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Abstract

The Middle Miocene Climatic Optimum is known for abrupt events during the global cooling
trend of the past 20Ma. Its identification in the Tibetan Plateau can help explain the cause of the
critical Middle Miocene climate transition in Central Asia. In this study, fine-grained mixed
sediments widely distributed in theMiocene Qaidam Lake in the northern Tibetan Plateau were
used as a sensitive indicator for palaeoclimate. Their geochemical characteristics were investi-
gated, together with an analysis of 2600m long successive gamma-ray logging data from the
whole JS2 drillcore, to understand the mid-Miocene climate transition in the Tibetan
Plateau. By comparing the gamma-ray curve of the mixed sediments with global temperature,
the Middle Miocene Climatic Optimum event can be easily identified. Further, the detailed
petrological features and geochemical data of lacustrine fine-grained mixed sediments from
a 400 m drillcore show oxidizing, high-sedimentation rate and brackish-saline water conditions
in a semi-arid climate during the Middle Miocene period, demonstrating a dryer climate in the
Qaidam Basin than in themonsoon-sensitive regions in Central Asia. These fine-grainedmixed
sediments have recorded climate drying before 15.3 Ma that represents a climatic transition
within the Middle Miocene Climatic Optimum; increasing carbonate-rich mixed sediments,
decreasing algal limestone layers and decreasing lacustrine organic matter are indicators of this
transition. Regional tectonic events include the retreat of the Paratethys from Central Asia at
~15Ma and the synchronous tectonic reorganization of the Altyn-Tagh fault system and the
northeastern Tibetan Plateau. We find that global climate change is the primary factor affecting
the overall characteristics and changes of the Neogene climate in the Qaidam Basin, including
the occurrence of theMiddleMiocene Climatic Optimum and the cooling and drying tendency,
while the regional events are a secondary factor.

1. Introduction

The Middle Miocene climate is an abrupt and dramatic instance of global warming and cooling
during the long-term cooling trend of the Cenozoic Era (Savin et al. 1975; Flower & Kennett,
1994; Zachos et al. 2001; Böhme, 2003). It is characterized by two distinct features: the Middle
Miocene Climatic Optimum (MMCO; 17–15Ma), characterized by annual mean surface
temperatures 3~6 °C higher than today (Flower & Kennett, 1994; Zachos et al. 2001; Böhme,
2003), and the Middle Miocene Climate Cooling (MMCC; 14.2–13.8 Ma), in which the global
average temperature droppedmore than 5 °C, a change associated with the formation of the East
Antarctic ice sheet, eventually leading to the aridity of the middle- and high-latitude continental
interiors, such as inland Asia, Australia, Africa, North America and South America (Retallack,
1992; Flower & Kennett, 1994; Webb, 1997; Holbourn et al. 2014). The Middle Miocene is
considered the most critical interval, known as ‘the Middle Miocene Climatic Transition’
(Flower &Kennett, 1994; Zachos et al. 2001), and represents a transition period from a relatively
humid to arid climate. Because the Middle Miocene climate changes were unrelated to human
activities, it is a research hotspot (Böhme, 2003). Until now, theMMCO andMMCC events have
been widely reconstructed via oxygen isotope records from marine sediments (Flower &
Kennett, 1994; Zachos et al. 2001; Böhme, 2003).

The Tibetan Plateau experienced a strong uplift during Miocene time that changed the local
precipitation patterns (Fang et al. 2007; Lu&Xiong, 2009;Miao et al. 2011, 2012; Lin et al. 2015).
This effect made the Middle Miocene climatic transition more complicated in Central Asia; as a
result, the cause of this regional climate change, whether global climatic changes or Tibetan
Plateau uplift, is difficult to determine. Therefore, the identification and detailed characteriza-
tion of the critical Middle Miocene climate transition in Central Asia is very important, as it can
help us to comprehend this issue. The present investigations of the MMCO and MMCC in Asia
mainly come from the humid regions (i.e. the east Asian monsoon region) at the eastern edge of
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the Tibetan Plateau (e.g. Hou et al. 2014; Lin et al. 2015; Zan et al.
2015; Lebreton-Anberrée et al. 2016; Song et al. 2017; Dong et al.
2018; Hui et al. 2018). Considering that the Tibetan Plateau has
expanded towards the north and northeast since the Miocene
Epoch (Tapponnier, 2001; Rowley & Currie, 2006), the climate
evolution in arid regions close to the interior Tibetan Plateau
may supply us with more sensitive information about climate
drying and tectonics compared with information from the
monsoon-sensitive regions.

The Qaidam Basin is an important petroliferous basin in the
Tibetan Plateau that is characterized by fine-grained mixed sedi-
ments that developed during the Cenozoic Era (Xiong et al.
2018; Xu et al. 2018; Yu et al. 2018). Mixed sediments are formed
by mixing terrigenous clasts and intrabasinal carbonate. They can
be deposited in various environments, such as lakes, transitional,
shelf and slope facies. The mixing ratio of allogenic and authigenic
components in mixed sediments is considered to be significantly
influenced by climate and environment (Mount, 1984; Brooks
et al. 2003; Campbell, 2005; Garcia-Garcia et al. 2009; Chiarella
et al. 2017); thus, they can be used for reconstructing palaeoclimate
changes after excluding the interference of tectonics, detrital
sources and sedimentary cycles. In this study, we investigate the
petrology and geochemistry of mixed sediments from the
Qaidam Basin to reconstruct the palaeoclimate and palaeoenviron-
ment during Middle Miocene time. The paper (1) identifies and
explains the Middle Miocene climate transition in the Tibetan
Plateau, and (2) discusses the driver of climatic change in
Central Asia during this period.

2. Geologic setting

The Qaidam Basin, with an average elevation of 2000–3000 m, is
the largest intermontane basin at the northern part of the Tibetan
Plateau (Fig. 1a). It is surrounded by the Altyn-Tagh Fault, Qilian
Mountain and Kunlun Mountain in the northwest, northeast
and south, respectively (Tapponnier, 2001; Cowgill et al. 2004;
Gold et al. 2011). The Cenozoic stratigraphy of the Qaidam
Basin is divided into seven formations, namely the Lulehe
Formation (E1þ2), Xiaganchaigou Formation (E3) and
Shangganchaigou Formation (N1), deposited during the
Palaeogene Period; and the Xiayoushashan Formation (XYSS
Fm; N2

1), Shangyoushashan Formation (SYSS Fm; N2
2),

Shizigou Formation (SZG Fm; N2
3) and Qigequan Formation

(QGQ Fm; Q1þ2), deposited during the Neogene and
Quaternary periods (Yang, et al. 1992; Sun et al. 2004; Lu &
Xiong, 2009). During the Neogene Period, owing to the relatively
arid palaeoclimate and the high salinity of the lake water, lacustrine
fine-grained sedimentary rocks characterized as mixed sedimen-
tary were widely distributed in the Qaidam Basin (Sha, 2001;
Xu et al. 2014; Xiong et al. 2018).

During the Miocene–Pliocene epochs, the depocentre of the
Qaidam Basin migrated from west to east owing to the uplift of
Kunlun Mountain; consequently, the Yiliping Depression became
the long-term depocentre and accumulated very thick lacustrine
strata (Guo et al. 2009; Fig. 1c). During this period, the SYSS
and XYSS fms, composed of shore–shallow lacustrine sedimentary
facies (including algal flats, lime-mud flats and beach bar subfa-
cies), were deposited in the Yiliping Depression (Guo et al.
2009; Xu et al. 2018; Fig. 1b). The lithology of the SYSS and
XYSS fms mainly consists of fine-grained sedimentary rocks, such
as dark silty mudstone, argillaceous siltstone and marlstone,
whereas the lithology of the SZG Fm mainly consists of

light-coloured siltstone and argillaceous siltstone. In addition,
the SZG Fm contains white halite and black gypsum interlayers,
which are rarely found in the SYSS and XYSS fms (Fig. 1b).

3. Samples and methods

In this study, 148 samples of the XYSS and SYSS fms from seven
wells (JS2, FX103, F8, F6, L1, H2, JS1) in the Yiliping Depression
were used to determine the rock components, using the Rigaku
D/max-2500X X-ray fluorescence spectrometer of the Analytical
Centre at the Xi’an Centre of China Geological Survey.

