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In the present paper, we introduce a generalization of the cumulative entropy proposed by
Di Crescenzo and Longobardi [8]. This new notion is related to the lower records and the
reversed relevation transform. Dynamic version of the newly proposed measure is consid-
ered. Several properties including the effect of linear transformations, a two-dimensional
version, a normalized version, bounds, stochastic ordering, etc. are studied for the gen-
eralized cumulative entropy (GCE). Similar results are obtained for the dynamic GCE.
Various relationships with other functions are derived. A class of distributions is intro-
duced and several properties are studied. Finally, empirical GCE is proposed to estimate
the newly proposed information measure.

1. INTRODUCTION

In the context of probability theory, entropy describes the amount of uncertainty asso-
ciated with a random variable. For an information source having n components with
associated probabilities of occurrence p1, . . . , pn, Shannon [30] showed that the quantity
S = −∑n

i=1 pi ln pi is the measure of uncertainty in the outcome of a particular event.
Let X denote the random lifetime of a component with absolutely continuous cumulative
distribution function FX(x), probability density function fX(x) and reliability (survival)
function F̄X(x)(= 1 − FX(x)). Consider the support of X as (0,+∞). The entropy S can
be generalized for a non-negative random variable X as

H(X) = −
∫ +∞

0

fX(x) ln fX(x)dx. (1.1)

The measure given by (1.1) is known as the differential entropy which may be negative,
whereas the Shannon’s entropy S is always positive. For various properties and applications
of the differential entropy we refer to Cover and Thomas [5]. A wide variety of competing
measures of entropy have been proposed by several authors which can be considered as the
generalizations of the differential entropy (1.1). In this direction, we refer to Renyi [26],
Varma [32], Kapur [15] and Tsallis [31].

There exist several situations where H(X) is not appropriate to measure uncertainty
of a component when its age has to be considered. One’s interest may be in studying
the residual lifetime of a component which is still working at time t > 0. However, the
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random lifetime is not necessarily related to the future but to the past. Consider a system
which is working during a specified time interval and its state is observed only at certain
pre-specified inspection times. Suppose the system is inspected for the first time and it is
found to be down, then the uncertainty relies in the interval (0, t), it has stopped working.
Ebrahimi [11] and Di Crescenzo and Longobardi [7] proposed dynamic versions of (1.1),
respectively known as residual and past entropy to deal with these situations. Residual
entropy quantifies uncertainty of the random lifetime X(t) = [X − t|X ≥ t], whereas past
entropy quantifies uncertainty of the random lifetime X[t] = [t − X|X ≤ t]. Note that X(t)

and X[t] are known as residual and inactivity time, respectively. For various properties and
applications of residual and past entropies, we refer to Ebrahimi and Pellerey [13], Ebrahimi
[11], Ebrahimi and Kirmani [12], Belzunce et al. [3], Nanda and Paul [19], Kundu, Nanda,
and Maiti [18] and Sachlas and Papaioannou [27].

Rao et al. [24] pointed out few drawbacks of the differential entropy given by (1.1).

• It is defined when distributions have probability density functions.
• It may be negative. For example, the differential entropy of a uniform random

variable in (0, a) is negative when a < 1.

They introduced another type of entropy known as cumulative residual entropy (CRE) in
order to provide a way to accommodate random variables that do not have a well-defined
probability density function. The CRE of a non-negative random variable X is given by

E(X) = −
∫ +∞

0

F̄X(x) ln F̄X(x)dx. (1.2)

It has several important properties. Equation (1.2) is consistent in both discrete and con-
tinuous domains. It is always non-negative. The CRE of the uniform distribution in (0, a)
is non-negative for 0 < a < +∞, though the differential entropy is negative for a < 1. For
various other properties and applications of (1.2), we refer to Wang et al. [34,35], Rao et al.
[24], Rao [23], Asadi and Zohrevand [2], Wang and Vemuri [33] and Navarro, Del Aguila,
and Asadi [20]. A dynamic version of (1.2) for residual lifetime has been proposed by Asadi
and Zohrevand [2] as

