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Abstract Let Γ be a finitely generated group of matrices over C. We construct an isometric action
of Γ on a complete CAT(0) space such that the restriction of this action to any subgroup of Γ
containing no nontrivial unipotent elements is well behaved. As an application, we show that if M
is a graph manifold that does not admit a nonpositively curved Riemannian metric, then any finite-
dimensional C-linear representation of π1(M) maps a nontrivial element of π1(M) to a unipotent matrix.
In particular, the fundamental groups of such 3-manifolds do not admit any faithful finite-dimensional
unitary representations.

1. Introduction

Let F be a field and n a positive integer. An element of SLn(F ) is unipotent if

it has the same characteristic polynomial as the identity matrix. In [9, 10], Button

demonstrated that finitely generated subgroups of SLn(F ) containing no infinite-order

unipotent elements share some properties with groups acting properly by semisimple
isometries on complete CAT(0) spaces. Indeed, Button showed that if F has positive

characteristic (in which case any unipotent element of SLn(F ) has finite order), then

any finitely generated subgroup of SLn(F ) admits such an action [10, Theorem 2.3]. The
main theorem of this article is intended to serve as an analogue of the latter result in

the characteristic-zero setting. (Note that, since any finitely generated characteristic-zero

domain embeds in C, one may view any finitely generated subgroup of SLn(F ), where F
is a field of characteristic zero, as a subgroup of SLn(C).)
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2 S. Douba

Theorem 1.1. Let Γ be a finitely generated subgroup of SLn(C), n > 0. Then Γ acts on

a complete CAT(0) space X such that

(i) for any subgroup H < Γ containing no nontrivial unipotent matrices, the induced

action of H on X is proper;

(ii) if such a subgroup H is free abelian of finite rank, then H preserves and acts as a

lattice of translations on a thick flat in X; in particular, any infinite-order element
of such a subgroup H acts ballistically on X;

(iii) if g ∈ Γ is a diagonalizable, then g acts as a semisimple isometry of X.

See Section 2 for the relevant definitions. The space X is a finite product
∏

iXi of

symmetric spaces of noncompact type and (possibly locally infinite) Euclidean buildings,
and Γ acts on X via a product

∏
iSLn(Ki), where the Ki are completions of the entry

field E of Γ with respect to various absolute values on E. The technique of extracting

information about a linear group by varying the absolute value on its entry field is credited
to Tits [30] and was employed by Margulis in the latter’s proof of arithmeticity of higher-

rank lattices [24].

We remark that, taken on its own, property (i) in Theorem 1.1 is not so interesting.

Indeed, the author is not aware of a finitely generated group that is known to admit
no proper action on a complete CAT(0) space. On the other hand, there are several

constraints on those finitely generated groups Γ admitting proper actions by semisimple

isometries on complete CAT(0) spaces. For instance, within such Γ, finitely generated
abelian subgroups are undistorted (in particular, all polycyclic or Baumslag–Solitar

subgroups are virtually abelian), and central finite-rank free abelian subgroups are virtual

direct factors; see [7, Ch. III.Γ, Thm. 1.1(i)-(iv)]. Button [10] showed that these properties
persist when Γ is replaced with a finitely generated subgroup of SLn(C) lacking nontrivial

unipotents. We view Theorem 1.1 as providing geometric context for Button’s results (see

Remark 2.3 and Corollary 4.1).

Since an element of SLn(C) that is both diagonalizable and unipotent must be trivial,
the following corollary of Theorem 1.1 is immediate.

Corollary 1.2. Any finitely generated subgroup of SLn(C) consisting entirely of diago-

nalizable matrices acts properly by semisimple isometries on a complete CAT(0) space.

Precompact subgroups of SLn(C) are conjugate into SU(n) and thus consist entirely
of diagonalizable matrices. Furthermore, by the Peter—Weyl theorem, any compact Lie

group can be realized as a compact subgroup of SLn(C) for some n [8, Theorem III.4.1].

Thus, by Corollary 1.2, any finitely generated subgroup of a compact Lie group admits a
proper action by semisimple isometries on a complete CAT(0) space.

For us, a graph manifold is a connected closed orientable irreducible non-Seifert

3-manifold all of whose Jaco–Shalen–Johannson (JSJ) blocks are Seifert. Property (ii)

of the action described in Theorem 1.1 allows us to conclude the following fact about
representations of fundamental groups of graph manifolds.

Theorem 1.3. Let M be a graph manifold, and let ρ : π1(M) → SLn(C) be any

representation. If M does not admit a nonpositively curved Riemannian metric, then
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Proper CAT(0) actions of unipotent-free linear groups 3

there is a JSJ torus S of M and a nontrivial element h ∈ π1(S) < π1(M) such that ρ(h)

is unipotent.

