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Abstract

Vertex-primitive self-complementary graphs were proved to be affine or in product action by Guralnick
et al. [‘On orbital partitions and exceptionality of primitive permutation groups’, Trans. Amer. Math. Soc.
356 (2004), 4857—4872]. The product action type is known in some sense. In this paper, we provide a
generic construction for the affine case and several families of new self-complementary Cayley graphs
are constructed.
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1. Introduction

We denote a graph by I" = (V, E) with vertex set V and edge set E. All graphs and
groups discussed in this paper are finite. The complement T of a graph I is the graph
with the same vertex set V such that {u, v} is an edge of T if and only if {u, v} is not an
edge of I". A graph is said to be self-complementary if it is isomorphic to the comple-
ment. An isomorphism between I" and I’ is called a complementing isomorphism.
The study of self-complementary vertex-transitive graphs has a long history. The
first family of examples was constructed by Sachs [26] in 1962 and since then this class
of graphs has been studied; see [7, 22, 24, 28] for the work before the 1980s. In the
1990s, the orders of self-complementary vertex-transitive graphs were determined by
Muzychuck [23]; we also refer to [1, 8] for the orders of self-complementary circulants.
More constructions and characterisations of self-complementary vertex-transitive
graphs can be found in [7, 14, 17, 20, 21]. The first family of self-complementary
vertex-transitive graphs that are not Cayley graphs was obtained by Li and Praeger
[15] in 2001. After 2000, the study of self-complementary vertex-transitive graphs has
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been significantly advanced by the work in [11, 16]. More recently, self-complementary
vertex-transitive graphs of order pg where p, g are primes were classified [18] and
self-complementary metacirculants were studied in [19]. It was shown that the auto-
morphism group of a self-complementary graph is either soluble or has a section of
the form Zf, : (Z¢ o SL(2,5)). One of the motivations of studying self-complementary
vertex-transitive graphs is that such graphs are often effectively used as models to find
good lower bounds of Ramsey numbers (see [5, 6, 10, 25] for references).

However, it is a bit surprising that there are not many graphs which are known to
be self-complementary and vertex-transitive. For instance, to our best knowledge, all
known examples of self-complementary Cayley graphs are Cayley graphs of abelian
groups. Let £ be an integer; it is called a primitive divisor of p? — 1 if £] p? — 1 but
¢4 p"—1 for all »r < ¢, where p is a prime. The first result of this paper presents a
family of self-complementary Cayley graphs of non-nilpotent groups.

THEOREM 1.1. Let R = ZZ:Zg < AGL(1, p%), where d is even and p is an odd prime,

and € is a primitive divisor of p® — 1. Then there exist Cayley graphs of R which are
self-complementary.

Vertex-primitive self-complementary graphs were proved to be affine or in product
action in [11]. The product action type is known in some sense. We present here a
generic construction for the affine case. For an integer n and a prime divisor p of
n, let n, be the p part of n, namely, n, = p” for some integer r and n,|n such that
ged(ny,n/ny) = 1.

THEOREM 1.2. Let I' = (V,E) be a self-complementary graph such that Autl is a
primitive affine group on 'V such that |V| is not a prime. Then |V| = p? = 1 (mod 4) with
p prime and, identifying V with a vector space on F, of dimension d, a complementing
isomorphism o has the form

o =(01,02,...,0),

where V.=V, @&V, ®--- @V, is such that V; is a subspace of dimension 2 1 <i<r
andd =2° +2° +---+ 2% and for eachiwith 1 <i<r:

(i) o is an element of GL(1, p*") of order 26~ (p> — 1), or
(i) e; =1and p =3 (mod 4), the order o(o;) = 4.

We remark that, although Theorem 1.2 provides a generic construction method
for self-complementary vertex-primitive graphs of affine type, not every example
constructed in this way is vertex-primitive. This motivated us to propose a problem.

PROBLEM 1.3. Given a linear transformation o of a vector space V = Fi of 2-power
order which fixes no nonzero vector, determine irreducible subgroups H of GL(d, p)
such that o~ normalises H and o2 € H fixes no orbit of H on V' \ {0}.

