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Abstract

Vertex-primitive self-complementary graphs were proved to be affine or in product action by Guralnick
et al. [‘On orbital partitions and exceptionality of primitive permutation groups’, Trans. Amer. Math. Soc.
356 (2004), 4857–4872]. The product action type is known in some sense. In this paper, we provide a
generic construction for the affine case and several families of new self-complementary Cayley graphs
are constructed.
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1. Introduction

We denote a graph by Γ = (V , E) with vertex set V and edge set E. All graphs and
groups discussed in this paper are finite. The complement Γ of a graph Γ is the graph
with the same vertex set V such that {u, v} is an edge of Γ if and only if {u, v} is not an
edge of Γ. A graph is said to be self-complementary if it is isomorphic to the comple-
ment. An isomorphism between Γ and Γ is called a complementing isomorphism.

The study of self-complementary vertex-transitive graphs has a long history. The
first family of examples was constructed by Sachs [26] in 1962 and since then this class
of graphs has been studied; see [7, 22, 24, 28] for the work before the 1980s. In the
1990s, the orders of self-complementary vertex-transitive graphs were determined by
Muzychuck [23]; we also refer to [1, 8] for the orders of self-complementary circulants.
More constructions and characterisations of self-complementary vertex-transitive
graphs can be found in [7, 14, 17, 20, 21]. The first family of self-complementary
vertex-transitive graphs that are not Cayley graphs was obtained by Li and Praeger
[15] in 2001. After 2000, the study of self-complementary vertex-transitive graphs has
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been significantly advanced by the work in [11, 16]. More recently, self-complementary
vertex-transitive graphs of order pq where p, q are primes were classified [18] and
self-complementary metacirculants were studied in [19]. It was shown that the auto-
morphism group of a self-complementary graph is either soluble or has a section of
the form Z2

p : (Z� ◦ SL(2, 5)). One of the motivations of studying self-complementary
vertex-transitive graphs is that such graphs are often effectively used as models to find
good lower bounds of Ramsey numbers (see [5, 6, 10, 25] for references).

However, it is a bit surprising that there are not many graphs which are known to
be self-complementary and vertex-transitive. For instance, to our best knowledge, all
known examples of self-complementary Cayley graphs are Cayley graphs of abelian
groups. Let � be an integer; it is called a primitive divisor of pd − 1 if � | pd − 1 but
� � pr − 1 for all r < �, where p is a prime. The first result of this paper presents a
family of self-complementary Cayley graphs of non-nilpotent groups.

THEOREM 1.1. Let R = Zd
p:Z� ≤ AGL(1, pd), where d is even and p is an odd prime,

and � is a primitive divisor of pd − 1. Then there exist Cayley graphs of R which are
self-complementary.

Vertex-primitive self-complementary graphs were proved to be affine or in product
action in [11]. The product action type is known in some sense. We present here a
generic construction for the affine case. For an integer n and a prime divisor p of
n, let np be the p part of n, namely, np = pr for some integer r and np | n such that
gcd(np, n/np) = 1.

THEOREM 1.2. Let Γ = (V , E) be a self-complementary graph such that AutΓ is a
primitive affine group on V such that |V | is not a prime. Then |V | = pd ≡ 1 (mod 4) with
p prime and, identifying V with a vector space on Fp of dimension d, a complementing
isomorphism σ has the form

σ = (σ1,σ2, . . . ,σr),

where V = V1 ⊕ V2 ⊕ · · · ⊕ Vr is such that Vi is a subspace of dimension 2ei 1 ≤ i ≤ r
and d = 2e1 + 2e2 + · · · + 2er , and for each i with 1 ≤ i ≤ r:

(i) σi is an element of GL(1, p2ei ) of order 2ei−1(p2 − 1)2; or
(ii) ei = 1 and p ≡ 3 (mod 4), the order o(σi) ≥ 4.

We remark that, although Theorem 1.2 provides a generic construction method
for self-complementary vertex-primitive graphs of affine type, not every example
constructed in this way is vertex-primitive. This motivated us to propose a problem.