A compact manifold is said to be nonpositively curved (NPC) if its interior admits

a complete nonpositively curved Riemannian metric. Those non-NPC graph manifolds
M that are not Sol 3-manifolds are the only remaining aspherical 3-manifolds whose

fundamental groups are not known to admit faithful finite-dimensional linear repre-

sentations. Such M abound; see Buyalo–Kobel’skii [11] or Kapovich–Leeb [20, Section

3.2]. Theorem 1.3, while failing to preclude a characteristic-zero matrix representation
of π1(M) sending no nontrivial element to the identity (i.e., a faithful representation),

achieves the weaker objective of ruling out any characteristic-zero matrix representation

of π1(M) mapping no nontrivial element to a unipotent matrix. This indeed distinguishes
the non-NPC graph manifolds from their NPC counterparts, as we explain below.

By work of Agol [2] (building on work of Bergeron–Wise [5, Thm. 1.5] that used as

crucial input a deep result of Kahn–Marković [18]), Przytycki—Wise [26, 27], Liu [23] and
Wise [31, Thm. 1.5], the fundamental group of any compact NPC 3-manifold is virtually

special in the sense of Haglund and Wise [17] (for a detailed history of this result, see

[4, Ch. 4]). By the theory of special cube complexes developed by the latter two authors,

it then follows that the fundamental groups of such manifolds virtually embed into right-
angled Coxeter groups. Moreover, Agol [1] showed that any finitely generated right-angled

Coxeter group embeds in a compact Lie group (for an elaboration on Agol’s argument, see

[13]). Since the property of embedding in some compact Lie group passes to finite-index
supergroups via induced representations, one concludes that the fundamental group of

any compact NPC 3-manifold embeds in a compact Lie group. On the other hand, if M

is a compact aspherical non-NPC 3-manifold, then M is closed [6, Thm. 4.3], and either
M is Seifert, in which case there is a nontrivial element of π1(M) that gets mapped to

a virtually unipotent matrix under any finite-dimensional linear representation of π1(M)

(see, for example, the discussion in the introduction of [14]), or the orientation cover of M

is a non-NPC graph manifold. Thus, we obtain from Theorem 1.3 the following corollary.

Corollary 1.4. Let M be a compact aspherical 3-manifold. Then the following are
equivalent:

(i) the manifold M is nonpositively curved;

(ii) the fundamental group π1(M) embeds in a compact Lie group;

(iii) there is a faithful finite-dimensional C-linear representation of π1(M) whose image
consists entirely of diagonalizable matrices;

(iv) there is a faithful finite-dimensional C-linear representation of π1(M) whose image

contains no nontrivial unipotent matrices.

We remark that a result similar to Theorem 1.1 was announced in [25, Theorem 1.4].

However, the proof of [25, Theorem 4.8], on which that result rests, contains an error; a
CAT(0) action of a finitely generated linear group G with proper restrictions to certain

subgroups of G is desired, but what is provided is a proper CAT(0) action for each such

subgroup of G.
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4 S. Douba

Organization

In Section 2, we define the relevant objects, discuss briefly some properties of ballistic

isometries of complete CAT(0) spaces and introduce the central notion of a ‘thick flat’ in

such a space. In Section 3, we prove several lemmas used in the proofs of Theorems 1.1

and 1.3. The latter proofs are contained in Section 4.

2. Preliminaries

2.1. Complete CAT(0) spaces

Let X be a complete CAT(0) space and ∂X its visual boundary. We will make references

to the cone topology on X :=X∪∂X, described in [7]. Under this topology, a sequence of

points xn ∈X converges to ξ ∈ ∂X if and only if for some (hence any) point x0 ∈X, the

geodesics joining x0 to xn converge uniformly on compact intervals to the unique geodesic
ray emanating from x0 in the class of ξ. In addition, we will use the angular metric ∠ on

∂X, also described in [7]. Note that the topology on ∂X induced by the angular metric

is in general finer than the cone topology on ∂X.
An r -dimensional flat in X is an isometrically embedded copy of Rr in X. We say X

is π-visible if for any ξ,η ∈ ∂X satisfying ∠(ξ,η) = π, there is a geodesic line in X whose

endpoints on ∂X are ξ and η. Since Euclidean spaces are π-visible, a complete CAT(0)
space X with the property that any two points on ∂X lie on the boundary of a common

flat in X is also π-visible. Note that if X is a Euclidean building, a symmetric space of

noncompact type, or a product of such spaces, then X possesses the latter property by

the building structure on ∂X so that X is π-visible. For more information on symmetric
spaces, we refer the reader to the monograph [16].

2.2. Isometries of complete CAT(0) spaces

Let (X,dX) be a complete CAT(0) space, and let g ∈ Isom(X). The translation length of g

is the quantity |g|X := infx∈X dX(x,gx). The isometry g is semisimple if |g|X = dX(x0,gx0)

for some x0 ∈X. We say g is ballistic (resp., neutral) if |g|X > 0 (resp., if |g|X = 0), and
hyperbolic if g is both ballistic and semisimple. A subgroup H < Isom(X) acts neutrally

on X if each h ∈H is neutral.

Example 2.1. Consider the action of SLn(C) on its associated symmetric space Xn :=
SLn(C)/SU(n), where the latter is endowed with an SLn(C)-invariant Riemannian metric.