Among these seven wells, the JS2 well is our primary object of
study. This well penetrated ~3000 m of Neogene–Quaternary
strata, including the QGQ, SZG, SYSS and XYSS fms. In addition,
a 400 m successive coring section of the JS2 drillcore was obtained.
This coring section contains an 81 m thick segment of the SYSS Fm
and a 319 m thick segment of the XYSS Fm. To determine the
abundance of major and trace elements, 34 samples from JS2 with
an average spacing were analysed using a Philips PW2404 X-ray
fluorescence spectrometer and a Perkin-Elmer NexION-300D
inductively coupled plasma mass spectrometer, respectively.
These analyses were conducted at the Laboratory of Continental
Dynamics at Northwest University. In addition, total organic
carbon (TOC) concentrations from the JS2 samples were obtained
using a Leco CS-200 carbon sulfur analyser at the Organic
Geochemistry Laboratory of Exploration and Development
Research Institute of PetroChina, Qinghai Oilfield Branch
Company. Moreover, 2600 m long successive gamma-ray logging
data from this well were used to analyse the long-term climatic
change.

4. Results

4.a. Petrological features

Fine-grained sedimentary rocks are dominant in the study area.
Owing to their black, dark-grey and brownish-grey colours, they
were easily recognized as dark mudstones (Fig. 2a). The X-ray
diffraction results indicate that most of the 148 samples mainly
contain siliciclastic, carbonate and clay components, with relative
contents varying from 20.9 to 48.1 % (mean= 30.5 %), 17.1 to
45.0 % (mean= 34.4 %) and 18.4 to 48.4 % (mean= 35.1 %),
respectively (Fig. 2f). According to the classification scheme of
fine-grained sedimentary rocks from Jiang et al. (2013) and Yan
et al. (2015), these samples are classified as fine-grained mixed
sediments. In addition, some interlayers of algal limestone,
with thicknesses ranging from 20 to 100 cm, and stromatolitic
structures can be observed (Fig. 2b).

In the 400 m successive coring section of the JS2 drillcore, fine-
grained mixed sediments dominate, with intermittent deposits of
algal limestone interlayers (Fig. 3). According to the number of
algal limestone interlayers, the whole coring section can be divided
in two parts: A and B. The number of algal limestone interlayers in
section B is clearly more than that in section A. Homogeneous
structures and bedding structures can be observed in the fine-
grained mixed sediments. The bedding structures include
lenticular, veined, wavy bedding and climbing ripple bedding
composed of fine sand containing anhydrite (Fig. 2c, d). In some
samples from section A (JS2-0174, JS2-0505, JS2-0758 and
JS2-0689) with a light colour, tiny lenticles or horizontal strips
of gypsum can be observed (Fig. 3). In the algal limestones in
section B, the colours are mainly greyish-white or yellowish-grey,
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and they have a stromatolitic structure composed of black
filaments and white anhydrite laminations (Figs 2b, 3).
Furthermore, observations made using a polarized light micro-
scope, electron probe X-ray microanalysis and a scanning electron

microscope indicate that these fine-grained mixed sediments are
homogeneous mixing products of clay minerals, silt-sized felsic
particles, micritic carbonate grains, tiny anhydrite particles and
other substances (Fig. 4a–d).

Fig. 1. (Colour online) (a) Satellite map showing the arid and humid regions in Central Asia; the Tibetan Plateau is located in an arid region. (b) The sedimentary facies of the
Qaidam Basin during the Miocene Epoch. (c) The 1089 seismic profile shows the west side of the Qaidam Basin Depression, the Yiliping Depression, the Sanhu Depression and
the location of the JS2 drillcore. Note that the original data for (b) and (c) come from the Qinghai Oilfield Branch Company in China.
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4.b. Geochemical characteristics of the fine-grained
mixed sediments

4.b.1. Major elements
The major-element concentrations of the fine-grained mixed sedi-
ments from the coring section of the JS2 drillcore are listed in
Table 1. The enrichment factor (EF) can be applied to estimate
the degree of enrichment of elements in sediments, and it is defined
as follows (Roussiez et al. 2005): EF= (X/Al)sample/(X/Al)NASC,
where (X/Al)sample represents the ratio of the content of the
element in question against the content of the element Al of
the sample in question, and (X/Al)NASC represents the ratio of
the content of the element against the content of Al in the
North American Shale Composite (NASC; Gromet et al. 1985).
An EF value greater than 1 indicates that the elements are enriched,
while a value less than 1 reflects that the elements are depleted
compared to the NASC. In this study, the elements Ca, Mg, Na
and Mn show obvious enrichment, and the element P shows slight
enrichment. The elements Si, T, Al and K are comparable with
those in the NASC, which have no obvious enrichment or
depletion. The elements Ca and Mg are most enriched in the

samples JS2-0174, JS2-0505, JS2-0689, JS2-0111 and JS2-0758 from
section A (Table 1; Fig. 5a). Combining this with petrological
observations, we find that all the samples are rich in carbonate
and gypsum. Based on this, we define these samples (JS2-0174,
JS2-0505, JS2-0689, JS2-0111, JS2-0758) as endogenous or
carbonate-rich fine-grainedmixed sediments, and the other samples
can be regarded as exogenous fine-grained mixed sediments.

4.b.2. Trace elements
Trace-element concentrations of the fine-grainedmixed sediments
from the coring section of the JS2 well are listed in Table 2.
Ba (326.0–1290.5 ppm, mean= 505.0 ppm), Sr (224.0–2638.9
ppm, mean= 649.4 ppm), Zr (91.0–212.7 ppm, mean = 142.0
ppm) and Rb (62.2–145.9 ppm, mean= 110.6 ppm) are the most
abundant elements. Some trace-element EFs for the fine-grained
mixed sediments are shown in Figure 5b: Sc (EF = 1.12–1.26,
mean = 1.18), Rb (EF = 1.07–1.27, mean = 1.18), Sr (EF=
1.76–31.44, mean = 7.73), Cs (EF = 1.84–2.82, mean= 2.48), Ba
(EF = 0.78–3.34, mean= 1.17), Th (EF = 1.03–1.64, mean = 1.42)
and U (EF= 1.31–3.55, mean= 2.05) have an average EF higher

Fig. 2. (Colour online) (a) Macro-features of fine-grained mixed sediments from the JS2, FX103, F6 and L1 drillcores, similar to dark mudstones. (b) Macro-features of algal
limestones in the FX103 drillcore, and the black filaments interbedded with white anhydrite lamina. (c) The stratified fine-grained mixed sediments from the JS2 well, and
the slump deposit observed in microstratification (yellow box). (d, e) Large-scale thin-section showing the climbing ripple bedding composed of fine sand containing anhydrite
in fine-grained mixed sediments. (f) Ternary plot illustrating carbonate, clay and siliciclastic contents of the Neogene fine-grained sedimentary rocks in the study area (based on
Yan et al. 2015 and Jiang et al. 2013). SI – siliciclastic sedimentary rocks; CA – carbonate rocks (dolomite and limestone); CL – clay rocks; MI – fine-grained mixed sediments.
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Fig. 3. (Colour online) Lithological column from the coring section of the JS2 drillcore in the Yiliping Depression showing fine-grainedmixed sediments and algal limestone interlayers. Note that, according to the number of algal limestone
interlayers, this section is divided in two, A and B. (a) Core photographs show the normal fine-grainedmixed sediments from section A, which are similar in appearance to darkmudstones. (b) Core photographs illustrate the abnormal fine-
grained mixed sediments from section A, which are clearly different in appearance from the normal fine-grained mixed sediments. (c) Core photographs show the normal fine-grained mixed sediments from section B, which have no
obvious difference from that in section A. (d) Core photographs show algal limestones and their stromatolitic structure from section B.
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than 1. Among them, Sr shows obvious enrichment, especially in
the endogenous mixed sediments from section A.

4.b.3. Rare earth elements
The results of the rare earth element (REE) analysis of the fine-
grained mixed sediments are listed in Table 3. The values of total
rare earth elements (ΣREEs) of the exogenous fine-grained mixed
sediments vary from 124.7 to 176.9 ppm, with an average of
156.5 ppm; these values are lower than those for Post-Archaean
Australian Shale (PAAS; 183.0 ppm; Taylor & McLennan,
1985), but approximate to the NASC (167.4 ppm; Gromet et al.
1985). The ΣREEs of the endogenous mixed sediments vary from
88.6 to 123.7 ppm, with an average of 107.9 ppm. The distribution
pattern of REEs in the fine-grained mixed sediments is unified and
shows a trend of from high to low from left to right, close to the
NASC and PAAS (Fig. 8a).

4.b.4. Data validity analysis
Geochemical data have been widely used to trace the provenance
and reconstruct the palaeoclimate and palaeoenvironment (Shields
& Stille, 2001; Tribovillard et al. 2006). However, a precondition
of the reconstruction is that the elements must represent the synse-
dimentary characteristics of sediments and not be affected by late
diagenesis or detrital input (Tribovillard et al. 2006). As a portion
of the components in the mixed sediments is of detrital prov-
enance, validity analysis of their geochemical data is particularly
important. Generally, if an element is not mainly of detrital
provenance, it can be used for palaeoenvironmental analysis;
by contrast, if an element is mainly detrital, it can be used for
the analysis of provenance information (Tribovillard et al. 2006).