PROBLEM 1.3. Given a linear transformation σ of a vector space V = Fd
p of 2-power

order which fixes no nonzero vector, determine irreducible subgroups H of GL(d, p)
such that σ normalises H and σ2 ∈ H fixes no orbit of H on V \ {0}.

Finally, we present a construction of nonabelian metacirculants which are
self-complementary. These are Cayley graphs of nonabelian groups.
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THEOREM 1.4. Every metacyclic p-group with p ≡ 1 (mod 4) has Cayley graphs
which are self-complementary.

By Berkovic [3], a nonabelian metacyclic group does not have fixed-point-free
automorphisms. Thus, self-complementary Cayley graphs of a nonabelian metacyclic
group stated in this theorem cannot be constructed by automorphisms of the group;
refer to Lemma 3.1.

We end this section with a problem regarding self-complementary metacirculants.
It is conjectured in [19] that self-complementary metacirculants are Cayley graphs. We
further propose here the following conjecture.

CONJECTURE 1.5. Let R be a metacyclic group that has self-complementary Cayley
graphs. Then, for each prime divisor p of |R|, either p ≡ 1 (mod 4) or a Sylow
p-subgroup of R is homocyclic; that is, R is isomorphic to either a cyclic group of
order pk or the direct product of two cyclic groups of order pk.

2. Preliminaries

All results stated in this section are standard observations in relation to this topic.
We just list them here and give some short explanations. For a self-complementary
graph Γ, an automorphism of Γ is also an automorphism of Γ and hence AutΓ =
AutΓ. Let σ be an isomorphism σ between Γ and Γ. Then Γσ = Γ and Γ

σ
= Γ.

Further, (AutΓ)σ = AutΓ = AutΓ, namely, a complementing isomorphism normalises
the automorphism group. Thus, the following lemma holds.

LEMMA 2.1. Let Γ be a self-complementary graph and let σ be a complementing
isomorphism. Then σ normalises AutΓ and σ2 ∈ AutΓ.

Let Γ = (V , E) be a regular self-complementary graph of order n and valency k.
Then the complement Γ is of valency k. Hence, (n − 1)/2 = k is an integer and n is
odd. The number of edges |E| = nk/2 is an integer. Thus, k = (n − 1)/2 is even and
n − 1 is divisible by 4.

LEMMA 2.2. The order of a regular self-complementary graph is congruent to 1
modulo 4.

Since a complementing isomorphism σ interchanges Γ and Γ, replacing σ by an
odd power of σ, we may assume that σ is of 2-power order. Since n is odd, σ fixes
some vertex and, since σ fixes no edge of Γ and Γ, this implies that σ fixes exactly one
vertex. Furthermore, σ does not fix any 2-subset of the vertex set and, therefore, σ is
of order divisible by 4.

LEMMA 2.3. A complementing isomorphism of a regular self-complementary graph
has order divisible by 4 and fixes exactly one vertex of the graph.

Suppose that Γ = (V , E) is self-complementary and vertex-transitive. Let G = AutΓ
and let σ be a complementing isomorphism. Let X = 〈G,σ〉. Then G is normal in X of
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index 2. Let B be a block for X acting on V that is fixed by σ setwise, and let [B]Γ be
the induced subgraph of Γ on B. Then we have the following result.

LEMMA 2.4. The induced subgraph [B]Γ is self-complementary, GB
B is vertex-transitive

on [B]Γ, and the restriction σ|B is a complementing isomorphism between [B]Γ and
[B]Γ = [B]Γ.

We remark, however, that a quotient graph ΓB of a self-complementary graph Γ is
not necessarily self-complementary; refer to [16].

Let Γ1 = (V1, E1) and Γ2 = (V2, E2) be graphs. Then the lexicographic product of
Γ1 and Γ2 is the graph with vertex set V1 × V2 such that two vertices (u1, u2) and
(v1, v2) are adjacent if and only if either {u1, v1} ∈ E1, or u1 = v1 and {u2, v2} ∈ E2.
This graph is denoted by Γ1[Γ2]. The lexicographic product provides a method
for constructing self-complementary vertex-transitive graphs based on the following
proposition; see [2].