Under a suitable scaling of this metric, we have that for each g ∈ SLn(C), the translation

length of g on Xn is given by

|g|X =

(
n∑

k=1

(ln|λk|)2
) 1

2

,

where λ1, . . . ,λn ∈ C are the eigenvalues of g. In particular, a matrix g ∈ SLn(C) acts as

a ballistic (resp., neutral) isometry of Xn if and only if g has an eigenvalue of modulus
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Proper CAT(0) actions of unipotent-free linear groups 5

�= 1 (resp., if and only if all eigenvalues of g are of modulus 1). Moreover, an element

g ∈ SLn(C) acts as a semisimple isometry of Xn if and only if g is diagonalizable. Thus,

for example, the matrix ⎛
⎝2 1 0

0 2 0

0 0 1
4

⎞
⎠

acts as a ballistic isometry of X3 that is not hyperbolic.

Returning to the general setting, if g ∈ Isom(X) is ballistic, then there is a point ωg ∈ ∂X

such that for any x∈X, we have gnx→ωg as n→∞ with respect to the cone topology on

X [12]; we call ωg the canonical attracting fixed point of g. We use repeatedly the following
fact, due to Duchesne [15, Prop. 6.2]. For an arbitrary group G and g1, . . . ,gm ∈ G, we

denote by ZG(g1, . . . ,gm) the centralizer of g1, . . . ,gm in G.

Theorem 2.2. Let X be a complete π-visible CAT(0) space, and suppose g ∈ Isom(X)

is ballistic. Then there is a closed convex subspace Y ⊂ X and a metric decomposition
Y = Z×R such that

• ZIsom(X)(g) preserves Y and acts diagonally with respect to the decomposition
Y = Z×R, acting by translations on the second factor;

• the isometry g acts neutrally on the factor Z.

Remark 2.3. Using Theorem 2.2, one can easily adapt the proof of [7, II.6.12] to show

that if Γ is a finitely generated group acting by isometries on a complete π-visible CAT(0)

space X and H is a central finite-rank free abelian subgroup of Γ all of whose nontrivial
elements act ballistically on X, then H is a virtual direct factor of Γ, that is, there is

a finite-index subgroup of Γ containing H as a direct factor. (In fact, the π-visibility

assumption in the previous sentence can be removed by replacing the map ZIsom(X)(g)→
R given by Theorem 2.2 with the Busemann character associated to ωg in the more general

setting; see [12, page 673].) One then recovers from Theorem 1.1(ii) Button’s result [10,

Cor. 3.3] that if Γ is a finitely generated subgroup of SLn(C) and H is a central finite-rank

free abelian subgroup of Γ lacking nontrivial unipotents, then H is a virtual direct factor
of Γ.

In accordance with [7], we define an isometric action of a group H on a metric space

X to be proper if for any point x ∈ X, there is a neighborhood U ⊂ X of x such that

{h ∈ H : U ∩hU �= ∅} is finite. In this case, the set {h ∈ H : K ∩hK �= ∅} is finite for
any compact subset K ⊂X (see, for example, [7, Remark I.8.3(1)]). Note, however, that

if the metric space X is not proper, that is, if X possesses bounded subsets that are not

precompact, then X may contain balls B such that {h ∈H : B∩hB �= ∅} is infinite; that
is, the notion of properness for isometric actions used here is strictly weaker than metric

properness. We remark that the particular CAT(0) space X described in Theorem 1.1

is in general not proper; however, if the entries of the elements of Γ are all algebraic,
then one can indeed arrange for X to be proper (in the latter case, one can choose the

valuations ν1, . . . ,νm on E in the proof of Theorem 1.1 such that Eνi
is a local field for

i= 1, . . . ,m).
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6 S. Douba

We will make use of the following well-known theorem [7, Theorem II.7.1].

Theorem 2.4. Let H be a free abelian group of rank r acting properly by semisimple

isometries on a complete CAT(0) space X. Then H preserves and acts as a lattice of
translations on an r-dimensional flat in X.

2.3. Thick flats

Let r ≥ 0 be an integer. A triple (Y ,Z,ϕ), where Z ⊂ Y ⊂X are nonempty closed convex
subspaces and ϕ : Y →Z×Rr is an isometry satisfying ϕ(z) = (z,0) for all z ∈Z, is called

a thick flat of dimension r in X. We say a group H acting isometrically on X preserves

the thick flat (Y ,Z,ϕ) if H preserves Y. Such a group H acts as a lattice of translations
on the thick flat (Y ,Z,ϕ) if H acts diagonally with respect to the decomposition Z×Rr

given by ϕ, acting neutrally on the first factor and by translations on the second, and

in addition the induced map φ :H → Rr embeds H as a lattice of Rr. We will typically

suppress the data of Z and ϕ and refer to a thick flat (Y ,Z,ϕ) simply as Y.

3. Lemmata

Lemmas 3.1 and 3.2 are probably well known, but we include their proofs for completeness.
The objective is to determine the canonical attracting fixed point of a ballistic isometry

acting diagonally on a product.

Lemma 3.1. Let Y ,Z be complete CAT(0) spaces and X = Y ×Z. Suppose gY is a

neutral isometry of Y and gZ a hyperbolic isometry of Z, and let g,g′ ∈ Isom(X) be the
isometries gY ×gZ , IdY ×gZ of X, respectively. Then ωg = ωg′ .