A reliable means to determine whether the content of a given
element is controlled by detrital input is to cross-plot the trace
and major elements versus Al, which is commonly of detrital origin
and usually stable during diagenesis (Tribovillard et al. 1994; Böning
et al. 2004). The correlations of major, trace and REEs from 34
samples are shown in Figure 6. The contents of V, U, Co, Na2O,
K2O, Th, Cu, Sc, La and ΣREEs are positively correlated with that
of Al2O3, suggesting that these elements weremainly from terrestrial
sources and can be used to reflect the provenance (Tribovillard et al.
2006). In particular, a strong positive correlation between ΣREEs
and Al2O3 indicates that the REEs in the fine-grained mixed
sediments were not affected by post-depositional diagenesis
(Shields & Stille, 2001).

As mentioned above, for carbonate components in mixed sedi-
ments, usually only the authigenic ones can be used to recover esti-
mates of the palaeoclimate and palaeoenvironment. We suggest
that the carbonate components in the mixed sediments studied
here are mainly authigenic. This claim is supported by the
following points. First, for carbonate grains in a lake basin, intra-
clasts are usually micritic carbonate grains and extraclasts are poly-
crystalline marble grains (Rieser et al. 2005); these observations
were made using a scanning electron microscope and indicate that
lacustrine carbonates from the fine-grained mixed sediments are
almost all micritic grains in the Yiliping Depression (Fig. 4).
Second, the mixed sediments of the Yiliping Depression (the
contents of CaO and MgO, which represent calcite and dolomite,
respectively) have a negative correlation with that of Al2O3, indi-
cating that most carbonate in the fine-grained mixed sediments is
authigenic; moreover, the contents of Sr and Ba are also negatively
correlated with that of Al2O3, indicating that the elements Sr and

Fig. 4. (Colour online) Microscopic features of fine-grained mixed sediments in the Yiliping Depression. (a, b) Polarizing photomicrograph showing micrite, clay and silt mixed
together in the fine-grained mixed sediments. It is difficult to directly estimate the relative contents of them. (c) Electron probe photomicrograph showing anhydrite (Anh), calcite
(Cal) and quartz (Qtz) mixed together in a state of dispersive particles from the JS2 well. (d) Scanning electron photomicrograph showing quartz (Qtz), calcite (Cal), dolomite (Dol),
ankerite (Ank) and albite (Ab) mixed together in the JS2 well, with particle size less than 30 μm.
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Ba are related to the authigenic process and can be directly used to
reconstruct the palaeoenvironment (Tribovillard et al. 2006;Wang
et al. 2021).

Third, numerous studies have suggested that the carbonate of
the fine-grained mixed sediments deposited in the Cenozoic
Qaidam Lake was authigenic (Xu et al. 2014, 2018; Xiong et al.
2018) and is characterized by micritic grains deposited in the
fine-grained mixed sediments. Fourth, Cenozoic lacustrine
carbonates were widely deposited in several basins of the

Tibetan Plateau and were considered to be authigenic (e.g.
Rowley & Currie, 2006; Zhuang et al. 2011; Hou et al. 2014).
For example, in the Lunpola Basin, located in the central
Tibetan Plateau, oxygen isotope data from authigenic lacustrine
carbonates were used to estimate the palaeo-elevation of the
plateau. Fifth, lacustrine carbonate was a typical and important
component in saline lacustrine basins, such as the Jianghan
Basin, Bohaiwan Basin and Qaidam Basin in China (Huang &
Hinnov, 2014, 2019; Wu et al. 2016; Xu et al. 2018).

Table 1. Vco, major-element abundances and some associated parameters of fine-grained mixed sediments from the coring section (unit in %)

Samples Depth (m) SiO2 TiO2 Al2O3 TFe2O3 MnO MgO CaO Na2O K2O P2O5 LOI Total CIA

JS2-0003 2001.0 49.4 0.6 13.5 5.2 0.1 3.3 10.4 2.2 2.8 0.2 11.9 99.5 57

JS2-0019 2006.1 51.0 0.6 15.2 5.9 0.1 3.3 7.6 2.2 3.2 0.1 10.2 99.5 58

JS2-0096 2029.1 47.2 0.6 13.5 5.2 0.1 3.1 11.6 2.9 2.9 0.2 12.7 99.8 52

JS2-0128 2040.1 46.8 0.6 12.7 5.0 0.1 3.2 13.0 2.0 2.7 0.2 13.4 99.5 58

JS2-0216 2069.0 48.0 0.6 14.4 5.5 0.1 3.6 10.2 2.2 3.1 0.1 12.0 99.7 58

JS2-0246 2079.7 48.8 0.6 15.6 6.1 0.1 4.2 7.4 2.2 3.4 0.1 11.2 99.6 59

JS2-0277 2089.4 53.5 0.5 10.0 3.3 0.1 2.6 12.5 2.5 1.9 0.1 12.6 99.6 49

JS2-0309 2099.1 50.7 0.6 14.5 5.6 0.1 3.4 8.5 2.1 3.1 0.2 11.0 99.8 59

JS2-0325 2103.9 40.8 0.5 11.5 4.5 0.1 3.8 16.3 1.9 2.4 0.1 17.6 99.5 57

JS2-0367 2119.1 52.9 0.7 14.2 5.2 0.1 3.1 8.0 2.3 3.0 0.2 10.2 99.7 57

JS2-0403 2128.9 42.7 0.6 13.4 5.5 0.1 4.2 13.8 1.8 2.8 0.1 14.7 99.7 60

JS2-0422 2133.8 47.5 0.6 12.6 4.9 0.1 4.5 11.2 2.0 2.6 0.2 13.5 99.7 57

JS2-0489 2153.5 48.5 0.6 10.7 4.2 0.1 2.5 14.9 2.2 2.1 0.1 13.9 99.7 53

JS2-0551 2173.4 45.6 0.6 12.3 4.8 0.1 3.4 13.8 2.0 2.6 0.1 14.4 99.7 57

JS2-0622 2192.4 52.2 0.6 13.9 4.8 0.1 2.9 8.8 2.5 2.9 0.1 10.7 99.5 55

JS2-0706 2217.6 47.2 0.6 12.4 4.5 0.1 3.0 13.4 2.0 2.6 0.1 14.0 99.8 57

JS2-0741 2227.7 50.1 0.6 13.2 5.1 0.1 3.5 10.4 2.2 2.7 0.2 11.6 99.6 57

JS2-0830 2252.7 40.7 0.5 11.1 5.0 0.1 4.5 16.6 1.9 2.2 0.1 17.1 99.8 56

JS2-0871 2262.8 49.6 0.6 14.4 5.3 0.1 3.2 9.9 2.0 3.1 0.2 11.3 99.7 59

JS2-0905 2272.9 49.8 0.6 14.7 5.7 0.1 3.3 9.6 2.0 3.1 0.2 11.1 100.0 60

JS2-0957 2287.3 49.5 0.6 13.3 5.0 0.1 3.5 10.6 2.1 2.8 0.2 12.0 99.6 58

JS2-0972 2292.4 42.5 0.5 13.0 5.4 0.1 3.4 14.7 1.9 2.7 0.1 15.4 99.6 59

JS2-1097 2327.2 45.0 0.6 13.1 5.3 0.1 3.3 13.6 1.9 2.7 0.1 13.9 99.5 59

JS2-1154 2342.5 48.1 0.6 13.6 5.3 0.1 3.4 11.4 2.1 2.8 0.2 12.4 99.8 58

JS2-1183 2352.6 47.2 0.6 12.3 4.9 0.1 2.5 14.2 2.0 2.5 0.1 13.2 99.5 57

JS2-1228 2367.5 49.6 0.5 10.0 3.2 0.1 2.0 15.8 2.1 2.0 0.1 14.4 99.7 53

JS2-1245 2372.6 47.7 0.6 15.2 6.3 0.1 3.7 9.0 2.1 3.2 0.1 11.7 99.6 60

JS2-1283 2387.5 52.6 0.7 15.4 5.6 0.1 3.4 6.8 2.3 3.3 0.1 9.9 100.0 59

JS2-1318 2397.4 42.2 0.5 13.0 5.6 0.1 3.2 14.5 2.1 2.7 0.1 14.5 98.5 57

JS2-0111* 2034.1 34.9 0.5 9.1 4.4 0.1 8.2 16.1 1.8 1.9 0.1 21.8 98.9 54

JS2-0174* 2054.1 22.1 0.3 6.8 3.3 0.1 3.9 28.3 1.1 1.4 0.1 20.2 87.6 57

JS2-0505* 2158.7 28.0 0.4 8.9 4.2 0.1 5.0 24.2 1.6 1.9 0.2 25.2 99.7 55

JS2-0689* 2212.7 29.7 0.4 8.2 4.0 0.1 4.2 25.1 1.6 1.6 0.1 23.4 98.4 54

JS2-0758* 2232.6 30.9 0.4 10.0 4.3 0.1 10.0 16.6 1.5 2.1 0.2 23.5 99.5 58

*Samples JS2-0111, JS2-0174, JS2-0505, JS2-0689 and JS2-0758 are endogenous fine-grained mixed sediments.
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5. Interpretations