Finally, we present a construction of nonabelian metacirculants which are
self-complementary. These are Cayley graphs of nonabelian groups.
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THEOREM 1.4. Every metacyclic p-group with p = 1(mod 4) has Cayley graphs
which are self-complementary.

By Berkovic [3], a nonabelian metacyclic group does not have fixed-point-free
automorphisms. Thus, self-complementary Cayley graphs of a nonabelian metacyclic
group stated in this theorem cannot be constructed by automorphisms of the group;
refer to Lemma 3.1.

We end this section with a problem regarding self-complementary metacirculants.
It is conjectured in [19] that self-complementary metacirculants are Cayley graphs. We
further propose here the following conjecture.

CONJECTURE L1.5. Let R be a metacyclic group that has self-complementary Cayley
graphs. Then, for each prime divisor p of |R|, either p =1 (mod 4) or a Sylow
p-subgroup of R is homocyclic; that is, R is isomorphic to either a cyclic group of
order p* or the direct product of two cyclic groups of order p*.

2. Preliminaries

All results stated in this section are standard observations in relation to this topic.
We just list them here and give some short explanations. For a self-complementary
graph I', an automorphism of I is also an automorphism of I" and hence Autl” =
AutT. Let o be an isomorphism o between I" and I". Then I'” =T and T’ =r.
Further, (AutI")” = AutI” = Aut I", namely, a complementing isomorphism normalises
the automorphism group. Thus, the following lemma holds.

LEMMA 2.1. Let I' be a self-complementary graph and let o be a complementing
isomorphism. Then o normalises AutT” and o> € AutT.

Let I' = (V,E) be a regular self-complementary graph of order n and valency k.
Then the complement I is of valency k. Hence, (n — 1)/2 = k is an integer and n is
odd. The number of edges |E| = nk/2 is an integer. Thus, k = (n — 1)/2 is even and
n — 1 is divisible by 4.

LEMMA 2.2. The order of a regular self-complementary graph is congruent to 1
modulo 4.

Since a complementing isomorphism o~ interchanges I” and I, replacing o by an
odd power of o, we may assume that o is of 2-power order. Since n is odd, o fixes
some vertex and, since o fixes no edge of /" and f, this implies that o fixes exactly one
vertex. Furthermore, o does not fix any 2-subset of the vertex set and, therefore, o is
of order divisible by 4.

LEMMA 2.3. A complementing isomorphism of a regular self-complementary graph
has order divisible by 4 and fixes exactly one vertex of the graph.

Suppose that I" = (V, E) is self-complementary and vertex-transitive. Let G = Aut I”
and let o be a complementing isomorphism. Let X = (G, o). Then G is normal in X of
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index 2. Let B be a block for X acting on V that is fixed by o setwise, and let [B], be
the induced subgraph of I' on B. Then we have the following result.

LEMMA 2.4. The induced subgraph [B]r is self-complementary, Gg is vertex-transitive
on [B]r, and the restriction o|g is a complementing isomorphism between [B]r and
[Blr = [Blr.

We remark, however, that a quotient graph I'g of a self-complementary graph I is
not necessarily self-complementary; refer to [16].

Let I'y = (V(,Ey) and I'; = (V,, E») be graphs. Then the lexicographic product of
I'1 and I'; is the graph with vertex set V| X V, such that two vertices (u;,u;) and
(v1,v2) are adjacent if and only if either {u,v,} € E|, or u; = v; and {up,v»} € E>.
This graph is denoted by I'j[/>]. The lexicographic product provides a method
for constructing self-complementary vertex-transitive graphs based on the following
proposition; see [2].

PROPOSITION 2.5. If both I'1 and I'; are self-complementary (vertex-transitive), then
so is I'1[I3].

