(cp—1)/4 has
no multiples of p. Then, by lemma 2.2 and the definition of I',(x),

(T4 1

P p(s‘z4p) if p=1 (mod 8),
8 (2

3p L, (L + 3p)

. ) 7pp8794 lfng (mod 8)7
w<9> _]8 L (4.13)
RE S \8) e | (T4 1 '
(5) (ep-1)/a _I,(pr) ifp=5 (mod 8),

(%)

(r43

B P(S—;le) ifp=7 (mod 8).
()
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Similarly,
5
Fp(g) : =
RN Y . RN lf =1 HlOd 8 B
Fy(g—ip) P ( :
I.(2
i _B% if p=3 (mod 8),
T I (414
II—_I1cmp) \8 1 a 2 |
(8 1 p) (ep—1)/4 _% lfp =5 (mOd 8)7
Iy(g—3P)
5p Ip(3) :
— 3 ifp=7 (mod 8).
8 I(5 —1p)
By (4.12)—(4.14)
L)+ tep) (1 — Lep)
I(z+3ep)l(5 = 3ep)D(DI(F)
5 9
7Fp(18)FP(8) lpr 1 (mod 8),
Ip(g— *P)Fp(g 41’)

7Fpg§)Fp(§) . ifp=3 (mod 8),
L(g—3p) (g +3p)
- n ) e
_ r(g)ip(g ifp=5 mod 8 s
prp(%_ip)rp(%—&p) P ( :
15p2 () 1(8)

ifp=7 (mod 8).

8 FP( 4p)F (7 + 4p)

We can easily deduce from lemma 2.3 that
Lo(§ = 30)p(§ + 1p) = Lp(§ — 30 (5 + 3p) = (5
2.

Using the above congruences in (4.15) and then employing (

)2 (mod p?).
3) and (2.4) yields

IO ra+ tepra - Lep)
r(§+tep)r(T—Ltepr(G)r()
—I,(3)%I,(3) ifp=1 (mod 8)
= CeL(3)°(3) ifp=35 (mod8)  (modp?). (4.16)
0 ifp=7 (mod 8)

By the facts that (a -+ bp)x(a — bp)r = (a)7 (mod p*) and (1) (cp—1),4 =0 (mod p)
for %Ep < k < p, we have
1 1 _ 11 1
o 1 4( 1€p) 4( —i_lgp);l] :3F2[4
1+gep  1—gzep

|
(ep—1)/4

: 1} (mod p?).  (4.17)

S
S

https://doi.org/10.1017/5030821051600024X Published online by Cambridge University Press


https://doi.org/10.1017/S030821051600024X

610 B. He
It follows from (4.11), (4.16) and (4.17) that

—I,(£)T,(2) ifp=1 (mod38)
P, (3)°T,(2) ifp=3,5 (mod8)  (modp?).
0 ifp=7 (mod 8)

— e

1
3ks [4

This proves (1.7).
By (1.4) and (1.7),

p—l1 (1)3 plp($)I,(3)®  ifp=1,7 (mod 8)
> (8k+ 1)k = S0 ifp=3 (mod8)  (modp?) (4.18)
o —8I,(3)1(3)* ifp=5 (mod 8)
and
p—1 (1)3 _FP(%)?)Fp(g ifp=1 (mod 8)
]§!3k = ¢ I, (2)°I,(2) ifp=3,5 (mod8) (mod p?). (4.19)
o 0 ifp=7 (mod 8)

Then (1.8) follows from (4.18) and (4.19). This completes the proof of theorem 1.3.
O

Proof of theorem 1.4. Let

1 ifp=1 (mod 3),
2 ifp=2 (mod 3),

and ¢ = e?™/3 Taking o = \ = 3,0 =3(4+2eCp), b= 5(44+2e(?p), m = 3 (ep—1)
in (3.1), we get

1 $(1—ep) $(1—eCp) 3(1—-e¢®p)