5.a. Provenance

The linear relationship of Th/Sc and Zr/Sc indicates that the sedi-
mentary recirculation of the fine-grained mixed sediments is weak,
and only a small fraction comes from ancient sediments (Fig. 7a).
In general, low TiO2/Zr ratios (<55) indicate that the source rock is
felsic igneous rock; medium TiO2/Zr ratios (55–200) imply inter-
mediate rock (Hayashi et al. 1997); and high TiO2/Zr ratios (>200)
reflect mafic rock (Moradi et al. 2016). TiO2/Zr ratios in the fine-
grained mixed sediments range from 27.5 to 50.1, with an average
of 39.6, indicating that the source rock is felsic igneous rock,
consistent with the result for Co/Th versus La/Sc (Fig. 7b, c).
Moreover, in the La–Th–Sc diagram, the data points fall within
the continental island arc field, indicating that the tectonic attribu-
tion of provenance is a continental island arc source (Fig. 7d).
The northern Tibetan Plateau was located in a multi-island arc
environment at the edge of the Tethys Ocean as early as the early
Palaeozoic period (Xu et al. 2006), and the granite scattered around
the Qaidam Basin is the potential source rock.

We collected the REE data for granite from Altyn-Tagh
Mountain, the East Kunlun Mountains and the northern
Qaidam Basin and compared their average distribution patterns
with that of the fine-grained mixed sediments studied here.
Although the REE distribution pattern of the fine-grained mixed
sediments is most similar to that of Ordovician granite from the
southern portion of Altyn-Tagh Mountain, it is completely
different from that of the northern section (Fig. 8b). Moreover,
the REE distribution pattern of the fine-grained mixed sediments
is similar to that of Silurian granite in Qimantag Mountain, but is
different from that of Triassic granite in this area and Palaeozoic
granites in the northern Qaidam Basin (Fig. 8c, d). On the whole,
the source rocks of the fine-grained mixed sediments are
Palaeozoic granites, which are widespread in the southwestern
basin. Although the ΣREEs of the endogenous fine-grained mixed
sediments is clearly lower than that of the exogenous fine-grained
mixed sediments, the distribution patterns are consistent, indi-
cating that provenance does not change during their deposition.

5.b. Palaeosalinity, palaeoredox and sedimentation rate

High authigenic Sr content in lacustrine sediments indicates an
arid climate (Zhang et al. 2004). A Sr/Ba ratio higher than 1 points

to saline water conditions, and ranges from 0.5 to 1 point to
brackish water conditions; those lower than 0.5 indicate fresh water
conditions (Wang & Wu, 1983; Zheng & Liu, 1999). In this study,
the Sr/Ba ratios of the exogenous fine-grained mixed sediments
reveal brackish water conditions, whereas the Sr/Ba ratios of the
endogenous fine-grained mixed sediments in section A show high
values, indicating saline water conditions (Table 2; Fig. 9).

Considering the complex composition of the fine-grained
mixed sediments and that their ΣREE values approach those of
the NASC, the element values from the NASC can be used to elimi-
nate the interference of terrestrial sources via the following
method (Reitz et al. 2004; Tribovillard et al. 2006): Xclastic=
(X/Al)NASC ×Alsample, and Xauthigenic= XTotal− Xclastic. Judging
from the calculation results, the elements Co, V, Cr and Ni are
nearly all from terrestrial sources, while the contents of authigenic
Th and U are 0.24–5.40 ppm and 0.49–5.35 ppm, respectively.
Therefore, in this study, the U/Th ratios and authigenic U
(Uaut) are reliable for reconstructing the redox conditions. It has
been widely accepted that U/Th ratios lower than 0.75 point to
oxidizing conditions, those from 0.75 to 1.25 point to dysoxic
conditions, and those higher than 1.25 indicate anoxic conditions.
Meanwhile, Uaut values lower than 5 suggest oxidizing conditions,
and those higher than 5 point to anoxic conditions (Hatch &
Leventhal, 1992; Jones et al. 1994). The U/Th ratios (0.23–2.05)
and Uaut values (0.49–5.35) of the fine-grained mixed sediments
in this study reveal oxidizing conditions (Fig. 9; Table 2).

The degree of REE fractionation, namely, LaN/YbN (the
subscript N represents the NASC, normalized), is generally used
to estimate the sedimentation rate in fine-grained sedimentary
rocks. It is suggested that a weak REE fractionation results from
a high sedimentation rate (LaN/YbN ratios ≈ 1; Tenger et al.
2006; Fu et al. 2015). Thus, the high LaN/YbN ratios (1.10–1.36,
mean = 1.20) of the fine-grainedmixed sediments in the study area
indicate a high sedimentation rate (Fig. 9; Table 3). The sedimen-
tation rate demonstrates no obvious change from section A to B,
also indicating a stable provenance.

5.c. Palaeoclimate as indicated by the geochemical
index and petrology characteristics

The Yiliping Depression, as the depocentre of the Qaidam Basin in
the Miocene period, accumulated successive lacustrine sediments,
with few effects caused by geomorphological change, tectonics and

Fig. 5. (Colour online) Enrichment factors (EF) of (a) major elements and (b) some trace elements in fine-grained mixed sediments from the coring section of the JS2 drillcore.
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Table 2. Trace-element contents of fine-grained mixed sediments from the coring section (concentrations in ppm)

Samples
JS2-
0003

JS2-
0019

JS2-
0096

JS2-
0128

JS2-
0216

JS2-
0246

JS2-
0277

JS2-
0309

JS2-
0325

JS2-
0367

JS2-
0403

JS2-
0422

JS2-
0489

JS2-
0551

JS2-
0622

JS2-
0706

JS2-
0741

Depth
(m)

2001.0 2006.1 2029.1 2040.1 2069.0 2079.7 2089.4 2099.1 2103.9 2119.1 2128.9 2133.8 2153.5 2173.4 2192.4 2217.6 2227.7

Li 57.9 63.9 58.3 60.1 67.2 73.6 31.8 58.3 50.0 58.0 68.3 54.1 39.7 53.8 54.8 48.8 59.3

Be 2.3 2.6 2.3 2.2 2.6 2.9 1.5 2.5 2.0 2.5 2.5 2.3 1.7 2.1 2.4 2.1 2.3

Sc 14.5 15.6 14.4 13.3 15.2 16.5 9.8 14.6 12.0 15.0 14.2 13.2 11.0 13.0 14.7 12.7 14.5

V 99.6 112.2 100.1 91.0 107.8 121.8 59.7 101.9 85.3 103.8 102.6 91.6 71.1 89.6 100.7 86.1 98.1

Cr 73.0 81.2 71.8 66.0 75.2 83.3 44.7 72.5 60.2 75.6 72.1 65.6 55.7 66.8 74.0 63.6 74.8

Co 15.6 19.4 16.1 15.4 16.6 18.0 11.8 14.9 12.9 16.1 17.7 14.5 14.4 13.8 14.9 12.5 15.7

Ni 38.5 46.0 35.9 35.7 40.1 44.8 28.2 35.8 30.5 38.2 43.0 33.7 31.5 35.3 37.2 30.1 37.7

Cu 32.9 51.3 32.7 34.2 35.4 43.4 20.9 32.4 25.3 34.0 37.5 30.9 24.4 30.4 34.6 32.0 31.7

Zn 115.9 93.8 119.6 63.8 114.6 86.7 40.8 88.1 56.0 71.0 71.7 73.9 49.7 62.2 70.1 60.1 67.8

Ga 18.6 22.4 18.5 16.6 20.9 23.9 12.0 20.3 15.4 19.5 18.2 16.8 13.5 16.5 19.1 17.0 18.5

Ge 1.5 1.6 1.5 1.3 1.5 1.8 1.1 1.5 1.2 1.6 1.5 1.4 1.2 1.4 1.6 1.4 1.2

Rb 119.0 136.8 123.5 113.8 132.0 145.9 78.9 126.8 106.0 126.8 123.3 110.0 87.9 112.2 126.4 111.4 118.8