Most known examples of self-complementary vertex-transitive graphs are Cayley
graphs. For a finite group R with identity 1 and a subset S C R where R* = R\ {1}, a
Cayley graph Cay(R, S) is the graph with vertex set R such that two vertices x,y € R
are adjacent if and only if yx~!' € S. By the definition, we have:

(1) Cay(R,S) is undirected if and only if S = S7! = {s! | s € S};

(2) the complement of Cay(R, S) is the Cayley graph Cay(R, R* \ S);

(3) Cay(R,S) is vertex-transitive because the right multiplications of elements of R
on the vertex set are automorphisms of the Cayley graph and regular on the vertex
set.

The next lemma is well known; see, for instance, [4, Proposition 16.3].

LEMMA 2.6. A graph I is a Cayley graph of a group R if and only if AutI” contains a
subgroup which is isomorphic to R and regular on the vertex set.

We shall study a method for constructing self-complementary Cayley graphs in the
next section.

For an element g of a group G, let g, be the p-part of g, which is such that g =
gph = hgp, the order o(g,) is a power of p, and the order of 4 is coprime to p. Recall
that for a prime p and a positive integer d, a primitive divisor of p? — 1 is a divisor of
p? — 1 that does not divide p’ — 1 for any integer i < d.

3. Fixed-point-free automorphisms of groups

We first introduce a classical method for constructing self-complementary Cayley
graphs, which has been used to construct most known examples of self-complementary
vertex-transitive graphs in the literature.
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Observe that, given a Cayley graph I = Cay(R, S), each automorphism o~ € Aut (R)
induces an isomorphism from Cay(R, S) to Cay(R, S7). Thus, if a subset S C R and an
automorphism o are such that

87 =R"\S,
then I is self-complementary, and o is a complementing isomorphism because
I' = Cay(R,S) = Cay(R,5”) = Cay(R,R*\ §) =T.
We shall refer to such a set S as an SC-subset with respect to o
Since SN ST =S N (R*\ S) =0, the automorphism o is fixed-point-free, namely,
o fixes no nonidentity element of R. Moreover, if I" is undirected, then S = S~!, the
square o~ is fixed-point-free too, and, since o fixes both § and R* \ S setwise, we may

choose o to be a 2-element, that is, the order of ¢ is a power of 2.
This observation leads to the following lemma, which is well known.

LEMMA 3.1. Let R be a group that has an automorphism o of order a power of
2 such that o is fixed-point-free. Then there exist Cayley graphs of R that are
self-complementary with complementing isomorphism o.

PROOF. Let Ay, Ay, . .., Ay, be the orbits of (o2) on R* such that AT = Ay for all odd
subscripts i. Let
S=AUAU---UAy, 4,

that is, S is the union of all Ay;_; with 1 < i < m. Then
RINS=MUALU---Uly, =4TUAU---UA5 =5

Let I'=Cay(R,S). Then I =Cay(R,S) = Cay(R,5") = Cay(R,R*\S) =T and
Cay(R, S) is self-complementary. O

This lemma provides a generic method for constructing self-complementary Cayley
graphs. It has been used to construct examples of self-complementary circulants in the
literature by Sachs in 1962 [26], Zelinka in 1979 [28], Suprunenko in 1985 [27], Rao
in 1985 [24], and more recent work [7, 29].

This construction method leads us to the following group-theoretic problem.

PROBLEM 3.2. Characterise finite groups that have fixed-point-free automorphisms of
order a power of 2.

This problem has been studied in the literature. Gorenstein and Herstein [9] showed
that if a group has a fixed-point-free automorphism of order 4, then its commutator
subgroup is nilpotent. Later, Huhro [13] proved the following general result.

THEOREM 3.3 (Huhro). If a finite group R has a fixed-point-free automorphism of
order 2", then its nilpotent height h(R) is at most n.

Next, we give simple properties regarding groups with fixed-point-free
automorphisms.
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LEMMA 3.4. If A has a fixed-point-free automorphism o and B has a fixed-point-free
automorphism 1, then (o, 7) is a fixed-point-free automorphism of A X B.