E(X; t) = −
∫ +∞

t

F̄X(x)
F̄X(t)

ln
F̄X(x)
F̄X(t)

dx, (1.3)

for t > 0 such that F̄X(t) > 0. Motivated by (1.2), a dual concept of the CRE was introduced
by Di Crescenzo and Longobardi [8], which is suitable to describe the uncertainty of the
problems related to aging properties of reliability theory based on the past and on the
inactivity times. For a non-negative random variable X the cumulative entropy (CE) is
defined as

CE(X) = −
∫ +∞

0

FX(x) ln FX(x)dx. (1.4)

Motivated by Di Crescenzo and Longobardi [7] and analogous to (1.3), Di Crescenzo and
Longobardi [8] proposed a dynamic version of the CE to quantify the uncertainty contained
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in past lifetime. It is defined as

CE(X; t) = −
∫ t

0

FX(x)
FX(t)

ln
FX(x)
FX(t)

dx, (1.5)

for t > 0 such that FX(t) > 0. Recently, Psarrakos and Navarro [21] extended the concept
of the CRE given by (1.2) as

En(X) =
1
n!

∫ +∞

0

F̄X(x)[Λ̄(x)]ndx, n = 1, 2, . . . , (1.6)

where Λ̄(x)(= − ln F̄X(x)) is known as the cumulative hazard function. They named it gen-
eralized cumulative residual entropy (GCRE). For n = 1, (1.6) reduces to (1.2), that is,
E1(X) = E(X). Also, when n = 0, then E0(X) =

∫ +∞
0

F̄X(x)dx = E(X), provided expecta-
tion exists. In analogy to (1.3), a dynamic version of the GCRE was also introduced by the
authors. It is given by

En(X; t) =
1
n!

∫ +∞

t

F̄X(x)
F̄X(t)

[
− ln

F̄X(x)
F̄X(t)

]n

dx, n = 1, 2, . . . , (1.7)

for t > 0 such that F̄X(t) > 0. It is easy to see that En(X; 0) = En(X) and E1(X; t) = E(X; t).
Also,

E0(X; t) =
∫ +∞

t

F̄X(x)
F̄X(t)

dx = E(X(t)),

known as the mean residual life. Psarrakos and Navarro [21] obtained various results related
to characterizations, stochastic ordering and aging classes for En(X) and En(X; t). In this
paper, we introduce a new information measure which is dual to GCRE given by (1.6). It is
noticed that the proposed measure is related to the lower records of a sequence of indepen-
dent and identically distributed non-negative random variables and the reversed relevation
transform. We also consider its dynamic version for inactivity time. The paper is arranged
as follows. In Section 2, we recall some definitions and preliminary results. In Section 3,
we obtain various results on GCE. It includes basic properties such as the effect of linear
transformations, a two-dimensional representation of it, bounds and stochastic orderings.
Further, some relationships with other functions are derived. The dynamic version of the
GCE is considered in Section 4. Various results similar to the Section 3 are obtained. A new
class of distributions is introduced and studied. Empirical GCE is proposed in Section 5 to
estimate the GCE. It is computed for the exponentially distributed random sample.

Throughout the paper we assume that the terms increasing and decreasing are used in
non-strict sense. All expectations, conditional random variables and derivatives wherever
used are implicitly assumed to exist. By convention, we assume that

∑i
k=0 = 0, for i < 0.