PROPOSITION 2.5. If both Γ1 and Γ2 are self-complementary (vertex-transitive), then
so is Γ1[Γ2].

Most known examples of self-complementary vertex-transitive graphs are Cayley
graphs. For a finite group R with identity 1 and a subset S ⊂ R# where R# = R \ {1}, a
Cayley graph Cay(R, S) is the graph with vertex set R such that two vertices x, y ∈ R
are adjacent if and only if yx−1 ∈ S. By the definition, we have:

(1) Cay(R, S) is undirected if and only if S = S−1 = {s−1 | s ∈ S};
(2) the complement of Cay(R, S) is the Cayley graph Cay(R, R# \ S);
(3) Cay(R, S) is vertex-transitive because the right multiplications of elements of R

on the vertex set are automorphisms of the Cayley graph and regular on the vertex
set.

The next lemma is well known; see, for instance, [4, Proposition 16.3].

LEMMA 2.6. A graph Γ is a Cayley graph of a group R if and only if AutΓ contains a
subgroup which is isomorphic to R and regular on the vertex set.

We shall study a method for constructing self-complementary Cayley graphs in the
next section.

For an element g of a group G, let gp be the p-part of g, which is such that g =
gph = hgp, the order o(gp) is a power of p, and the order of h is coprime to p. Recall
that for a prime p and a positive integer d, a primitive divisor of pd − 1 is a divisor of
pd − 1 that does not divide pi − 1 for any integer i < d.

3. Fixed-point-free automorphisms of groups

We first introduce a classical method for constructing self-complementary Cayley
graphs, which has been used to construct most known examples of self-complementary
vertex-transitive graphs in the literature.
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Observe that, given a Cayley graph Γ = Cay(R, S), each automorphism σ ∈ Aut (R)
induces an isomorphism from Cay(R, S) to Cay(R, Sσ). Thus, if a subset S ⊂ R and an
automorphism σ are such that

Sσ = R# \ S,
then Γ is self-complementary, and σ is a complementing isomorphism because

Γ = Cay(R, S) � Cay(R, Sσ) = Cay(R, R# \ S) = Γ.

We shall refer to such a set S as an SC-subset with respect to σ.
Since S ∩ Sσ = S ∩ (R# \ S) = ∅, the automorphism σ is fixed-point-free, namely,

σ fixes no nonidentity element of R. Moreover, if Γ is undirected, then S = S−1, the
square σ2 is fixed-point-free too, and, since σ2 fixes both S and R# \ S setwise, we may
choose σ to be a 2-element, that is, the order of σ is a power of 2.

This observation leads to the following lemma, which is well known.

LEMMA 3.1. Let R be a group that has an automorphism σ of order a power of
2 such that σ2 is fixed-point-free. Then there exist Cayley graphs of R that are
self-complementary with complementing isomorphism σ.

PROOF. Let Δ1,Δ2, . . . ,Δ2m be the orbits of 〈σ2〉 on R# such that Δσi = Δi+1 for all odd
subscripts i. Let

S = Δ1 ∪ Δ3 ∪ · · · ∪ Δ2m−1,
that is, S is the union of all Δ2i−1 with 1 ≤ i ≤ m. Then

R# \ S = Δ2 ∪ Δ4 ∪ · · · ∪ Δ2m = Δ
σ
1 ∪ Δ

σ
3 ∪ · · · ∪ Δ

σ
2m−1 = Sσ.

Let Γ = Cay(R, S). Then Γ = Cay(R, S) � Cay(R, Sσ) = Cay(R, R# \ S) = Γ and
Cay(R, S) is self-complementary. �

This lemma provides a generic method for constructing self-complementary Cayley
graphs. It has been used to construct examples of self-complementary circulants in the
literature by Sachs in 1962 [26], Zelinka in 1979 [28], Suprunenko in 1985 [27], Rao
in 1985 [24], and more recent work [7, 29].