PROOF. Suppose that (o, 7) fixes a nonidentity element (a, b), where a € A and b €
B. Then (a,b) = (a,b)"" = (a”, b"). Thus, a° = a and b* = b. Since (a, b) is not an
identity element, a # 1 or b # 1, which is a contradiction. O

For two groups A and B with g.c.d. (|A|,|B|) =1, suppose that A X B has a
fixed-point-free automorphism. Then, for each b € B, only the identity automorphism
fixes (14, /). Thus, B has a fixed-point-free automorphism and similarly we can show
that A also has one. Thus, by Lemma 3.4, the following proposition holds.

PROPOSITION 3.5. A nilpotent group has a fixed-point-free automorphism if and only
if each of its Sylow subgroups has a fixed-point-free automorphism.

LEMMA 3.6. If a group has a fixed-point-free automorphism of order a power of a
prime p, then so does each of its Sylow subgroups.

PROOF. Let G be a group that has a fixed-point-free automorphism o of order p/.
Then the order |G| is coprime to p. Let P be a Sylow subgroup of G. Then P7 is
a Sylow subgroup and, by Sylow’s theorem, there exists an element g € G such that
P78 = (P7)8 =P.

Suppose that a nonidentity element x € P is fixed by og. Then

pf f . . . .
and so x = x”" = x8". Since the order o(g) is relatively prime to p, we conclude that
~1 . . . .
x8 = xand so x” = x, which is a contradiction. O

This shows that a critical case for solving Problem 3.2 is to characterise finite
p-groups with p prime that have fixed-point-free automorphisms of order a power of 2.

4. Self-complementary Cayley graphs of non-nilpotent groups

In this section, we present an infinite family of self-complementary Cayley graphs
of non-nilpotent groups.

Let F = Fp« be a field of order p¢, where p is a prime and d is a positive integer.
Then the additive group F* and the multiplicative group F* are such that

Fr=70 F*=Zu,.
The group F* naturally acts on F* by multiplication, giving rise to the group
AGL(1, p?) = F*:F* = Zg:Zpd_l. The field F has an automorphism p of order d, also

called a Frobenius automorphism, such that

g° =gP, where g e F*.

https://doi.org/10.1017/51446788720000488 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788720000488

378 C. H. Li, G. Rao and S. J. Song [7]

This action defines groups: I'L(1, p?) = (F*, p) = Zpi_y:2Zq and
ATL(1, p) = (F*:F¥){p) = (Z8:Zy_1):Zq = Z8:TL(1, p).
Now we are ready to construct new self-complementary Cayley graphs.

CONSTRUCTION 4.1. Let p be an odd prime and d = 2/m, where f > 2 and m is odd.
Let ¢ = [];; be such that each J; is a primitive prime divisor of p? — 1 and [; # l; if
i #J.Let g € F* be of order £ and let

R = F*«(g) = Z4:Z, < AGL(1, p*).

Let z € F* be of order (p¢ — 1), and o = p™, and let
T=0CZ.

The group R is a Frobenius group, so it is not nilpotent. The next lemma shows that
7 is a fixed-point-free automorphism of R, giving rise to self-complementary graphs.

LEMMA 4.2. The automorphism T € Aut(R) is of order (p? — 1), = 2f(p — 1), and 7°
fixes no nonidentity element of R.

PROOF. Since the order of the Frobenius automorphism p is 2/m, the order of o = p™
equals 2/ and, by definition,

x” =xP", where x € GL(1, p?).

2

In particular, z7 = Z%", and so v = oz0z = o2z""*!, and

2 2 g2 AP D).
Let 2° = (p™ — 1), be the 2-part of p™ — 1. Then 2° = (p — 1),. Since o =1, we
have that 72’ € (z) is of order 2° and 7 is of order 2/ - 2° = o(7) = 0(2) = 2/ (p" - 1),.
Further, as m is odd, (p™ — 1), = (p — 1)2. Thus, o(7) = 0(2) = 2/ (p = 1),.

Let zo be the unique involution of (z). Then zg € <T2f ). Now any element of R may
be written as ax such that a € Z4 and x € (g) < F*.If a # 1, then

(ax)® = a'x # ax.