2. SOME PRELIMINARY RESULTS AND DEFINITIONS

In this section, we review some preliminary results, definitions and well-known notions
of aging and stochastic orders. Let X∗

1 ,X∗
2 , . . . , X∗

n, etc. be a sequence of independent and
identically distributed non-negative random variables with a common absolutely continuous
distribution function FX(x) and probability density function fX(x). An observation X∗

i is
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said to be a lower record if X∗
i < X∗

j for all j < i. Assume that X∗
i occurs at time i,

then the record time sequence is defined as L(1) = 1 and L(n + 1) = min{i : X∗
i < X∗

L(n)}
for n = 1, 2, . . . . The random variables Xn = X∗

L(n), n = 1, 2, . . . are said to be the lower
records. Consider a system which is repaired instantaneously after each failure. Assume that
once repair is completed, the duration of the next lifetime is stochastically smaller than the
previous lifetime. It is due to imperfect repairs. Here, {Xn}n≥1 may be interpreted as the
sequence of lifetimes of this system. The marginal distribution of Xn is given by

fn(x) =
[− ln FX(x)]n−1

(n − 1)!
fX(x), x > 0, n = 1, 2, . . . . (2.1)

The cumulative distribution function of Xn is

Fn(t) =
1

(n − 1)!

∫ t

0

[− ln FX(x)]n−1fX(x)dx =
n−1∑
k=0

[− ln FX(t)]k

k!
FX(t)

=
n−1∑
k=0

[Λ(t)]k

k!
FX(t), (2.2)

where Λ(t)(= − ln FX(t)) is known as the cumulative reversed hazard function. For details
on records, we refer to Arnold, Balakrishnan, and Nagaraja [1]. An alternative interpretation
of (2.2) can be given from the notion of reversed relevation transform. For detail we refer
to Di Crescenzo and Toomaj [10]. Let X and Y be two non-negative absolutely continuous
random variables with cumulative distribution functions FX(x) and FY (x), respectively.
Assume X and Y to be independent. Then the reversed relevation transform of X and Y
is defined as

FX#̃FY (x) = FX(x) + FY (x)
∫ +∞

x

dFX(t)
FY (t)

, x > 0. (2.3)

Let FX(x) = FY (x) and Fn(x) denotes the cumulative distribution function of the nth
failure, n = 1, 2, . . . . Then we have

Fn(x) =

{
F (x), if n = 1,

Fn−1#̃F (x), if n ≥ 2.
(2.4)

Along the lines of the proof of the theorem (see p. 113, Krakowski [17]), it can be showed
that (2.2) and (2.4) are equivalent. The expression given by (2.2) can also be viewed as the
cumulative distribution function of a Poisson process with mean Λ(t). Raqab and Asadi
[25] introduced the notion of the mean residual waiting time of records and present some
monotonic and aging properties. In order to prove our main results, hereafter, we obtain
results similar to Raqab and Asadi [25] based on the waiting time elapsed of records. The
waiting time elapsed of the record model is [t − Xn|Xn ≤ t], where t > 0 and n = 1, 2, . . . .
The mean waiting inactivity time (MWIT) is defined as

μn(t) = E(t − Xn|Xn ≤ t) =

∫ t

0
Fn(x)dx

Fn(t)
=

∑n−1
k=0

∫ t

0
ηk(x)dx∑n−1

k=0 ηk(t)
, n = 1, 2, . . . , (2.5)

where the last equality is due to (2.2) and ηk(x) = [Λ(t)]kFX(x)/k!. For k = 0, 1, . . . , n − 1,
we define

Mk(t) =
∫ t

0

[Λ(x)
Λ(t)

]k FX(x)
FX(t)

dx (2.6)
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and

pk(t) =
[Λ(t)]kFX(t)/k!∑n−1

j=0 ([Λ(t)]jFX(t)/j!)
=

P (Yt = k)
P (Yt < n)

, (2.7)

where Yt is a Poisson random variable with mean Λ(t). Therefore, from (2.5) we obtain

μn(t) =
n−1∑
k=0

pk(t)Mk(t), n = 1, 2, . . . . (2.8)

Note that when n = 1, the MWIT of the first lower record reduces to

μ1(t) =
∫ t

0

FX(x)
FX(t)

dx,

which is the mean inactivity time of the parent distribution. Now we consider the following
definitions which will be useful in the next sections.