This construction method leads us to the following group-theoretic problem.

PROBLEM 3.2. Characterise finite groups that have fixed-point-free automorphisms of
order a power of 2.

This problem has been studied in the literature. Gorenstein and Herstein [9] showed
that if a group has a fixed-point-free automorphism of order 4, then its commutator
subgroup is nilpotent. Later, Huhro [13] proved the following general result.

THEOREM 3.3 (Huhro). If a finite group R has a fixed-point-free automorphism of
order 2n, then its nilpotent height h(R) is at most n.

Next, we give simple properties regarding groups with fixed-point-free
automorphisms.
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LEMMA 3.4. If A has a fixed-point-free automorphism σ and B has a fixed-point-free
automorphism τ, then (σ, τ) is a fixed-point-free automorphism of A × B.

PROOF. Suppose that (σ, τ) fixes a nonidentity element (a, b), where a ∈ A and b ∈
B. Then (a, b) = (a, b)(σ,τ) = (aσ, bτ). Thus, aσ = a and bτ = b. Since (a, b) is not an
identity element, a � 1 or b � 1, which is a contradiction. �

For two groups A and B with g.c.d. (|A|, |B|) = 1, suppose that A × B has a
fixed-point-free automorphism. Then, for each b ∈ B, only the identity automorphism
fixes (1A, b). Thus, B has a fixed-point-free automorphism and similarly we can show
that A also has one. Thus, by Lemma 3.4, the following proposition holds.

PROPOSITION 3.5. A nilpotent group has a fixed-point-free automorphism if and only
if each of its Sylow subgroups has a fixed-point-free automorphism.

LEMMA 3.6. If a group has a fixed-point-free automorphism of order a power of a
prime p, then so does each of its Sylow subgroups.

PROOF. Let G be a group that has a fixed-point-free automorphism σ of order pf .
Then the order |G| is coprime to p. Let P be a Sylow subgroup of G. Then Pσ is
a Sylow subgroup and, by Sylow’s theorem, there exists an element g ∈ G such that
Pσg = (Pσ)g = P.

Suppose that a nonidentity element x ∈ P is fixed by σg. Then

xσ = xg−1

and so x = xσ
p f

= xg−p f

. Since the order o(g) is relatively prime to p, we conclude that
xg−1
= x and so xσ = x, which is a contradiction. �

This shows that a critical case for solving Problem 3.2 is to characterise finite
p-groups with p prime that have fixed-point-free automorphisms of order a power of 2.

4. Self-complementary Cayley graphs of non-nilpotent groups

In this section, we present an infinite family of self-complementary Cayley graphs
of non-nilpotent groups.

Let F = Fpd be a field of order pd, where p is a prime and d is a positive integer.
Then the additive group F+ and the multiplicative group F× are such that

F+ � Zd
p, F× = Zpd−1.

The group F× naturally acts on F+ by multiplication, giving rise to the group
AGL(1, pd) = F+:F× � Zd

p:Zpd−1. The field F has an automorphism ρ of order d, also
called a Frobenius automorphism, such that

gρ = gp, where g ∈ F×.
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This action defines groups: ΓL(1, pd) = 〈F×, ρ〉 � Zpd−1:Zd and

AΓL(1, pd) = (F+:F×):〈ρ〉 � (Zd
p:Zpd−1):Zd � Zd

p:ΓL(1, pd).

Now we are ready to construct new self-complementary Cayley graphs.

CONSTRUCTION 4.1. Let p be an odd prime and d = 2 f m, where f ≥ 2 and m is odd.
Let � =

∏
i li be such that each li is a primitive prime divisor of pd − 1 and li � lj if

i � j. Let g ∈ F× be of order � and let
R = F+:〈g〉 = Zd

p:Z� ≤ AGL(1, pd).

Let z ∈ F× be of order (pd − 1)2 and σ = ρm, and let

τ = σz.