Sr 299.7 224.0 249.5 296.1 352.3 482.0 2638.9 267.6 556.7 231.0 287.0 454.3 471.2 1072.2 257.5 315.0 375.4

Zr 173.2 149.8 147.3 153.6 130.0 127.7 102.7 156.8 112.6 179.4 115.2 161.3 152.2 152.2 149.1 133.4 212.7

Nb 14.0 13.7 13.3 13.3 13.2 14.0 10.3 13.5 11.3 14.4 12.4 12.8 12.2 12.2 13.7 12.0 14.3

Cs 10.4 12.6 10.3 9.7 11.6 13.4 6.2 10.6 9.3 10.6 11.5 9.9 6.8 9.4 10.9 9.0 10.3

Ba 453.2 458.0 701.5 420.2 465.8 534.0 1290.5 452.0 397.4 447.7 399.1 470.3 409.6 740.5 437.6 439.3 440.9

Hf 4.6 4.1 4.0 4.2 3.5 3.5 2.7 4.1 3.0 4.7 3.1 4.3 4.0 3.9 3.9 3.5 5.5

Ta 1.0 1.0 1.0 1.0 1.0 1.1 0.8 1.0 0.8 1.1 0.9 1.0 0.9 0.9 1.0 0.9 1.0

Pb 23.6 37.4 21.4 23.7 21.8 22.4 20.2 18.8 16.7 20.5 25.6 20.4 21.4 20.2 18.9 13.7 18.5

Th 15.0 15.6 14.4 14.6 14.5 15.9 7.5 14.3 12.0 15.2 14.6 13.9 10.8 12.6 14.2 12.0 14.9

U 3.9 4.2 3.6 4.2 3.5 4.3 2.1 3.3 4.1 3.4 4.4 3.9 3.4 3.7 3.6 3.5 4.4

Sr/Ba 0.7 0.5 0.4 0.7 0.8 0.9 2.0 0.6 1.4 0.5 0.7 1.0 1.2 1.5 0.6 0.7 0.9

Uauth 1.8 1.8 1.5 2.2 1.3 1.9 0.5 1.0 2.3 1.1 2.3 1.9 1.8 1.8 1.4 1.5 2.3

U/Th 0.3 0.4 0.3 0.4 0.3 0.4 2.1 0.3 0.6 0.2 0.5 0.4 0.6 0.5 0.4 0.5 0.4

Samples
JS2-
0830

JS2-
0871

JS2-
0905

JS2-
0957

JS2-
0972

JS2-
1097

JS2-
1154

JS2-
1183

JS2-
1228

JS2-
1245

JS2-
1283

JS2-
1318

JS2-
0111*

JS2-
0174*

JS2-
0505*

JS2-
0689*

JS2-
0758*

Depth
(m)

2252.7 2262.8 2272.9 2287.3 2292.4 2327.2 2342.5 2352.6 2367.5 2372.6 2387.5 2397.4 2034.1 2054.1 2158.7 2212.7 2232.6

Li 47.2 58.1 58.9 53.5 55.3 55.7 61.6 45.7 35.7 65.7 64.0 55.7 43.7 35.1 44.0 32.7 42.6

Be 1.9 2.5 2.6 2.3 2.3 2.2 2.5 2.0 1.7 2.7 2.8 2.1 1.8 1.3 1.7 1.4 1.9
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Table 2. (Continued )

Samples
JS2-
0830

JS2-
0871

JS2-
0905

JS2-
0957

JS2-
0972

JS2-
1097

JS2-
1154

JS2-
1183

JS2-
1228

JS2-
1245

JS2-
1283

JS2-
1318

JS2-
0111*

JS2-
0174*

JS2-
0505*

JS2-
0689*

JS2-
0758*

Sc 11.3 15.0 15.0 13.6 13.4 13.2 14.6 13.2 10.2 16.1 16.1 14.1 10.1 7.4 9.4 8.1 9.9

V 76.8 103.6 103.4 95.4 96.0 93.6 98.7 81.4 65.5 115.5 114.9 105.4 68.3 55.5 70.6 58.0 74.5

Cr 57.6 77.1 75.5 71.8 69.2 68.8 73.2 60.3 50.2 81.8 81.7 70.0 50.0 38.8 53.2 43.8 53.2

Co 12.5 16.0 14.1 14.2 14.6 14.5 16.4 15.8 10.1 18.9 15.6 16.1 11.3 9.8 10.8 11.7 11.1

Ni 31.7 38.7 37.0 35.1 37.0 35.3 38.0 36.8 22.6 42.8 37.5 40.2 25.4 22.7 25.5 27.4 28.0

Cu 28.7 33.4 34.6 29.8 30.9 34.4 32.9 35.5 17.6 44.0 42.3 48.6 21.3 18.1 15.6 31.4 25.8

Zn 92.3 68.4 82.1 61.8 67.8 62.5 68.6 61.1 41.8 82.1 122.5 63.7 49.0 33.7 51.2 37.8 44.7

Ga 14.3 19.6 20.4 18.4 18.4 16.9 18.0 15.3 12.4 19.9 21.5 16.6 12.5 9.2 12.2 10.7 13.6

Ge 1.1 1.3 1.3 1.2 1.3 1.3 1.5 1.3 1.4 1.5 1.8 1.3 1.0 0.7 1.0 0.8 0.9

Rb 92.1 129.7 132.4 117.4 118.1 112.1 119.2 103.5 80.8 135.4 137.1 111.8 80.4 62.2 82.2 70.0 90.7

Sr 421.8 237.3 283.6 271.5 603.4 497.3 244.4 328.3 302.8 292.2 248.1 758.1 1835.9 1497.2 1597.8 1867.4 398.8

Zr 140.2 150.2 164.6 160.8 120.3 133.6 148.4 142.2 187.2 140.1 149.5 128.6 117.7 92.2 141.9 92.4 91.0

Nb 11.6 13.7 14.3 13.4 11.8 12.0 13.3 11.5 11.4 13.6 14.4 11.7 10.2 6.3 7.9 7.6 7.5

Cs 8.4 11.6 11.3 10.4 10.3 10.0 10.5 8.7 5.6 12.8 12.4 10.5 6.4 5.3 7.1 6.0 8.0

Ba 326.0 438.3 474.5 403.6 410.3 436.9 423.0 416.5 341.5 461.6 480.1 439.8 704.5 389.7 519.8 592.6 347.3

Hf 3.7 4.0 4.3 4.2 3.2 3.6 4.0 3.8 4.8 3.8 4.0 3.5 3.2 2.4 3.7 2.4 2.4

Ta 0.9 1.0 1.1 1.0 0.9 0.9 1.0 0.8 0.8 1.0 1.1 0.9 0.8 0.5 0.6 0.6 0.6

Pb 26.4 19.8 25.7 18.1 24.7 24.8 19.5 32.0 14.7 40.6 16.3 50.4 17.0 27.8 15.1 38.9 18.5

Th 12.3 15.3 15.7 14.1 13.5 11.8 13.2 11.2 10.1 14.6 14.5 12.8 10.7 7.1 10.6 8.4 9.8

U 4.7 3.7 4.4 4.0 4.5 4.1 3.8 2.7 2.7 4.9 3.8 7.4 4.6 3.2 4.3 4.6 3.0

Sr/Ba 1.3 0.5 0.6 0.7 1.5 1.1 0.6 0.8 0.9 0.6 0.5 1.7 2.6 3.8 3.1 3.2 1.2

Uauth 2.9 1.5 2.1 1.9 2.5 2.1 1.7 0.8 1.1 2.5 1.4 5.4 3.1 2.1 2.9 3.3 1.4

U/Th 0.7 0.3 0.4 0.4 0.6 0.9 0.5 0.4 0.4 0.7 0.4 1.6 0.8 1.0 0.7 1.4 0.6

*Samples JS2-0111, JS2-0174, JS2-0505, JS2-0689 and JS2-0758 are endogenous fine-grained mixed sediments.
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Table 3. TOC, REE contents and several associated parameters of fine-grained mixed sediments from the coring section (units in % and ppm)

Samples Depth (m) Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ∑REE LaN/YbN Samples Depth (m) TOC