Definition 2.1: Let X and Y be two non-negative random variables with absolutely con-
tinuous cumulative distribution functions FX(x) and FY (x), survival functions F̄X(x) and
F̄Y (x) and probability density functions fX(x) and fY (x), respectively. Then

• X is said to be smaller than Y in likelihood ratio order, denoted by X ≤lr Y, if
fY (x)/fX(x) is increasing in x > 0.

• X is said to be smaller than Y in usual stochastic order, denoted by X ≤st Y, if
F̄X(x) ≤ F̄Y (x), for all x > 0.

• X is said to be smaller than Y in the decreasing convex order, denoted by X ≤dcx Y,
if E(φ(X)) ≤ E(φ(Y )), for all decreasing convex functions φ.

Also we have X ≤st Y if, and only if,

E(φ(X)) ≤ E(φ(Y )), (2.9)

for all increasing functions φ for which the expectations exist. For details on usual stochastic
order and related results, we refer to Shaked and Shanthikumar [29].

3. GENERALIZED CUMULATIVE ENTROPY

In this section, in analogy to (1.6), we propose a generalization of the CE given by (1.4).
Let X be a non-negative random variable with absolutely continuous distribution function
FX(x). Then the GCE of X is defined as

CEn(X) =
1
n!

∫ +∞

0

FX(x)[Λ(x)]ndx, n = 1, 2, . . . . (3.1)

From (3.1), it follows that CEn(X) takes values from the interval [0,+∞]. In particular, for a
degenerate random variable it is easy to obtain CEn(X) = 0. Moreover, when n = 1, CEn(X)
reduces to CE(X). Also for n = 0, CE0(X) =

∫ +∞
0

FX(x)dx, which may be divergent. The
following remark is for the random variables with finite support.
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(a) (b)

Figure 1. (a) Plot of Fn(x) for uniform distribution for n = 1, 2, 3, 4, 5 (from below). (b)
Plot of Fn(x) for exponential distribution for n = 1, 2, 3, 4, 5 (from below). Here, CEn(X)
corresponds to the areas between these functions for n = 1, 2, 3, 4.

Remark 3.1: Let X be a random variable with support [0, b], where b is finite. Then
CEn(X) = (1/n!)

∫ b

0
FX(x)[Λ(x)]ndx, n = 1, 2, . . . . In particular, CE0(X) = b − E(X).

Remark 3.2: Making use of (2.2), the GCE given by (3.1) can be written as CEn(X) =∫ +∞
0

[Fn+1(x) − Fn(x)]dx, n = 1, 2, . . . . This implies that for n = 1, 2, . . . , CEn(X) can be
interpreted as the area between the cumulative distribution functions Fn+1(x) and Fn(x). In
particular, for n = 0, CE0(X) represents the area under F1(x) = FX(x).

Figure 1 represents the plot of the areas under Fn(x) for uniform and exponential
distributions with cumulative distribution functions FX(x) = x, 0 < x < 1 and FX(x) =
1 − exp{−x}, x > 0, respectively. The area under F1(x) = FX(x) in Figure 1a is E(X) =
0.5.

Remark 3.3: Let X be a symmetric random variable with respect to the finite mean m =
E(X), that is, FX(x + m) = 1 − FX(m − x), for all x ∈ R. Then

CEn(X) = En(X), n = 1, 2, . . . .

Making use of (2.1) in (3.1) we obtain for n = 1, 2, . . . ,

CEn(X) =
1
n!

∫ +∞

0

1
rX(x)

[Λ(x)]nfX(x)dx

=
∫ +∞

0

1
rX(x)

fn+1(x)dx = E
( 1

rX(Xn+1)

)
, (3.2)

where rX(x) = fX(x)/FX(x) is the reversed failure rate function and Xn+1 is the (n + 1)th
record with cumulative distribution function Fn+1(x) and probability density function
fn+1(x). From (2.1) we have

fn+1(x)
fn(x)