The group R is a Frobenius group, so it is not nilpotent. The next lemma shows that
τ is a fixed-point-free automorphism of R, giving rise to self-complementary graphs.

LEMMA 4.2. The automorphism τ ∈ Aut (R) is of order (pd − 1)2 = 2 f (p − 1)2 and τ2

fixes no nonidentity element of R.

PROOF. Since the order of the Frobenius automorphism ρ is 2 f m, the order of σ = ρm

equals 2 f and, by definition,

xσ = xpm
, where x ∈ GL(1, pd).

In particular, zσ = zpm
, and so τ2 = σzσz = σ2zpm+1, and

τ2i
= σ2i

z(p2i−1m+1)···(p2m+1)(pm+1).

Let 2s = (pm − 1)2 be the 2-part of pm − 1. Then 2s = (p − 1)2. Since σ2 f
= 1, we

have that τ2 f ∈ 〈z〉 is of order 2s and τ is of order 2 f · 2s = o(τ) = o(z) = 2 f (pm − 1)2.
Further, as m is odd, (pm − 1)2 = (p − 1)2. Thus, o(τ) = o(z) = 2 f (p − 1)2.

Let z0 be the unique involution of 〈z〉. Then z0 ∈ 〈τ2 f 〉. Now any element of R may
be written as ax such that a ∈ Zd

p and x ∈ 〈g〉 ≤ F×. If a � 1, then

(ax)z0 = a−1x � ax.

Thus, z0 fixes no point of R \ 〈g〉. This implies that τ2 and τ fix no point of R \ 〈g〉. On
the other hand, if a = 1 and x � 1, then o(x) | � and, since xz = zx,

xτ
2 f−1

= xσ
2 f−1

z(p2 f−2m+1)···(p2m+1)(pm+1)
= xp2 f−1

.

If xp2 f−1

= xτ
2 f−1

= x, then xp2 f−1−1 = 1, which is not possible since x is of order dividing
� and � is the product of primitive prime divisors of pd − 1. Therefore, τ2 is a
fixed-point-free automorphism of the group R; in particular, τ is a fixed-point-free
automorphism of R. �

PROOF OF THEOREM 1.1. By Lemma 3.1, there exist Cayley graphs of R that are
self-complementary and τ is a normal complementing isomorphism. �
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5. The primitive self-complementary graphs

Let Γ = (V , E) be a self-complementary graph and let σ be a complementing
isomorphism. Then σ2 ∈ AutΓ and hence σ normalises AutΓ. Let G = AutΓ and let
X = 〈G,σ〉. Then G is a normal subgroup of X of index 2 and X = G.Z2.

Assume that X is primitive on the vertex set V . It is shown in [11, Theorem 1.3] that
either:

(i) X is an affine group with socle of odd order; or
(ii) X is in product action with socle PSL(2, q2)�, and |V | = (q2(q2 + 1)/2)�, where q

is odd and � ≥ 2.

The triple (G, X,Γ) in item (ii) is in some sense known, which gives rise to
vertex-transitive self-complementary graphs that are not Cayley graphs; refer to [11]
and [15]. On the other hand, the graphs in item (i) are all Cayley graphs of elementary
abelian p-groups. In this section, we present a generic construction for this type of
self-complementary graph.

Identify the vertex set V with a vector space Fd
p with p prime. Then the vertices

form an additive group which is isomorphic to the elementary abelian group Zd
p. Since

|V | ≡ 1 (mod 4), the prime p is odd. The complementing isomorphism σ ∈ GL(d, p) is
a linear transformation of V and fixes no nonzero vector in V .

CONSTRUCTION 5.1. Decompose the dimension d and the vector space as follows:

d = 2e1 + 2e2 + · · · + 2er ,
V = V1 ⊕ V2 ⊕ · · · ⊕ Vr,

where ei � 0 and Vi is a subspace of V of dimension 2ei . For each i(1 ≤ i ≤ r), let
σi ∈ GL1(p2ei ) � GL2ei (p) = GL(Vi) be such that:

(i) σi is of order a 2-power at least 4, if either ei = 0 or both ei = 1 and p ≡
3 (mod 4);

(ii) σi is of order 2ei−1(p2 − 1)2 for ei � 2.