JS2-0003 2001.0 28.2 33.8 71.0 8.6 31.5 5.9 1.2 5.5 0.8 4.8 1.0 2.8 0.4 2.8 0.4 170.6 1.18 T01 2008.9 0.32

JS2-0019 2006.1 26.0 32.3 67.7 8.2 29.9 5.6 1.1 5.1 0.8 4.5 0.9 2.6 0.4 2.6 0.4 162.0 1.19 T02 2019.4 0.32

JS2-0096 2029.1 26.9 32.2 67.9 8.1 29.9 5.6 1.2 5.3 0.8 4.6 0.9 2.7 0.4 2.7 0.4 162.6 1.17 T03 2029.9 0.37

JS2-0128 2040.1 26.7 32.3 67.5 8.1 30.2 5.7 1.1 5.3 0.8 4.7 0.9 2.7 0.4 2.7 0.4 162.8 1.17 T04 2041.8 0.23

JS2-0216 2069.0 26.2 30.3 64.0 7.6 28.1 5.4 1.1 5.0 0.7 4.4 0.9 2.6 0.4 2.6 0.4 153.5 1.14 T05 2059.3 0.28

JS2-0246 2079.7 26.1 30.7 64.2 7.7 28.3 5.4 1.1 5.0 0.7 4.5 0.9 2.7 0.4 2.7 0.4 154.6 1.10 T06 2073.0 0.38

JS2-0277 2089.4 22.1 24.1 50.5 6.4 23.7 4.6 1.0 4.5 0.6 3.8 0.7 2.1 0.3 2.0 0.3 124.7 1.15 T07 2092.9 0.36

JS2-0309 2099.1 27.5 32.1 68.2 8.2 30.0 5.7 1.2 5.3 0.8 4.7 0.9 2.7 0.4 2.7 0.4 163.3 1.17 T08 2111.7 0.31

JS2-0325 2103.9 22.6 26.6 55.2 6.6 24.3 4.6 0.9 4.4 0.6 3.9 0.8 2.2 0.3 2.2 0.3 133.0 1.18 T09 2121.0 0.26

JS2-0367 2119.1 28.4 33.8 71.0 8.6 31.6 6.0 1.2 5.5 0.8 4.9 1.0 2.9 0.4 2.8 0.4 170.8 1.15 T10 2136.3 0.31

JS2-0403 2128.9 24.7 30.3 63.3 7.6 27.7 5.2 1.0 4.9 0.7 4.2 0.9 2.5 0.4 2.4 0.4 151.4 1.22 T11 2155.4 0.33

JS2-0422 2133.8 26.4 31.3 65.7 7.9 29.1 5.5 1.1 5.2 0.8 4.6 0.9 2.6 0.4 2.6 0.4 158.0 1.17 T12 2166.2 0.33

JS2-0489 2153.5 25.4 29.5 61.8 7.4 27.6 5.3 1.1 5.0 0.7 4.2 0.8 2.4 0.4 2.3 0.3 149.0 1.22 T13 2175.5 0.22

JS2-0551 2173.4 25.8 30.3 62.2 7.5 27.6 5.3 1.1 5.0 0.7 4.3 0.9 2.5 0.4 2.4 0.4 150.6 1.21 T14 2182.1 0.34

JS2-0622 2192.4 27.9 33.5 69.8 8.3 30.8 5.8 1.2 5.4 0.8 4.7 1.0 2.8 0.4 2.7 0.4 167.6 1.19 T15 2190.4 0.31

JS2-0706 2217.6 24.0 28.6 59.1 7.1 26.1 4.9 1.0 4.7 0.7 4.0 0.8 2.4 0.4 2.3 0.3 142.4 1.20 T16 2198.5 0.29

JS2-0741 2227.7 28.9 34.4 72.5 8.7 32.1 6.1 1.2 5.6 0.8 4.9 1.0 2.9 0.4 2.9 0.4 174.0 1.17 T17 2208.7 0.21

JS2-0830 2252.7 24.3 28.1 58.9 7.1 26.0 5.0 1.0 4.7 0.7 4.2 0.8 2.4 0.4 2.3 0.3 142.0 1.16 T18 2223.8 0.30

JS2-0871 2262.8 29.0 34.7 73.5 8.8 32.5 6.3 1.2 5.8 0.8 5.0 1.0 2.8 0.4 2.8 0.4 176.2 1.21 T19 2232.0 0.62

JS2-0905 2272.9 29.6 34.5 74.0 8.8 32.6 6.3 1.2 5.8 0.8 5.1 1.0 2.9 0.4 2.9 0.4 176.9 1.15 T20 2242.8 0.35

JS2-0957 2287.3 27.6 33.0 69.5 8.3 30.5 5.8 1.2 5.4 0.8 4.7 0.9 2.7 0.4 2.7 0.4 166.2 1.21 T21 2263.2 0.52

JS2-0972 2292.4 24.6 29.4 61.8 7.4 27.1 5.1 1.0 4.8 0.7 4.2 0.8 2.4 0.4 2.4 0.4 147.9 1.19 T22 2280.0 0.25

JS2-1097 2327.2 24.0 27.7 56.4 6.4 25.5 4.8 1.0 4.6 0.7 4.1 0.8 2.3 0.4 2.3 0.4 137.3 1.17 T23 2286.4 0.42

JS2-1154 2342.5 26.7 32.1 66.2 7.5 29.7 5.6 1.2 5.3 0.8 4.7 0.9 2.6 0.4 2.5 0.4 159.9 1.23 T24 2302.1 0.36

JS2-1183 2352.6 25.7 32.6 68.3 7.8 30.9 5.9 1.2 5.6 0.8 4.7 0.9 2.5 0.4 2.4 0.4 164.5 1.32 T25 2307.3 0.66

JS2-1228 2367.5 26.7 33.1 65.9 7.3 28.8 5.4 1.1 5.3 0.8 4.6 0.9 2.5 0.4 2.4 0.4 158.8 1.36 T26 2329.4 0.41

JS2-1245 2372.6 25.3 31.7 64.0 7.2 28.2 5.3 1.1 4.9 0.7 4.4 0.9 2.5 0.4 2.5 0.4 154.2 1.23 T27 2338.9 0.49

JS2-1283 2387.5 26.3 31.8 64.7 7.4 28.8 5.5 1.1 5.0 0.8 4.7 0.9 2.6 0.4 2.6 0.4 156.7 1.19 T28 2349.9 0.30

JS2-1318 2397.4 23.0 26.9 55.5 6.2 24.7 4.7 1.0 4.4 0.7 4.0 0.8 2.3 0.3 2.3 0.4 134.3 1.13 T29 2362.9 1.11

JS2-0111* 2034.1 21.6 24.8 51.0 6.2 22.7 4.3 0.9 4.2 0.6 3.6 0.7 2.1 0.3 2.0 0.3 123.7 1.18 T30 2367.6 0.53

JS2-0174* 2054.1 16.1 18.2 36.7 4.1 16.0 3.0 0.6 3.0 0.4 2.6 0.5 1.5 0.2 1.5 0.2 88.6 1.20 T31 2383.5 0.38

JS2-0505* 2158.7 20.4 24.4 50.2 5.6 22.1 4.1 0.8 4.0 0.6 3.3 0.7 1.9 0.3 1.9 0.3 120.3 1.24 T32 2388.6 0.60

JS2-0689* 2212.7 17.2 21.0 42.9 4.9 19.1 3.6 0.7 3.5 0.5 2.9 0.6 1.7 0.2 1.6 0.2 103.4 1.25 T33 2390.2 0.42

JS2-0758* 2232.6 19.2 21.5 44.3 5.0 19.6 3.8 0.8 3.7 0.5 3.2 0.6 1.9 0.3 1.8 0.3 107.2 1.15 T34 2399.6 1.28

*Samples JS2-0111, JS2-0174, JS2-0505, JS2-0689 and JS2-0758 are endogenous fine-grained mixed sediments.
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provenance during Middle Miocene time, making it excellent for
reconstructing palaeoclimate (Fig. 1) (based on provenance analysis
and seismic data). The chemical index of alteration (CIA) and Sr/Cu
ratio can be used to quantify an evaluation of climate in contrast to
Mg/Ca, FeO/MnO and Al2O3/MgO (Sly, 1978; Nesbitt & Young,
1982). However, Cu is mainly supplied by detrital input under
oxidizing conditions (Tribovillard et al. 2006), resulting in its unsuit-
ability for reconstructing the climate. The aforementioned analysis
indicated oxidizing conditions during the deposition of the mixed
sediments, and the correlation analysis of the elements also showed
characteristics of detrital input for Cu. Consequently, we only use
authigenic Sr to reflect the climate changes here.