=
Λ(x)

n
, n = 1, 2, . . . ,

which is a decreasing function in x > 0, where fn+1(x) is the probability density function
of the (n + 1)th record. Thus, we have Xn+1 ≤lr Xn. It implies Xn+1 ≤st Xn, that is,
Fn+1(x) ≥ Fn(x). From (2.9) and (3.2) we obtain the following proposition. The proof is
simple. Hence, we omit it.
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Proposition 3.4: Let the reversed failure rate function rX(x) be decreasing (increasing) in
x > 0. Then for n = 0, 1, 2, . . . ,

CEn(X) ≥ (≤)CEn+1(X). (3.3)

Note that the assumption FX(x) is decreasing reversed failure rate can be replaced by
FX(x) is log-concave in Proposition 3.4 as they are equivalent. For detail on log-concave dis-
tributions we refer to Sengupta and Nanda [28]. There are many distributions for which the
reversed failure rate function is decreasing. For example, two-parameter Weibull, gamma,
Pareto and log-normal distributions belong to this class. But, there does not exist any
life distribution which has increasing reversed failure rate over the domain [0,+∞) (see
Block, Savits, and Singh [4]). Analogous to the normalized CE due to Di Crescenzo and
Longobardi [8], hereafter, we introduce a normalized version of (3.1) for log-concave cumu-
lative distribution functions. From the recurrence relation given by (3.3) we notice that
for any non-degenerate random variable with log-concave distribution function, CEn(X) is
decreasing in n, that is,

CE0(X) ≥ CE1(X) ≥ CE2(X) ≥ · · · ≥ CEn(X) ≥ · · · . (3.4)

Thus, for a non-negative random variable X with non-zero CE0(X), the normalized GCE
is defined as

NCEn(X) =
CEn(X)
CE0(X)

=
1

n! CE0(X)

∫ +∞

0

FX(x)[Λ(x)]ndx, n = 1, 2, . . . . (3.5)

Using (3.4) in (3.5) it is easy to see that the normalized GCE takes values from the interval
[0, 1]. In the following, we discuss the effect of the linear transformations on the GCE.

Proposition 3.5: Let Y = aX + b be the linear transformation with a > 0 and b ≥ 0. Then

CEn(Y ) = a CEn(X), n = 1, 2, . . . . (3.6)

Proof: The proof follows from FaX+b(x) = FX((x − b)/a), for all x ∈ R. Hence, omitted.
�

Remark 3.6: From (3.6) we observe that the right-hand side does not depend on b. This
implies that CEn(X) is a shift-independent measure. Moreover, it can be easily showed that
this property also holds for the generalized CRE given by (1.6).

In this part of the paper, we introduce two-dimensional version of CEn(X). Let X
and Y be two non-negative random variables with joint cumulative distribution function
FXY (x, y) = P (X ≤ x, Y ≤ y) and the joint probability density function fXY (x, y). Here,
X and Y may be thought of as the lifetimes of two components of a system. The marginal
cumulative distribution functions of X and Y are denoted by FX(x) and FY (y), respec-
tively. There are several ways in extending a one dimension (univariate) concept to higher
dimensions. A natural extension of the GCE given by (3.1) to the bivariate setup can be
obtained by substituting the joint cumulative distribution function FXY (x, y) in place of
FX(x). The bivariate GCE is defined as

CEn(X,Y ) =
1
n!

∫ +∞

0

∫ +∞

0

FXY (x, y)[− ln FXY (x, y)]ndxdy, n = 1, 2, . . . . (3.7)

The measure (3.7) reduces to the two-dimensional analog of (1.4) for n = 1. Assume X and
Y are independent, that is, FXY (x, y) = FX(x)FY (y). Then using binomial theorem in (3.7)
we obtain the following proposition.

https://doi.org/10.1017/S0269964816000218 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000218


ON GENERALIZED CUMULATIVE ENTROPIES 647

Proposition 3.7: The bivariate GCE of two independent random variables X and Y can
be expressed as

CEn(X,Y ) =
n∑

k=0

CEn−k(X) CEk(Y ). (3.8)

From (3.8) we get the following particular relation:

CE1(X,Y ) =
[∫ +∞

0

FX(x)dx

]
CE(Y ) +

[∫ +∞

0

FY (y)dy

]
CE(X), (3.9)

which is obtained by Di Crescenzo and Longobardi [8]. Note that the integrals inside the
square brackets of (3.9) may be divergent. Thus we have the following remark by restricting
our attention to random variables with finite supports.