Let

σ = (σ1,σ2, . . . ,σr).

By definition, every σi fixes no nonzero vector of Vi and, by Lemma 3.4,
σ fixes no nonzero vector of V . The next lemma shows that every comple-
menting isomorphism σ of a primitive affine self-complementary graph is as in
the construction.

LEMMA 5.2. Assume that X is a primitive affine group on the vertex set V. Then each
complementing isomorphism has the form given in Construction 5.1.

PROOF. Let σ be a complementing isomorphism between Γ and Γ. As mentioned
before, we may assume that σ is of order 2 f with f ≥ 2. Let N be the unique minimal
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normal subgroup of X. Then N � Zd
p is regular on the vertex set V and is normalised

by σ. Let

Y = 〈N,σ〉 = N:〈σ〉 � Zd
p:Z2 f .

Then Y is a subgroup of X and vertex-transitive on the graph Γ.

Case 1. Assume that Y is primitive on the vertex set V . Then the cyclic group 〈σ〉 is
irreducible on V and hence the order 2 f is a primitive divisor of pd − 1, that is,

2 f | (pd − 1), but 2 f � | (pi − 1) for any i < d.

First, suppose that d is odd. Then

pd − 1 = (p − 1)(pd−1 + · · · + p + 1) = (p − 1)�

and � is odd. Thus, 2 f | (p − 1) and, since 2 f is a primitive divisor of pd − 1, we
conclude that d = 1 and σ is as in Construction 5.1 with r = 1.

Assume next that d is even. Write d = 2km, where m is odd. Then

pd − 1 = p2km − 1 = (p2k − 1)((p2k
)m−1 + · · · + p2k

+ 1)

and (p2k
)m−1 + · · · + p2k

+ 1 is odd. Thus, we have 2 f | (p2k − 1). Since 2 f is a primitive
divisor of pd − 1, we have that m = 1 and d = 2k.

Suppose first that k = 1. Then pd − 1 = p2 − 1 = (p − 1)(p + 1). If p ≡ 3 (mod 4),
then 4 is a primitive divisor of pd − 1 as in Construction 5.1 with r = 1. If p ≡ 1
(mod 4) and 2 f < (p2 − 1)2, then 2 f | p − 1, which contradicts the fact that 2 f is a
primitive divisor of p2 − 1. Thus, 2 f = (p2 − 1)2, as in Construction 5.1 with r = 1.

Now suppose that k ≥ 2. Then

pd − 1 = p2k − 1 = (p2k−1
+ 1)(p2k−1 − 1)

and p2k−1 − 1 is divisible by 4. This implies that p2k−1
+ 1 is not divisible by 4. If 2 f <

(pd − 1)2, then 2 f divides p2k−1 − 1, which contradicts the fact that 2 f is a primitive
divisor of pd − 1. So, 2 f equals the 2-part (pd − 1)2. Moreover,

p2k − 1 = (p2k−1
+ 1) · · · (p2 + 1)(p2 − 1)

and, as (p2i
+ 1)2 = 2 for i ≥ 1, we have o(σ) = (p2k − 1)2 = 2k−1(p2 − 1)2, as claimed

in the lemma.

Case 2. Assume that Y is imprimitive. Then the cyclic group 〈σ〉 is reducible on V .
By Maschke’s theorem, the space V is a direct sum

V = V1 ⊕ V2 ⊕ · · · ⊕ Vr

such that 〈σ〉 fixes and is irreducible on each subspace Vi, where 1 ≤ i ≤ r. Since σ
fixes no nonzero vector of V , σ fixes no nonzero vector of the subspace Vi. Let σi be
the linear transformation of Vi induced by σ. Then Vi and σi satisfy Case 1 and we
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conclude that

Vi = F
2ei
p , where ei ≥ 0,

such that σi ∈ GL(1, p2ei ) is of order 2ei−1(p2 − 1)2 if ei > 0 and is of order at least 4
otherwise. Now the dimension

d = 2e1 + 2e2 + · · · + 2er

and the complementing isomorphism σ can be expressed as

σ = (σ1,σ2, . . . ,σr).