The CIA is defined as CIA= (Al2O3/(Al2O3þ CaO*þNa2Oþ
K2O))× 100, and all oxide contents are molar contents (Nesbitt &
Young, 1982). CaO* is the molar content of CaO in silicate minerals
instead of in carbonate and phosphate (Young&Nesbitt, 1999). The
calculation method of CaO* content here is modelled after
McLennan et al. (1993). Generally, low CIA values (50–60) reveal
cold and arid climatic conditions with weak chemical weathering;
moderate CIA values (60–80) reflect warm and humid climatic
conditions with medium chemical weathering; and high CIA values
(80–100) reveal hot and humid tropical climatic conditions with
intensive chemical weathering (Nesbitt & Young, 1982; Fedo
et al. 1995). The CIA values of the fine-grained mixed sediments

Fig. 6. Correlation of major, trace and rare earth elements of 34 samples of fine-grained mixed sediments from the coring section of the JS2 drillcore.
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range from 49 to 60 in this study (Table 1), indicating cold and arid
climatic conditions with weak chemical weathering (Fig. 9).

A large quantity of authigenic anhydrite and dolomite was
deposited in this saline lake, indicating non-humid climatic condi-
tions. However, interbedding of light-coloured sandy lamina and
dark fine-grained lamina can be observed in the fine-grained
mixed sediments; they are similar to typical seasonal lamina found
in the Newark supergroup core, which was interpreted as a winter/
summer growth pattern under a semi-arid climate (Olsen et al.
1996). This pattern is also reflected by the interbedding of light
and dark laminations in stromatolites (de Wet et al. 2020), which
are also observed in this study (Fig. 2b). In addition, the slump
deposit in microstratification and a large number of climbing
ripples observed in the mixed sediments also indicate a sedimen-
tary environment controlled by a seasonal river (Shan et al. 2020)
(Fig. 2c, d). Indeed, the Asian monsoon system was preliminarily
established in Early Miocene time (Liu & Ding, 1998; Guo et al.
2002; Sun &Wang, 2005; Lin et al. 2015); subsequently, the retreats
or expansions of the winter and summer monsoon mainly influ-
enced precipitation in the Qaidam Basin (Miao et al. 2011).
Therefore, we suggest the presence of a semi-arid climate in the
Qaidam Basin during Middle Miocene time. Moreover, a strong
seasonality dominated these climatic conditions, and the
arid–humid fluctuation also contributed to the formation of
fine-grained mixed sediments during this period.

The data also indicate a more arid tendency from sections B to
A. There are higher values of the Sr/Ba ratio, Sr content and loss on
ignition (LOI) in section A compared with section B; in particular,
the endogenous fine-grained mixed sediments in section A have
extremely high values (Fig. 9). As mentioned above, the higher
values of the Sr/Ba ratio and Sr content indicate saline water condi-
tions and a more arid climate (Wang & Wu, 1983; Zheng &
Liu, 1999; Zhang et al. 2004). LOI refers to the percentage of the
sample lost from the total mass under certain high-temperature
conditions (~1000 °C), which usually has a positive relationship
with carbonate content and/or organic content in lacustrine sedi-
mentary rocks (Bengtsson&Enell, 1986; Heiri et al. 2001).We note
that the LOI values synergistically change with the Sr/Ba ratios and
Sr values in the whole core section; specifically, the higher LOI
values correspond with the lower TOC values in our study
(Fig. 9). Thus, we conclude that the LOI values are mainly related
to carbonate content here.

Together with the two conclusions drawn above, (1) the source
of the fine-grained mixed sediments during Middle Miocene time
is stable, both for the endogenous and exogenous fine-grained
mixed sediments, and (2) the carbonate component in the mixed
sediments studied here is mainly authigenic, we suggest that the
higher LOI values do not affect the provenance, and they indicate
a more arid climate. Furthermore, we interpret this phenomenon
as indicating that relatively arid climatic conditions led to the

Fig. 7. Provenance identification plots for the fine-grained mixed sediments. (a) Th/Sc versus Zr/Sc. (b) TiO2 versus Zr. (c) Co/Th versus La/Sc. (d) Ternary plot illustrating La,
Th and Sc demonstrating the tectonic setting.
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weakening of terrigenous clastic physical transportation and the
enhancement of chemical precipitation.

The variation in TOC values of the fine-grained mixed sedi-
ments also indicates this climate change as occurring over time.
The TOC values are lower than 0.4 % for all the samples from
section A; meanwhile, more than half of the samples from section
B have TOC values greater than 0.5 %, and some even greater than
1.0 % (Fig. 9; Table 3). More algal limestone interlayers were
deposited in section B than in section A, indicating the prosperity
of algae under a relatively humid climate and their contribution to
the higher TOC.

In conclusion, the semi-arid climate dominates the salinity,
carbonate contents and organic matter contents of the lacustrine
basin in the Qaidam Basin during Middle Miocene time.
Moreover, the multiple indexes indicate that a drying trend moved
from section B to section A. However, the sedimentation rate and
palaeoredox did not move with this climate change.

5.d. Palaeoclimate indicated by gamma-ray logging

Generally, gamma-ray values are consistently high in shale layers
and low in carbonate layers (Gong & Li, 2020). Noticeably,

gamma-ray values represent the total effect of all radioactive
elements (Th, K, U) in the stratum, and only Th and K contents
usually have a linear relationship with shale contents (Chai et al.
2000; Wu et al. 2011). In our study, the gamma-ray values synerg-
istically change with Th and K contents, indicating that the
gamma-ray curves can be directly used for lithological characteri-
zation. The fine-grained mixed sediments studied here are homo-
geneous mixing products without obvious grain-size cycles, and
they contain ~30 % (and even higher) authigenic carbonate; thus,
their gamma-ray values better represent the mixing ratio of terrig-
enous clasts and intrabasinal carbonate. Consequently, the change
in gamma-ray values is significant for reconstructing climatic
evolution in saline lakes. The 2600 m long successive gamma-
ray logging data from the whole JS2 drillhole show very good
consistency with the δ18O values spanning the past 20million years
from the ocean drilling core (Fig. 10c), indicating the effect of
global climatic change on the Neogene palaeoclimate in the
Qaidam Basin. Several climate change events can also be identified
from this dataset (Fig. 10c), such as the MMCO, East Antarctic
ice-sheet expansion, Asian monsoons intensification and West
Antarctic ice-sheet expansion. In particular, the coring section
of the JS2 drillhole overlapped with the MMCO event.

Fig. 8. (Colour online) (a) Chondrite-normalized pattern of rare earth elements of fine-grained mixed sediments, NASC and PAAS. (b) REE distribution pattern of granite in the
north Altyn-Tagh and south Altyn-Tagh (Yang et al. 2012; Wu et al. 2014; Meng et al. 2016; Wu et al. 2017; Zheng et al. 2019). (c) REE distribution pattern of granite in the northern
Qaidam Basin collected from Xitie Mountain, Qaidam Mountain, Lvliang Mountain and Tuanyu Mountain (Qin, 2012). (d) REE distribution pattern of granite in the East Kunlun
Mountains collected from Hutouya, Nalengguole, Laligaoling and Aakechusai (1:250 000 regional geological survey report from Bukadaban Peak, Qinghai Geological Survey
Institute, 2004; Wang et al. 2014; Hao et al. 2014; Li et al. 2015).
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6. Discussion

6.a. Age model of the JS2 drillcore

An accurate chronology is crucial for discussing the palaeoclimate
within the Tibetan Plateau. Abundant work from the oilfield has
established a basin-wide lithostratigraphic framework for the
Qaidam Basin. According to this framework, the coring section
of the JS2 drillhole studied here covers the bottom of the SYSS
Fm and the top of the XYSS Fm. Therefore, the boundary age of
the SYSS and XYSS fms was relatively easy to obtain for this study.
However, the boundary age of the SYSS and XYSS fms in the
Qaidam Basin remains controversial.

Based on palaeomagnetic age dating from some profiles in the
basinal margins, twomainmodels for the boundary age of the SYSS
and XYSS fms suggest ages of ~13Ma (Lu & Xiong, 2009; Chang
et al. 2015) and 15.3 Ma (Fang et al. 2007; Wu et al. 2019; Fig. 10a).
Notably, Wang et al. (2017) and Nie et al. (2019) hold the view that
the boundary age of the SYSS and XYSS fms is 9.0 Ma, as estimated
by the Honggou fauna, and the onset of basin filling occurred at
~25.5 Ma, challenging the previous interpretations. Therefore,
we need to choose a boundary age for the SYSS and XYSS fms,
as mentioned for this study.