F ;
e 1—1—%5}9 1+%5Cp 1+§8C2p

(3)(ep—1)/3(3 (2= €P)) (ep—1)/3
(1 + %ECP)(sp—l)/S(l + %54219)(51)—1)/3
1 1 _ 1= L _gc2
% 4 Fs 6 3( ; ep) 3( 25<p) 3( 1EC p);l . (4.20)

6 3 3

By lemma 2.2 and (2.3),

(3)ep-11/3 = eP(§)(ep-1)/3

— (—1)Er-D/3gy

(4.21)
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o113 Lp(3(2 —e¢?
(1+ 36CP)(ep-1)/3 = (—1)1F 1)/3’1’5;’& " ;C;)), (4.22)
s ln(3(2—¢C
(14 36C°P)(ep-1y73 = (1) 1)/3;;((5’1(+ §§<fp)))' (4.23)
When p =1 (mod 3),
_ L(3)
12— _ (_pye-n/3__"»\3
(32=P)p-1 =17 LaC—7) (4.24)
By (4.21)-(4.24),
Go-npsGR-Pe-ys B0+ 0L+ 50+ 5C0)
(1+ %Cp)(Pfl)/S(l + %@p)(pfl)/:s Fp(%@ —p) Iy %(2 - Cp))Fp(%(Z - C(ip)))
25

By lemma 2.3,
L1+ 1p) = T, + 1pGi(1) + £p°G2(1))  (mod p?),
L1+ 5¢p) = L) (1 + L¢pGi(1) + &¢?p?*Ga(1))  (mod p?),
L1+ 3%p) = T,(1)(1 + 2¢PpGi(1) + £ (p°G2(1))  (mod p?).

Then
L1+ 3p) (1 + 5Cn) (1 + 3¢%p) = 1,(1)° (mod p%).

Similarly,
I(32=p))(52 = O)p(5(2 = ) = 13p(3)°  (mod p?).
Using the above two congruences in (4.25) and noticing (2.2) gives

($o-vsGC-D)ep-1s  _ 5
(1+ %CP)(p—l)m(l + %CQP)(;D—I)/3 Fp(%)

It follows from (2.1), (4.20) and (4.26) that
1 1 1 p 1
3kh [3 3 3;1} = 3lh [G
LU,y 3)?

Therefore, by [7, corollary 26] and the fact that (

Z = (mod p*).  (4.26)

1

1
5 1} (mod p?).
3 d(-1)/3

A~ Wl

)t =0 (mod p) for %p<k<p,

Wl

1 1
p- sk, [6 3;1]( y =1,(3)°I,(3)° (mod p?).
3 p—1)/3

[ BRSNS

This proves (1.9).
When p = 2 (mod 3), (%(2 — 2p))(2p—1)/3 has exactly a multiple of p, which is

—1p. Using lemma 2.2 and noting the definition of I,(x), we obtain

. I,
(1(2 = 2p))apryys = (—1)+C-1/3E »(3)

3,12 2p) (4.27)
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Then by (4.21)—(4.23) and (4.27),

(D332 = 0)p-1)s
(1+ §Cp)(P—1)/3(1 + §C2P)(p—1)/3
:2102 L1+ 3p) (1 + 5¢p)T,(1 + 3¢%p)

Ly(3(2 = p)Ip(5(2 = (o) 1p(5(2 = ¢?p))
219 L,(1)* 2p° 3
= (mod p?). (4.28)

L,(3)?  3L(3)?

Then from (2.1), (4.20) and (4.28) we are led to

111 op? 111 ,
3lh [3 53 1} =53k [6 EA¢ 1] (mod p°).
1 eo-n 3037 § 3 lepys
Hence, by [7, corollary 26] and the fact that (3)r =0 (mod p) for 2p < k < p,

11 1
part ¥ Ea] B GPLE med s,
6 3 J(2p-1)/3
which proves (1.10). The proof of theorem 1.4 is complete. O
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