Thus, zo fixes no point of R \ {g). This implies that 7> and 7 fix no point of R \ (g). On
the other hand, if @ = 1 and x # 1, then o(x) | £ and, since xz = zx,
X Hf-1 _ xo_zf—lZ(pszzmﬂ)_,_(pz;nﬂ)(pm”) _ xpzf—l

2f-1 2 2f-1 Ly . . . e
Ifx** =x" =xthenx” ~!=1,whichis notpossible since x is of order dividing

¢ and ¢ is the product of primitive prime divisors of p? — 1. Therefore, 7° is a
fixed-point-free automorphism of the group R; in particular, 7 is a fixed-point-free
automorphism of R. O

/-1

PROOF OF THEOREM 1.1. By Lemma 3.1, there exist Cayley graphs of R that are
self-complementary and 7 is a normal complementing isomorphism. O
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5. The primitive self-complementary graphs

Let I" = (V,E) be a self-complementary graph and let o be a complementing
isomorphism. Then o> € AutI” and hence o normalises AutI". Let G = AutI” and let
X = (G, o). Then G is a normal subgroup of X of index 2 and X = G.Z,.

Assume that X is primitive on the vertex set V. It is shown in [11, Theorem 1.3] that
either:

(i) X is an affine group with socle of odd order; or
(i) X is in product action with socle PSL(2, ¢?)’, and |V| = (¢*(¢*> + 1)/2)¢, where ¢
isodd and ¢ > 2.

The triple (G,X,I") in item (ii) is in some sense known, which gives rise to
vertex-transitive self-complementary graphs that are not Cayley graphs; refer to [11]
and [15]. On the other hand, the graphs in item (i) are all Cayley graphs of elementary
abelian p-groups. In this section, we present a generic construction for this type of
self-complementary graph.

Identify the vertex set V with a vector space F]d, with p prime. Then the vertices
form an additive group which is isomorphic to the elementary abelian group Zf,. Since
|V| = 1 (mod 4), the prime p is odd. The complementing isomorphism o € GL(d, p) is
a linear transformation of V and fixes no nonzero vector in V.

CONSTRUCTION 5.1. Decompose the dimension d and the vector space as follows:

d=2+24... 42,

V=VieV,® -8V,
where ¢; > 0 and V; is a subspace of V of dimension 2%. For each i(1 <i < r), let
o; € GL(p*") < GL,«(p) = GL(V;) be such that:

(i) oy is of order a 2-power at least 4, if either ¢; =0 or both ¢; =1 and p =
3 (mod 4);
(i) o is of order 267! (p? — 1), for ¢; > 2.

Let

o=(01,02,...,0%).

By definition, every o; fixes no nonzero vector of V; and, by Lemma 3.4,
o fixes no nonzero vector of V. The next lemma shows that every comple-
menting isomorphism o of a primitive affine self-complementary graph is as in
the construction.

LEMMA 5.2. Assume that X is a primitive affine group on the vertex set V. Then each
complementing isomorphism has the form given in Construction 5.1.

PROOF. Let o be a complementing isomorphism between I" and I'. As mentioned
before, we may assume that o is of order 2/ with f > 2. Let N be the unique minimal
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normal subgroup of X. Then N = Zf, is regular on the vertex set V and is normalised
by o. Let

Y =(N,0) = No) = Z4:Z,,.
Then Y is a subgroup of X and vertex-transitive on the graph I'.

Case 1. Assume that Y is primitive on the vertex set V. Then the cyclic group (o) is
irreducible on V and hence the order 2 is a primitive divisor of pd — 1, that is,

27 (p? = 1),but 2/ J(p' = 1) for any i < d.
First, suppose that d is odd. Then
pl-1=(p-DP" '+ +p+D=(p-1¢

and ¢ is odd. Thus, 2/ |(p — 1) and, since 2/ is a primitive divisor of p¢ — 1, we
conclude that d = 1 and o is as in Construction 5.1 with » = 1.
Assume next that d is even. Write d = 2¥m, where m is odd. Then

k k ko k
pl=l=p"—1=p" = D) +-+p" +1)

and (p? )" + -+ + p¥ + 1is odd. Thus, we have 2/ | (p** — 1). Since 2/ is a primitive
divisor of p? — 1, we have that m = 1 and d = 2.