Remark 3.8: Let X and Y be two non-negative, independent random variables having
bounded supports [0, a1] and [0, a2], respectively. Here a1 and a2 are finite. Then for n = 1,
(3.8) reduces to Proposition 2.2 of Di Crescenzo and Longobardi [8].

The generalized conditional CE is given by

CEn(X|Y ) =
1
n!

∫ +∞

0

FXY (x|y)[− ln FXY (x|y)]ndx, n = 1, 2, . . . , (3.10)

where FXY (x|y) = FXY (x, y)/FY (y) is the conditional distribution function of X|Y. Note
that when X and Y are independent, then from (3.10) it is easy to obtain

CEn(X|Y ) = CEn(X), n = 1, 2, . . . .

In the following proposition, we discuss the effect of the linear transformations on the
generalized joint CE. It shows that the generalized joint CE is a shift-independent measure.

Proposition 3.9: Let Y1 and Y2 be two non-negative random variables with joint cumula-
tive distribution function FY1Y2(y1, y2). Assume Yi = biXi + ci, with bi > 0 and ci ≥ 0, i =
1, 2. Then

CEn(Y1, Y2) = b1b2 CEn(X1,X2). (3.11)

Proof: Proof follows from (3.7) and FY1Y2(x1, x2) = FX1X2

(x1 − b1

a1
,
x2 − b2

a2

)
. �

Proposition 3.10: Let Y1 and Y2 be two non-negative random variables as described in
Proposition 3.9 Also, let Yi = φi(Xi), i = 1, 2 be one-to-one transformations with φi(xi)’s
are differentiable functions. Then

CEn(Y1, Y2) =
1
n!

∫ +∞

0

∫ +∞

0

FX1X2(x1, x2)[− ln FX1X2(x1, x2)]n|J |dx1dx2,

n = 1, 2, . . . , (3.12)

where J is the Jacobian of the transformations.
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Table 1. Numerical values of CEn(Xη) and CEn(ηX) for
uniform distribution in (0, 2).

η n CEn(Xη) CEn(ηX) η n CEn(Xη) CEn(ηX)

0.5 1 0.444432 0.249988 1.5 1 0.479963 0.749963
2 0.148148 0.125000 2 0.288000 0.375000
3 0.049382 0.062500 3 0.172800 0.187500
4 0.016460 0.031250 4 0.103680 0.093750

Proposition 3.10 shows that the generalized joint CE is not invariant under non-singular
transformations.

Hereafter, we consider two non-negative random variables X and Xη with cumulative
distribution functions FX(x) and FXη

(x), respectively. Assume that X and Xη are related
to the following relation:

FXη
(x) = [FX(x)]η, x > 0, (3.13)

where η is a positive real number. The relation in (3.13) implies that X and Xη satisfy the
proportional reversed hazard rate model. In this direction, we refer to Di Crescenzo [6] and
Gupta and Gupta [14]. Note that (3.13) holds for the entire real line. Since we are interested
about the lifetime distributions, we restrict our attention to x > 0. From (3.1) and (3.6) we
have

CEn(ηX) =
η

n!

∫ +∞

0

FX(x)[Λ(x)]ndx, n = 1, 2, . . . . (3.14)

Moreover, from (3.1) and (3.13) we obtain

CEn(Xη) =
ηn

n!