Proof. There exist a geodesic line γZ : R → Z in Z and a positive number 
 such that

gZ(γZ(t)) = γZ(t+ 
) for any t ∈ R. The point ωg′ ∈ ∂X is represented by a geodesic ray

of the form (y0,γZ(t)), t≥ 0, y0 ∈ Y . Thus, we reduce to the case that Z =R and gZ is a
translation by 
 > 0. Set x0 = (y0,0), and for n ∈ N, let γ(n) : [0,∞)→X be given by

γ(n)(t) =

{
γ(n)(t) 0≤ t≤ dX(x0,g

nx0)

gnx0 t > dX(x0,g
nx0)

,

where γ(n) is the geodesic segment in X from x0 to gnx0. We show that the γ(n) converge

uniformly on compact subsets as n → ∞ to the geodesic ray γ : [0,∞) → X given by

t �→ (y0,t).
To that end, let R > 0, and let n be large enough such that dX(x0,g

nx0) ≥ R.

Then γ(n)(t) = (γ
(n)
Y (t),αnt) for 0 ≤ t ≤ R, where αn > 0 and γ

(n)
Y is a linearly

reparameterized geodesic segment in Y joining y0 to gnY y0. Note that the maximum
value of dX(γ(t),γ(n)(t)) on [0,R] is attained at t=R; indeed, for 0≤ t≤R, we have

dX(γ(t),γ(n)(t))2 = dY (y0,γ
(n)
Y (t))2+ t2(1−αn)

2.
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Proper CAT(0) actions of unipotent-free linear groups 7

Thus, it suffices to show that dX(γ(R),γ(n)(R))→ 0. This will follow if we can show that

dY (y0,γ
(n)
Y (R))→ 0 since

R2 = dX(x0,γ
(n)(R))2 = dY (y0,γ

(n)
Y (R))2+α2

nR
2.

To see that dY (y0,γ
(n)
Y (R))→ 0, note that since γ

(n)
Y is a linearly reparameterized geodesic

segment, we have

dY (y0,γ
(n)
Y (R))

dY (y0,gnY y0)
=

R

dX(x0,gnx0)

and so

4dY (y0,γ
(n)
Y (R))2 =R2 dY (y0,g

n
Y y0)

2

dX(x0,gnx0)2

=R2 dY (y0,g
n
Y y0)

2

dY (y0,gnY y0)
2+n2
2

=R2

(
dY (y0,g

n
Y y0)

n

)2

(
dY (y0,gn

Y y0)

n

)2

+ 
2
.

Now, the latter approaches 0 as n→ 0 since

lim
n→∞

dY (y0,g
n
Y y0)

n
≤ |gY |Y

and |gY |Y = 0 by assumption.

We bootstrap Lemma 3.1 to prove the following lemma, which features in the proof of
Theorem 1.1(ii).

Lemma 3.2. Let X1,X2 be complete π-visible CAT(0) spaces, let gi ∈ Isom(Xi) for i=1,2
and suppose g1 is ballistic. Let X =X1×X2, and let g = g1×g2 ∈ Isom(X). Then g acts

ballistically on X and

ωg =

(
arctan

(
|g2|X2

|g1|X1

)
,ωg1,ωg2

)

in the spherical join ∂X1 ∗∂X2 = ∂X.

Proof. We suppose first that g1,g2 are both ballistic so that we may assume that Xi

admits a decomposition Xi = Yi×Zi with respect to which gi acts diagonally, where Zi

is isometric to R, and where gi acts neutrally on the first factor and acts by a translation

of |gi|Xi
on the second factor. Let g′i ∈ Isom(Xi) be the product of the identity on Yi with

the translation by |gi|Xi
on Zi, and let g′ = g′1 × g′2 ∈ Isom(X). Note we have |gi|Xi

=

|g′i|Xi
, and by Lemma 3.1, we have ωgi = ωg′

i
. Moreover, by viewing X as the product

X = (Y1×Y2)× (Z1×Z2), we also have ωg = ωg′ by Lemma 3.1. Thus, to establish the
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lemma, it suffices to show

ωg′ =

(
arctan

(
|g′2|X2

|g′1|X1

)
,ωg′

1
,ωg′

2

)
,

but this follows from plane geometry since g′1,g
′
2 preserve and act as translations on the

two-dimensional flat {(y1,y2)}× (Z1×Z2)⊂X, where yi is any point in Yi.

If g2 is neutral, then we may only assume that X1 admits a decomposition X1 = Y1×Z1

as above, and now the lemma follows immediately from Lemma 3.1 by viewing X as the

product X = (Y1×X2)×Z1.

We now apply Lemma 3.1 to the special case of matrices acting on symmetric spaces.