This completes the proof. �

PROOF OF THEOREM 1.2. This proof follows from Construction 5.1 and
Lemma 5.2. �

6. Self-complementary metacirculants

To state our construction, we need to prove an elementary number-theoretic lemma.
For positive integers n and λ, the smallest positive integer m such that λm ≡ 1 (mod n)
is called the order of λ modulo n and is denoted by o(λ mod n). As usual, φ(n) is the
Euler phi-function, which is the number of positive integers that are less than n and
coprime to n.

LEMMA 6.1. Given r � 2 and a prime p such that 2r � (p − 1)2, for any p-powers
pe and p f , there exists a positive integer λ such that o(λ mod pe) = 2r and
o(λ mod p f ) = 2r.

PROOF. By Euler’s theorem, there exists an integer λ0 such that

λ
φ(pe)
0 ≡ 1 (mod pe).

As φ(pe) = pe−1(p − 1), we have 2r divides φ(pe). Let λ = λφ(pe)/2r

0 . Then λ2r ≡ 1
(mod pe) and o(λ mod pe) = 2r.

Without loss of generality, assume that f < e. Then λ2r ≡ 1 (mod p f ). Thus, the
order o(λ mod p f )) = 2s for some integer s � r, that is,

λ2s
= 1 + mp f for some integer m.

Suppose that s < r. The 2r−sth power λ2s
has the form

λ2r
= (λ2s

)2r−s
= (1 + mp f )2r−s

= 1 +
(
2r−s

1

)
mp f +

(
2r−s

2

)
(mp f )2 + · · · + (mp f )2r−s

.

Let t = Min {2 f , e}. Then

1 ≡ λ2r ≡ 1 +
(
2r−s

1

)
mp f (mod pt).
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This implies that f = t = e, which is a contradiction. Thus, s = r, completing the
proof. �

Let R be a metacyclic p-group, where p is a prime congruent to 1 modulo 4. Then
R has a presentation, refer to [12]:

R = 〈a, b | bpd
= 1, apt

= bpm
, aba−1 = b1+p f 〉.

Let e = t + d − m. The order o(a) = pt+d−m = pe. Let c = bp f
. Then the commutator

subgroup

R′ = 〈c〉 � Zpd− f .

Let σ be an automorphism of 〈b〉, and τ be an automorphism of 〈a〉 such that σ, τ
are of order 2r, and 4 � 2r � (p − 1)2. By Lemma 6.1, there exists a positive integer λ
such that

bσ = bλ, aτ = aλ.

Let S1 ⊂ 〈b〉 be an SC-subset with respect to σ; namely, S1 and σ satisfy
Sσ1 = 〈b〉

# \ S1. Then, for any elements x = bj1 and y = bj2 ,

bj2−j1 = yx−1 ∈ S1 ⇐⇒ b(j2−j1)λ = yλx−λ = yσ(xσ)−1 � S1.

Let R = R/〈c〉 = 〈b, a〉 � Zp f × Zpe . Then the pair (σ, τ) induces an automorphism
ρ of R as follows:

(b
i
aj)ρ = b

iλ
ajλ = (b

i
aj)λ, where 0 � i � p f − 1 and 0 � j � pe − 1.

Let S2 ⊂ 〈b, a〉 be an SC-subset with respect to ρ, which means that S
ρ

2 = 〈b, a〉# \ S2.
Then the Cayley graph

Σ = Cay(〈b, a〉, S2)

is self-complementary with complementing isomorphism ρ.
Let I = {(i, j) | bi

aj ∈ S2, 0 � i � p f − 1, 0 � j � pe − 1} and let

S2 =
⋃

(i,j)∈I biaj〈c〉,
Γ2 = Cay(R, S2).