We tend to prefer the estimate of 15.3Ma after Fang et al. (2007)
as the boundary age of the SYSS and XYSS fms here. This estimate is
supported by the following facts. Many previous studies show that
the climate changes of Central Asia were synchronous with global
climate changes on a large scale during the Miocene Epoch. This
is determined through a comparison of high-resolution proxy
indexes, including pollen and magnetic susceptibility and oxygen
isotopes from the Qaidam Basin, Tianshui Basin, Ningxia Basin,
Linxia Basin, South China Sea and global sea (99-point moving

average; e.g. Zachos et al. 2001; Jiang & Ding, 2008; Tian
et al. 2008; Hui et al. 2011; Miao et al. 2011; Guan et al. 2019;
Figs 1a, 10b). Indeed, our gamma-ray data also support this view very
well (Fig. 10b). By comparing this gamma-ray curve with global
temperature and other climatic proxies, the MMCO event
(17–15Ma) can be easily identified, and the boundary of the SYSS
and XYSS fms falls within this span and near the top of this event.
Thus, the boundary age of the SYSS/XYSS fms is suggested to be
~15Ma. Moreover, according to this method, the boundary age of
the SYSS/SZG fms can be estimated as 8Ma (Fig. 10c). In fact, the
palaeomagnetic age of the boundary of the SYSS and SZG fms from
different profiles in the Qaidam Basin is 8.1Ma without obvious
controversy (Zhang, 2006; Fang et al. 2007; Ji et al. 2017), further
illustrating the reasonable approach of our age model (Fig. 10a).

According to this age model, the boundary age of sections A and
Bwithin the coring section is earlier than 15.3Ma (Fig. 9). The above
study shows that the sedimentary rate underwent no obvious change
during the deposition of the coring section of the JS2 drillhole.
Subsequently, given an assumption of a constant sedimentation rate,
the boundary age of sections A and B is between 15.3 and 16Ma.
In any case, this boundary is within theMMCO event, meaning that
there was a corresponding climatic change in the QaidamBasin; this
is reflected by the increase in carbonate-rich mixed sediments,
decrease in algal limestone layers, decrease in lacustrine organic
matter and the change in palaeosalinity in terms of basin filling.

6.b. Factors affecting climatic change during Middle
Miocene time

Previous studies suggest that, during Middle Miocene time, there
were warm and wet climatic conditions in monsoon-sensitive

Fig. 9. (Colour online) Columns of indicators (U/Th, TOC, LaN/YbN, Sr/Ba, Sr, CIA, LOI) for fine-grained mixed sediments from the coring section.
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Fig. 10. (Colour online) (a) Palaeomagnetic age dating from some profiles in the basinal margin, which includes the boundary age of the SYSS/XYSS fms and the SYSS/SZG fms.
(b) Comparison of regional and global climatic records during the Miocene Epoch, including the Middle Miocene Climatic Optimum and Middle Miocene Climate Cooling.
a – magnetic susceptibility record of the HTG section in the Qaidam Basin (Guan et al. 2019); b – percentages of the pollen of xerophytic taxa from core KC-1 from the
Qaidam Basin (Miao et al. 2011); c – tree pollen percentages from the Yanwan section in the Tianshui Basin (Hui et al. 2011); d – humidity index from the pollen record
of the Sikouzi section (Jiang & Ding, 2008); e – δ18O record of ODP Site 1148 (Tian et al. 2008); f – global marine δ18O record (Zachos et al. 2001); g – the gamma-ray curves
of the JS2 drillcore. (c) Age model of the JS2 drillcore. a – global temperature records (Westerhold et al. 2021); b – the JS2 drillcore gamma-ray log between 3000 and
400 m; c – climatic events during the Neogene Period (Zachos et al. 2001); d – age model in the Huatoutala section (Fang et al. 2007).
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regions, such as the Yunnan Basin (Lebreton-Anberrée et al. 2016),
Loess Plateau (Dong et al. 2018), Tianshui Basin (Hou et al. 2014)
and Xining Basin (Zan et al. 2015), and that the climate began
drying at ~13 Ma. Taken together, these records indicate a rela-
tively warm and humid climate during theMMCOperiod, and that
the climate progressively deteriorated at 14–13Ma in Central Asia,
consistent with global climate changes. This climatic change in the
Qaidam Basin can be illustrated by the successive gamma-ray
logging data from the whole JS2 drillhole in this study; based on
our age model, its onset time was ~14Ma, which is related to
the East Antarctic ice-sheet expansion (Fig. 10) and consistent with
other research (Zachos et al. 2001; Westerhold et al. 2021).
However, our geochemical data and analysis of petrology indicate
that, during the MMCO period, the palaeoclimate in the Qaidam
Basin was characterized as semi-arid; thus, we suggest that the
palaeoclimate of the Qaidam Basin during the MMCO was dryer
than once thought.

This suggestion is supported by other investigations; for
example, the palynological analysis of the KC-1 core from the
Qaidam Basin also shows that the climate became dryer
throughout the Miocene Epoch (Miao et al. 2011, 2012). The exist-
ence of a dryer climate in the Qaidam Basin than in other areas in
Central Asia during the MMCO period, as interpreted here, might
be caused by the change of topography resulting from the uplift of
the northeastern Tibetan Plateau at that time. Furthermore,
numerous studies indicate that the main part of the Tibetan
Plateau could have reached ~4 km or more as early as ~23Ma,
and then mainly affected the northeastern part against the back-
ground of a high-altitude plateau (e.g. Rowley & Currie, 2006;
DeCelles et al. 2007; Rowley & Garzione, 2007). The ‘barrier effect’
of the plateau may have altered the vapour transport pathways,
preventing moisture from the south and southeast from moving
into the Asian arid region and eventually creating the non-humid
climate in the Qaidam Basin.

Notably, one climatic change that occurred earlier than 15Ma
identified in this study falls in the MMCO period. Indeed, this
climatic fluctuation is seldom mentioned worldwide, and its cause
is worthy of being discussed. The Paratethys that covered large
areas of Central Asia during late Eocene–Oligocene times and
influenced regional climate by immediately providing water
vapour (Ramstein et al. 1997) had retreated from the Asian inland
during Middle Miocene time (~15Ma; Popova et al. 2004). The
Early–Middle Miocene planktonic foraminifera at Miran River
in the SE Tarim Basin, very close to the western Qaidam Basin,
have not been observed in the post-Middle Miocene strata.
Although attributing this planktonic foraminifer assemblage to
either marine or terrestrial products remains open for discussion,
the inference of a westward water retreat at that time seems reason-
able (Ritts et al. 2008). Moreover, this palaeogeographic change
coincided with the synchronous tectonic reorganization of the
Altyn-Tagh fault system and northeastern Tibetan Plateau
(Wu et al. 2019). Therefore, this tectonic and related palaeogeo-
graphic event may have created a barrier to water vapour in the
Qaidam Basin from the west and consequently produced a drier
climate in the Qaidam Basin.

Ultimately, global climate changes, as the primary factor,
controlled the overall characteristics and changes of the Neogene
climate in the Qaidam Basin, including the occurrence of the
MMCO and the cooling and drying tendency. Regional events
were the secondary factor contributing to the dryer climate in
the Qaidam Basin relative to other areas in Central Asia and the
secondary climatic change during the MMCO period.

7. Conclusion

Fine-grained mixed sediments, as a sensitive indicator of palaeo-
climate, were widely deposited in the Miocene Qaidam Lake.
These rocks were formed by the mixing of siliciclastic, carbonate
and clay components, and the relative content of each is less than
50 %. The long-term global cooling trend and typical abrupt events
(such as the MMCO during 17–15 Ma) in the past 20 million years
are well identified in the Qaidam Basin via petrological observa-
tion, geochemical data and 2600 m long successive gamma-ray
logging data analysis of the fine-grained mixed sediments.
The difference, however, is that theMiddleMiocene Qaidam lacus-
trine basin developed in oxidizing, high-sedimentation rate and
brackish-saline water conditions in a semi-arid climate, indicating
a dryer climate in the Qaidam Basin than in the monsoon-sensitive
regions of Central Asia during the MMCO period. Also identified
in this study is one climatic change that occurred before 15Ma; this
is characterized by an increase in carbonate-rich mixed sediments,
a decrease in algal limestone layers, a decrease in lacustrine organic
matter and a change in palaeosalinity in terms of basin filling.
This event falls in the MMCO period and is seldom mentioned
worldwide; we interpret it as the potential result of regional
tectonic events, such as the retreat of the Paratethys from
Central Asia at ~15Ma and the synchronous tectonic reorganiza-
tion of the Altyn-Tagh fault system and the northeastern Tibetan
Plateau.

We suggest that global climate changes were the primary factor
affecting the Neogene climate in the Qaidam Basin, influencing the
overall climatic characteristics and cooling tendency; meanwhile,
regional events were secondary, resulting in the dryer climate
in the Qaidam Basin relative to other areas in Central Asia during
the MMCO period, and the secondary climatic change during the
MMCO period.
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