Lemma 3.3. Let M = GLn(C)/U(n) be the symmetric space associated to GLn(C),

endowed with a GLn(C)-invariant Riemannian metric, and let g ∈GLn(C) be of the form

g = diag(λ1U1, . . . ,λmUm),

where λ1, . . . ,λm ∈ C∗ with |λk| �= 1 for at least one k ∈ {1, . . . ,m}, and Uk ∈ SLnk
(C) is

an upper unitriangular matrix for k ∈ {1, . . . ,m}. Then g acts ballistically on M and has
the same canonical attracting fixed point as

g′ := diag(λ1In1
, . . . ,λmInm

)

on ∂M . The same statement holds when GLn(C) is replaced with SLn(C) and M is

replaced with SLn(C)/SU(n).

Proof. For k = 1, . . . ,m, let X,Xk,Yk,Zk be the projections of the subgroups

{diag(h1, . . . ,hm) : hk ∈GLnk
(C)}

{diag(In1
, . . . ,Ink−1

, h, Ink+1
, . . . ,Inm

) : h ∈GLnk
(C)}

{diag(In1
, . . . ,Ink−1

, h, Ink+1
, . . . ,Inm

) : h ∈ SLnk
(C)}

{diag(In1
, . . . ,Ink−1

, etInk
, Ink+1

, . . . ,Inm
) : t ∈ R}

of GLn(C) to M under the quotient map GLn(C) → M = GLn(C)/U(n), respectively.
Then X is a closed convex subspace of M admitting a decomposition X =

∏m
k=1Xk. The

subspace Xk in turn admits a decomposition Xk = Yk×Zk, and the factor Zk is isometric

to R. Each of the isometries g,g′ preserves X and acts diagonally with respect to the
decomposition X =

∏m
k=1Xk. On each factor Xk, each of g,g′ also acts diagonally with

respect to the decomposition Xk = Yk ×Zk, acting neutrally on the first factor (via the

matrix Uk in the case of g and via the identity Ink
in the case of g′) and as a translation

by αk ln |λk| on the second for some αk > 0. The lemma now follows from Lemma 3.1 by
setting Y =

∏m
k=1Yk and Z =

∏m
k=1Zk and viewing X as the product Y ×Z.

To see that the lemma remains true when GLn(C) is replaced with SLn(C), note that

(up to scaling the metrics) the symmetric space for SLn(C) embeds as a closed convex
SLn(C)-invariant subspace of the symmetric space for GLn(C).

We now observe that a collection of pairwise commuting matrices over C can be

simultaneously put into the form described in Lemma 3.3.
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Proper CAT(0) actions of unipotent-free linear groups 9

Lemma 3.4. Let K be an algebraically closed field, and let hα ∈Mn(K) be a collection

of pairwise commuting matrices. Then there are s ∈ N and C ∈ SLn(K) such that

ChαC
−1 = diag(hα,1, . . . ,hα,s),

where hα,� ∈Mn�
(K) is upper triangular and has a single eigenvalue for 
= 1, . . . ,s.

Proof. Since K is algebraically closed, it suffices to find such C ∈ GLn(K); indeed, we

may ultimately replace C with μC, where μ is an nth root of 1/det(C). We now proceed

by induction on n. The case n = 1 is trivial. Now, let n > 1 and suppose the above
claim has been established for matrices of smaller dimension. If each of the hα has a

single eigenvalue, then the statement follows from the fact that any collection of pairwise

commuting elements of Mn(K) are simultaneously upper triangularizable [28, Theorem
1.1.5]. Now, suppose a matrix h∈ {hα}α has more than one eigenvalue. By putting h into

Jordan canonical form, for instance, we may assume h is of the form

h= diag(h1,h2),

where hi ∈Mni
(K) for i=1,2 and h1,h2 do not share an eigenvalue. Since the hα commute

with h, they preserve the generalized eigenspaces of h, and so hα also has a block-diagonal
structure

hα = diag(hα,1,hα,2),

where hα,i ∈ Mni
(K) for i = 1,2. The lemma now follows by applying the induction

hypothesis to the collections {hα,i}α, i= 1,2.

We now prove what one might call a ‘thick flat torus theorem’. This fact is used in the
proof of Theorem 1.1(ii).

Theorem 3.5. Suppose X is a complete π-visible CAT(0) space and H is a free abelian

subgroup of Isom(X) with a basis h1, . . . ,hr ∈H consisting of ballistic isometries such that
for each m∈ {1, . . . ,r}, there is no (m−1)-dimensional flat in X whose boundary contains

the canonical attracting fixed points ωh1
, . . . ,ωhm

. Then H preserves and acts as a lattice

of translations on a thick flat of dimension r in X.

Proof. We prove by induction the following statement: Form∈ {1, . . . ,r}, there is a closed
convex subspace Ym of X and a decomposition Ym = Zm×Rm such that

• ZIsom(X)(h1, . . . ,hm) preserves Ym and acts diagonally with respect to the decom-
position Ym = Zm×Rm, acting by translations on the second factor;

• the subgroup 〈h1, . . . ,hm〉 acts neutrally on the first factor and as a lattice of
translations (in the usual sense) on the second.