Suppose first that k = 1. Then p? =1 =p> =1 =(p - D(p+ 1). If p =3 (mod 4),
then 4 is a primitive divisor of p? — 1 as in Construction 5.1 with r = 1. If p= 1
(mod 4) and 2/ < (p? - 1),, then 2/ | p — 1, which contradicts the fact that 2/ is a
primitive divisor of p? — 1. Thus, 2/ = (p*> — 1),, as in Construction 5.1 with r = 1.

Now suppose that k > 2. Then

pl-1=p" 1=+ 1" -1

and p¥"' — 1 is divisible by 4. This implies that p* ' + 1 is not divisible by 4. If 2/ <
(p? = 1),, then 2/ divides pzk_1 — 1, which contradicts the fact that 2/ is a primitive
divisor of p? — 1. So, 2/ equals the 2-part (p? — 1),. Moreover,

k k—
A VAR VIR Ve
and, as (p? + 1), = 2 fori > 1, we have o(c") = (p¥ — 1), = 25" 1(p% = 1), as claimed
in the lemma.
Case 2. Assume that Y is imprimitive. Then the cyclic group (o) is reducible on V.
By Maschke’s theorem, the space V is a direct sum
V=VieV,e---aV,

such that (o) fixes and is irreducible on each subspace V;, where 1 <i < r. Since o
fixes no nonzero vector of V, o fixes no nonzero vector of the subspace V;. Let o; be
the linear transformation of V; induced by o. Then V; and o; satisfy Case 1 and we
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conclude that
V; = Fff", where ¢; > 0,
such that o; € GL(1, p**) is of order 2%~ !(p?> — 1), if ¢; > 0 and is of order at least 4
otherwise. Now the dimension
d=2+22+...+2%
and the complementing isomorphism o~ can be expressed as

o=(01,02,...,0%).

This completes the proof. .
PROOF OF THEOREM 1.2. This proof follows from Construction 5.1 and
Lemma 5.2. O

6. Self-complementary metacirculants

To state our construction, we need to prove an elementary number-theoretic lemma.
For positive integers n and A, the smallest positive integer m such that A = 1 (mod n)
is called the order of A modulo n and is denoted by o(4 mod n). As usual, ¢(n) is the
Euler phi-function, which is the number of positive integers that are less than n and
coprime to n.

LEMMA 6.1. Given r 2 2 and a prime p such that 2" < (p — 1),, for any p-powers
p¢ and p’, there exists a positive integer 1 such that o(A mod p¢) =2" and
o(Amod p/) =2".

PROOF. By Euler’s theorem, there exists an integer A, such that

227 = 1 (mod p°).
As ¢(p*) = p*'(p— 1), we have 2" divides ¢(p°). Let A= A2"”"*. Then 2*
(mod p®) and o(A mod p°) = 2".

Without loss of generality, assume that f < e. Then 4> = 1 (mod p/). Thus, the
order o(1 mod p')) = 2* for some integer s < r, that is,

1l
—

A% =1+ mp! for some integer m.
Suppose that s < r. The 2"~*th power A%" has the form
/lzr — (125)2"—5‘ — (] + mpf)zr—S

27‘*.&‘ 27'*5 s
:1+( | )mpf+(2)(mpf)2+'~+(mpf)2 .
Lett = Min{2f, e}. Then

r 2}”—3‘
1= =1 +( ] )mpf (mod p").
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This implies that f =t = e, which is a contradiction. Thus, s = r, completing the
proof. O

Let R be a metacyclic p-group, where p is a prime congruent to 1 modulo 4. Then
R has a presentation, refer to [12]:

R=(ab| 0" = La” =", aba™ 7'y,

Let e = t + d — m. The order o(a) = p™*4™ = p°. Let ¢ = b”". Then the commutator
subgroup

R = (C) = Zpdf/.