We notice that, since bp f
= c, elements of R can be written as

biajck, where 0 � i � p f − 1, 0 � j � pe − 1, and 0 � k � pd− f − 1.

By the definition, we have the following conclusion.

LEMMA 6.2. The Cayley graph Γ2 = Σ[Kp f ] and, for any elements x = bi1 aj1 ck1

and y = bi2 aj2 ck2 , where 0 � i1 � i2 � p f − 1, 0 � j1, j2 � pe − 1, and 0 � k1, k2 �
pd− f − 1,

yx−1 ∈ S2 ⇐⇒ y x−1 ∈ S2 ⇐⇒ yλx−λ = yρ(xρ)−1 � S2.
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Now we are ready to present our construction of self-complementary Cayley graphs
of the metacyclic group R.

CONSTRUCTION 6.3. Using the notation defined above, let

S = S1 ∪ (S2 \ 〈b〉)

and Γ = Cay(R, S). Define a permutation ρ of the set R:

ρ : biajck �→ biλajλckλ, where 0 � i � p f − 1, 0 � j � pe − 1, and 0 � k � pd− f − 1.

We remark that with suitable choices of S1 and S2, the graph Γ produced in this
construction is not a lexicographic graph product of smaller graphs.

We note that the map ρ only fixes the identity of R, but ρ is not an automorphism of
the group R. The next lemma shows ρ maps Γ to its complement Γ.

LEMMA 6.4. The Cayley graph Γ defined in Construction 6.3 is self-complementary
and ρ is a complementing isomorphism.

PROOF. Pick two vertices x = bi1 aj1 c1 and y = bi2 aj2 c2, where 0 � i1, i2 � p f − 1, 0 �
j1, j2 � pe − 1, and c1, c2 ∈ 〈c〉. Then

yx−1 = (bi2 aj2 c2)(bi1 aj1 c1)−1

= bi2−i1 aj2−j1 c′,

yρ(xρ)−1 = (bi2λaj2λcλ2)(bi1λaj1λcλ1)−1

= b(i2−i1)λa(j2−j1)λc′′.

First, assume that j2 = j1. Then

yx−1 = bi2−i1 c′ ∈ bi2−i1〈c〉,
yρ(xρ)−1 = b(i2−i1)λc′′ ∈ b(i2−i1)λ〈c〉 = yσ(xσ)−1〈c〉.

Both yx−1 and yρ(xρ)−1 ∈ 〈b〉. By the definition of σ, we have yx−1 ∈ S1 if and only if
yσ(xσ)−1 ∈ 〈b〉# \ S1, and yσ(xσ)−1 ∈ 〈b〉# \ S1 if and only if yρ(xρ)−1 ∈ R# \ S1.

Assume now that j2 � j1. Then y x−1 = b
i2−i1 a j2−j1 and y ρ(x ρ)−1 = b

(i2−i1)λ
a(j2−j1)λ.

Neither of them is in 〈b〉. Thus, by the definition of S2 and S2,

yx−1 ∈ S2 ⇐⇒ y x−1 ∈ S2 ⇐⇒ y ρ(x ρ)−1 ∈ 〈b, a, 〉# \ S2 ⇐⇒ yρ(xρ)−1 ∈ R# \ S2.

Therefore, x, y are adjacent in Γ if and only if xρ, yρ are not adjacent in Γ and so ρ
is a isomorphism between Γ and Γ. In particular, Γ � Γ and ρ is a complementing
isomorphism. �

PROOF OF THEOREM 1.4. Let p be a prime that is congruent to 1 modulo 4 and let
R be a metacyclic p-group. If R is abelian, then R = 〈a〉 × 〈b〉 and it follows from
Lemmas 3.1 and 3.4 that there exist Cayley graphs of R that are self-complementary.
If R is nonabelian, then Lemma 6.4 shows that R has Cayley graphs that are
self-complementary. �
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