The base case m= 1 is given by Theorem 2.2 (note that a zero-dimensional flat is just a

singleton and hence has empty boundary). Now, suppose the above holds for m−1, where

m ∈ {2, . . . ,r}. Then since hm ∈ ZIsom(X)(h1, . . . ,hm−1), we have that hm preserves Ym−1

and acts diagonally with respect to the decomposition Ym−1 = Zm−1×Rm−1. Moreover,

the action of hm on the factor Zm−1 must be ballistic, since otherwise ωh1
, . . . ,ωhm

would

be contained in the boundary of {z}×Rm−1 by Lemma 3.1, where z is any point in Zm−1.
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Now, Zm−1 is a complete π-visible CAT(0) space so that by Theorem 2.2 there is a closed

convex subspace Y of Zm−1 and a decomposition Y = Z×R satisfying

• ZIsom(Zm−1)(hm) preserves Y and acts diagonally with respect to the decomposi-
tion Y = Z×R, acting by translations on the second factor;

• the action of hm on the first factor Z is neutral.

Then the subspace Ym := Y ×Rm−1 ⊂ Zm−1×Rm−1 has the desired properties.

The following observation is used in the proof of Lemma 3.7.

Lemma 3.6. Let X be a complete CAT(0) space, and suppose H < Isom(X) is a free
abelian subgroup with a basis h1, . . . ,hr ∈H. Suppose H preserves and acts as a lattice of

translations on thick flats Y ,Y ′ of dimension r in X, and let φ,φ′ be the induced maps H →
Rr, respectively. Then the unique linear map T : Rr → Rr satisfying T (φ(hi)) = φ′(hi) for

i= 1, . . . ,r is orthogonal.

Proof. We wish to show that T preserves the standard inner product on Rr. Since the

φ(hi) constitute a basis for Rr, it suffices to show that 〈φ′(hi),φ
′(hj)〉= 〈φ(hi),φ(hj)〉 for

i,j ∈ {1, . . . ,r}. This is equivalent to saying that for i,j ∈ {1, . . . ,r}, we have ‖φ(hi)‖ =

‖φ′(hi)‖ and ∠(φ(hi),φ(hj)) = ∠(φ′(hi),φ
′(hj)). The former is true since

‖φ(hi)‖= |hi|X = ‖φ′(hi)‖,

and the latter is true since ∠(φ(hi),φ(hj)) and ∠(φ′(hi),φ
′(hj)) are both equal to the Tits

distance between ωhi
and ωhj

on ∂X by Lemma 3.1.

The proof of the following lemma borrows heavily from an argument of Leeb; see the

proof of Theorem 2.4 in [20]. Note that we work with the JSJ decomposition of a graph
manifold as opposed to its geometric decomposition so that, for example, the twisted circle

bundle over the Möbius band may appear as a JSJ block of a graph manifold. For details

on the JSJ and geometric decompositions and the distinction between the two, see [19,

Section 1.7]. Roughly speaking, a nonpositively curved Riemannian orbifold (with totally
geodesic boundary) is an orbifold (with boundary) locally modelled on a nonpositively

curved Riemannian manifold (with totally geodesic boundary) modulo a finite group of

isometries, with transition maps that are equivariant isometries. For precise definitions,
see Kleiner and Lott [22, Def. 2.14].

Lemma 3.7. Let M be a graph manifold, and suppose π1(M) acts by isometries on a
complete CAT(0) space X such that for each JSJ torus S of M, the subgroup π1(S) <

π1(M) preserves and acts as a lattice of translations on a thick flat in X. Then M admits

a nonpositively curved Riemannian metric.

Proof. Let B be a JSJ block of M, and let f ∈ π1(B) be an element representing a generic

fiber of B. The element f acts ballistically on X since f is a nontrivial element of π1(S),
where S is a torus boundary component of B, and π1(S) preserves and acts as a lattice of

translations on a thick flat in X by assumption. By Theorem 2.2, there is a closed convex

subspace Y ⊂X with a metric decomposition Y = Z×R such that
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• any element of π1(B) preserves Y and acts diagonally with respect to the
decomposition Y = Z×R, acting as a translation on the second factor;

• the action of f on the first factor Z is neutral.

Moreover, for each element z ∈ π1(B) representing a boundary component of the base

orbifold O of B, the action of z on Z is ballistic since the subgroup 〈f,z〉<π1(B) preserves
and acts as a lattice of translations on a thick flat in X.

We now realize B as a nonpositively curved Riemannian manifold with totally geodesic

flat boundary as follows. Endow the orbifold O with a nonpositively curved Riemannian
metric that is flat near the boundary so that the length of each boundary component c

of O is equal to the translation length on Z of an element in π1(B) representing c. We

let π1(B) act on the universal cover Õ of O via the projection π1(B) → π1(O), where
π1(O) acts on Õ by deck transformations. The product of this action with the action of

π1(B) on R coming from the decomposition Y = Z×R yields a covering space action of

π1(B) on Õ×R. The quotient of Õ×R by this action is the desired geometric realization

of B. We may do this for each Seifert component of M ; the flat metrics on any pair of
boundary tori that are matched in M will coincide by Lemma 3.6 so that we may glue

the metrics on the Seifert components to obtain a smooth nonpositively curved metric

on M.

The following lemma will not be used in the proofs of Theorems 1.1 or 1.3 but will be
applied to derive Corollary 4.1 from Theorem 1.1.