Let o be an automorphism of (b), and 7 be an automorphism of {(a) such that o, 7
are of order 2", and 4 < 2" < (p — 1),. By Lemma 6.1, there exists a positive integer A
such that

W =b', ad=d

Let S; c (b) be an SC-subset with respect to o; namely, S| and o satisfy
S7 = (b)*\ S;. Then, for any elements x = &' and y = b2,

b=yt € §) &= I =yl =y (x7) 7! ¢ 5.
Let R = R/{c) = (b,a) = Zypr X Zpe. Then the pair (o7, 7) induces an automorphism
p of R as follows:
(Ziﬁj)ﬁ = EME“ = (Eic_z’)l, where 0 <i<p/—-land0<j<p°—1.
Let S, C (E, a) be an SC-subset with respect to p, which means that 3’2 = <E, a)¥\ S5.
Then the Cayley graph
2 = Cay((h. @), S»)
is self-complementary with complementing isomorphism p.
Let/ ={(i,j) | b@ €8,,0<i<p/ —1,0<j<p’—1}andlet
Sy = U(iJ)eI biai<c>s
I; = Cay(R, Sz)
We notice that, since b = ¢, elements of R can be written as
b'dck, where0<i<p/ —1,0<j<p’—1l,and0< k< pi/ 1.
By the definition, we have the following conclusion.

LEMMA 6.2. The Cayley graph I :Z[Rpf] and, for any elements x = b''a' ch

and y = b2a>c, where 0<ij#i,<p/ -1, 0<ji,jp <p°—1, and 0< ki, ky <
d—f _ 1

p )

wleS e—=yxles, =yx'1=9F)"1¢S,.
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Now we are ready to present our construction of self-complementary Cayley graphs
of the metacyclic group R.

CONSTRUCTION 6.3. Using the notation defined above, let
S=81U(S\ (b))
and I = Cay(R, S). Define a permutation p of the set R:
p: bdc— bd' M, where0<i<p/ -1, 0<j<p—1,and0<k< pi/ —1.

We remark that with suitable choices of S| and S,, the graph I" produced in this
construction is not a lexicographic graph product of smaller graphs.

We note that the map p only fixes the identity of R, but p is not an automorphism of
the group R. The next lemma shows p maps I” to its complement 7.

LEMMA 6.4. The Cayley graph I' defined in Construction 6.3 is self-complementary
and p is a complementing isomorphism.

PROOF. Pick two vertices x = b''a/'¢; and y = b2a>c,, where 0 < iy, i < p/ = 1,0 <
Ji-j2 < p¢ —1,and ¢y, ¢; € {c). Then
y)c_1 = (b2d”?c) (b d' ¢1)7!
= pir~i g c,
yp(xp)—l — (biz/lajz/lcg)(bi]/lajl/lc/ll)—l
= pl=iNd =i e

First, assume that j, = j;. Then

-1 — biz—il CI E biz—i1 <C>,. .
W) = b € pEi(e) = yo () o).

Both yx~! and y*(x*)~! € (b). By the definition of o, we have yx~! € S if and only if
Y @) e by \ 81, and yT(x7) " € (b)# \ Sy if and only if y*(x*)~! € R* \ S.
Assume now that j, # j;. Then yx ' = — BNz gnd yp(xp)— 5l

Neither of them is in (b). Thus, by the definition of S, and >,
wleS = yxles = 7@ e®a)\S < YY) eR\S,.

Therefore, x, y are adjacent in I" if and only if x°,y? are not adjacent in /" and so p
is a isomorphism between I" and I'. In particular, I" = I" and p is a complementing
isomorphism. O

PROOF OF THEOREM 1.4. Let p be a prime that is congruent to 1 modulo 4 and let
R be a metacyclic p-group. If R is abelian, then R = {a) X (b) and it follows from
Lemmas 3.1 and 3.4 that there exist Cayley graphs of R that are self-complementary.
If R is nonabelian, then Lemma 6.4 shows that R has Cayley graphs that are
self-complementary. O
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