Lemma 3.8. Let Γ be a finitely generated group and H0 a free abelian subgroup of Γ of

rank r ≥ 0. Suppose Γ acts on a complete CAT(0) space X such that H0 preserves and
acts as a lattice of translations on a thick flat in X. Then H0 is undistorted in Γ.

Proof. Let B = {h1, . . . ,hr} ⊂H0 be a basis for H0, and let | · |B be the word metric on
H0 with respect to B. Let S ⊂ Γ be a finite generating set for Γ, and let | · |S be the word

metric on Γ with respect to S. Let φ :H0 → Rr be the homomorphism to Rr induced by

the action of H0 on a thick flat in X. Fix x0 ∈ X,and let K = maxs∈S∪S−1 dX(x0,sx0).
Since any two norms on Rr are equivalent, there is some C > 0 such that ‖φ(h)‖ ≥C|h|B
for any h ∈H0. Thus, for h ∈H0, we have

K|h|S ≥ dX(x0,hx0)≥ |h|X = ‖φ(h)‖ ≥ C|h|B,

where the first inequality follows from the triangle inequality.

4. Proof of Theorems 1.1 and 1.3

Proof of Theorem 1.1. (i) Since Γ is finitely generated, we have that Γ ⊂ SLn(A) for

some finitely generated subdomain A ⊂ C. Let E = Q(A) ⊂ C so that E is a finitely

generated field extension of Q. The extension E/Q has the structure Q⊂ F ⊂ F (T )⊂E,
where F is the algebraic closure of Q in E, and T is a (possibly empty) transcendence

basis for E over F. Since the extension E/Q is finitely generated, the set T is finite and

the extensions F/Q and E/F (T ) are of finite degree.
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Let d = deg(F/Q), and let σ1, . . . ,σd be the embeddings of F in C. Since σj(F ) is

countable but C is not, the extension C/σj(F ) has infinite transcendence degree, and

hence, by mapping T injectively into a transcendence basis for C over σj(F ), we may
extend σj to an embedding σj : F (T ) → C. The latter may in turn be extended to

an embedding σj : E → C since E/F (T ) is algebraic and C is algebraically closed. The

embedding σj : E → C induces an embedding σj : SLn(E)→ SLn(C). Let

σ : SLn(E)→G1 :=

d∏
j=1

SLn(C)

be the diagonal embedding induced by the maps σj : SLn(E) → SLn(C). Then SLn(E)

acts by isometries on the Hadamard manifold X1 :=
∏d

j=1Mj via the embedding σ, where

each Mj is a copy of the symmetric space (unique up to scaling of the Riemannian metric)
associated to SLn(C).

By [3, Prop. 1.2], there are finitely many discrete valuations ν1, . . . ,νm on E such that

A∩
⋂m

i=1Oi ⊂O, where O is the ring of integers of F and Oi is the valuation ring of νi.
Let Bi be the Bruhat—Tits building associated to SLn(Eνi

), where Eνi
is the completion

of E with respect to νi; let X2 =
∏m

i=1Bi; and let τ : SLn(E)→G2 :=
∏m

i=1SLn(Eνi
) be

the diagonal embedding. Then SLn(E) acts by automorphisms on X2 via the embedding

τ . We claim that the diagonal action of Γ on X :=X1×X2 via σ×τ : SLn(E)→G1×G2

has the desired properties.

To that end, let H be a subgroup of Γ containing no nontrivial unipotent elements.

We first claim that for any vertex v of X2, the subgroup σ(Hv) < G1 is discrete, where
Hv is the stabilizer of v in H. Indeed, let h ∈ Hv. Then for i = 1, . . . ,m, the element

h fixes a vertex of Bi and (since GLn(E) acts transitively on the vertices of Bi) is thus

conjugate within GLn(E) into SLn(Oi); in particular, the coefficients of the characteristic
polynomial χh of h lie in Oi. Since this is true for each i∈ {1, . . . ,m} and since h∈ SLn(A),

we have that the coefficients of χh lie in A∩
⋂m

i=1Oi and hence in O. We thus have a

commutative diagram

G1 =
∏d

j=1SLn(C)
∏d

j=1C
n

Hv On,

P

σ

p

σ̂
(4.1)

where the function p maps an element h ∈ Hv to the n-tuple whose entries are the

nonleading coefficients of χh, the function P is the d -fold product of the analogous map

SLn(C)→ Cn and the function σ̂ is given by

σ̂(α1, . . . ,αn) = (σ1(α1), . . . ,σ1(αn), . . . ,σd(α1), . . . ,σd(αn))

for α1, . . . ,αn ∈ O. Since σ̂ has discrete image (see, for example, Lemma 25.1.10 in [21])

and the diagram (4.1) is commutative, it follows that P (σ(Hv)) is discrete in
∏d

j=1C
n.

Now, suppose we have a sequence (hk)k∈N in Hv such that σ(hk) → 1 in G1. Then, by

continuity of the function P, we have P (σ(hk)) → P (1). By discreteness of P (σ(Hv)),

this implies that P (σ(hk)) = P (1) for k sufficiently large. It follows that for such k the

https://doi.org/10.1017/S147474802400046X Published online by Cambridge University Press

https://doi.org/10.1017/S147474802400046X


Proper CAT(0) actions of unipotent-free linear groups 13

matrix hk is unipotent and hence trivial by our assumption that H contains no nontrivial
unipotent elements. We conclude that σ(Hv) is indeed discrete in G1.

We now argue that, for any x ∈X2, there is a neighborhood V of x in X2 such that

HV ⊂Hv for some vertex v of X2, where

HV = {h ∈H : V ∩hV �= ∅}.

Let c be the cell of X2 containing x, and let 
 be the dimension of c. Let ε > 0 be such
that the intersection of the ball BX2

(x,ε) with the 
-skeleton X�
2 of X2 is contained in c.

Then we may take V =BX2
(x,ε/2). Indeed, if h ∈HV , then hx ∈X�

2∩BX2
(x,ε)⊂ c, and

so hc= c. Since SLn(E) acts on Bi without permutations, it follows that h ∈Hv for any
vertex v of c.

Now, to see that H acts properly on X, we observe that for any point x ∈X2 and any

ball B ⊂X1, the set U :=B×V ⊂X has the property that {h∈H : U ∩hU �= ∅} is finite,
where V ⊂X2 is as in the preceding paragraph. Indeed, we have HV ⊂Hv for some vertex

v of X2, and Hv acts properly on X1 since σ embeds Hv discretely in G1.

(ii) Suppose H is free abelian with a basis h1, . . . ,hr ∈H. We show that this basis is as in

the statement of Theorem 3.5 so that H preserves and acts as a lattice of translations on a
thick flat in X. Indeed, by Lemma 3.4, we may assume that for j ∈ {1, . . . ,d}, k ∈ {1, . . . ,r},
we have

σj(hk) = diag(hj,k,1, . . . ,hj,k,s),

where hj,k,� ∈ GLn�
(C) is upper triangular with a single eigenvalue for 
 ∈ {1, . . . s}. We

now have a homomorphism Δj :H → SLn(C) that maps h ∈H to the diagonal part of

σj(h); note that Δj is injective since H contains no nontrivial unipotent matrices. The

embeddings Δj produce a diagonal embedding Δ :H →G1. Now, let Δ′ :H → G1×G2

be the product of Δ with τ
∣∣
H
:H → G2. Then, since Δj(h) has the same characteristic

polynomial as σj(h) for each h ∈ H, and since Δj(H) contains no nontrivial unipotent

matrices, the action of Δ′(H) on X is proper by the above arguments. Since the latter

action is by semisimple isometries, by Theorem 2.4 there is a genuine r -dimensional flat
in X preserved by Δ′(H) on which Δ′(H) acts as a lattice of translations. Thus, by

Lemmas 3.2 and 3.3, each nontrivial h ∈ H acts ballistically on X and the canonical

attracting fixed point of h on ∂X is equal to that of Δ′(h); in particular, ωh1
, . . . ,ωhr

must be of the desired form.

(iii) Suppose g ∈ Γ is diagonalizable (over C). Since any isometry of X2 is semisimple,

to show that g acts as a semisimple isometry of X, it suffices to show that σj(g)
is a semisimple isometry of Mj for j = 1, . . . ,d. To that end, we show that σj(g) is

diagonalizable. Indeed, since a diagonalization of g has entries in the splitting field Ẽ ⊂C

of χg over E, we in fact have g = CDC−1 for some C,D ∈ SLn(Ẽ) with D diagonal (see,

for example, [29, Theorem 8.11]). Since C is algebraically closed, we may extend σj to an
embedding σ̃j : Ẽ → C. Now,

σj(g) = σ̃j(g) = σ̃j(C) σ̃j(D) σ̃j(C)−1

and σ̃j(D) is diagonal.

We recover the following result due to Button [9, Theorem 5.2].
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Corollary 4.1. Let Γ be a finitely generated group and H a distorted finitely generated
abelian subgroup of Γ. Then for any representation ρ : Γ→ SLn(C), there is an infinite-

order element h ∈H such that ρ(h) is unipotent.

Proof. Let H0 < H be a free abelian subgroup of finite-index, and suppose there is a

representation ρ0 : Γ → SLn(C) that does not map any nontrivial element of H0 to a

unipotent matrix (in particular, ρ is faithful on H0). Then, by Theorem 1.1, there is an
action of Γ via ρ on a complete CAT(0) space X such that H0 preserves and acts as a

lattice of translations on a thick flat in X. By Lemma 3.8, it follows that H0 is undistorted

in Γ, and hence the same is true of H.

Proof of Theorem 1.3. Suppose otherwise so that, for each JSJ torus S of M, the

representation ρ is faithful on π1(S) < π1(M) and the image ρ(π1(S)) contains no
nontrivial unipotent matrices. Then, by Theorem 1.1, there is an action of π1(M) via

ρ on a complete CAT(0) space X such that for each JSJ torus S of M, the subgroup

π1(S) preserves and acts as a lattice of translations on a thick flat in X. Thus, M admits
a nonpositively curved metric by Lemma 3.7.
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