∫ +∞

0

F η
X(x)[Λ(x)]ndx, n = 1, 2, . . . . (3.15)

Di Crescenzo and Longobardi [8] proved a theoretical result dealing with comparison
between CEs of X and Xη which is not true for the newly proposed information mea-
sure as shown in the following table. In Table 1, we present numerical values of CEn(Xη)
and CEn(ηX) for n = 1, 2, 3, 4, where X follows uniform distribution with cumulative
distribution function FX(x) = x/2, 0 < x < 2.

In the way of finding the relation between the GCEs of a pair of stochastically ordered
random variables with finite support we consider the following example which shows that
the usual stochastic order does not imply the ordering of the GCEs.

Example 3.11: Let X and Y be two random variables with a common support [0, b],
with b finite. The cumulative distribution functions of X and Y are FX(x) = exp{c(1 −
b2/x2)}, 0 < x ≤ b and FY (x) = exp{a(1 − b2/x2)}, 0 < x ≤ b, respectively, where c >
0, a > 0 and a ≤ c. It is easy to show that X ≥st Y, when a ≤ c, but CEn(X) � CEn(Y ) for
all n = 1, 2, 3, 4 as shown in Table 2.

Thus, naturally the following question arises: under which condition CEn(X) is smaller
than CEn(Y )? We find the answer of this question in the next theorem. First, we prove
the following lemma (an extension of Proposition 3.4 of Di Crescenso and Longobardi [8])
which is useful in this direction.
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Table 2. Numerical values of CEn(X) and CEn(Y ) for the ran-
dom variables X and Y, as described in Example 3.11 for b = 2.

c a n CEn(X) CEn(Y ) c a n CEn(X) CEn(Y )

0.5 0.2 1 0.311359 0.314432 1.7 1.2 1 0.228912 0.259407
2 0.172160 0.145103 2 0.160573 0.170593
3 0.109280 0.083840 3 0.119012 0.120822
4 0.076160 0.055463 4 0.092046 0.090555

Lemma 3.12: Let X be a non-negative random variable with absolutely continuous cumu-
lative distribution function FX(x), probability density function fX(x) and reversed failure
rate function rX(x) such that CEn(X) < +∞. Then

CEn(X) = E[R(2)
n (X)], n = 1, 2, . . . , (3.16)

where

R(2)
n (x) =

1
n!

∫ +∞

x

[Λ(z)]ndz =
1

(n − 1)!

∫ +∞

x

∫ +∞

z

rX(t)[Λ(t)]n−1dtdz. (3.17)

Proof: Using FX(x) =
∫ x

0
fX(t)dt in (3.1), we obtain by Fubini’s theorem

CEn(X) =
1
n!

∫ +∞

0

[∫ x

0

fX(t)dt

]
[Λ(x)]ndx =

∫ +∞

0

fX(t)
[∫ +∞

t

[Λ(x)]n

n!
dx

]
dt. (3.18)

Hence, the result follows. �

Note that R
(2)
n (x) given by (3.17) is a decreasing convex function in x. Then the following

theorem immediately follows from (3.16) and (3.17).

Theorem 3.13: Let X and Y be two non-negative random variables such that X ≤dcx Y.
Then

CEn(X) ≤ CEn(Y ), n = 1, 2, . . . . (3.19)

It is noted that the Theorem 3.13 is an extension of Proposition 4.8 of Di Crescenso
and Longobardi [8]. In the following, we obtain bounds of the GCE. The proof is simple,
hence omitted.

Proposition 3.14: Let X be a non-negative random variable with absolutely continuous
cumulative distribution function FX(x). Then for n = 1, 2, . . . ,

• CEn(X) ≥ ∑n
i=0

(−1)i

i!(n−i)!

∫ +∞
0

F i+1
X (x)dx.

• CEn(X) ≥ R
(2)
n (μ), where R

(2)
n (x) is given by (3.17) and E(X) = μ < +∞.

• CEn(X) ≤ 1
n!

∫ +∞
0

[Λ(x)]ndx, provided
∫ +∞
0

[Λ(x)]ndx exists.
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In the following theorem, we obtain a relation between GCE and MWIT. First we prove
the following lemma.

Lemma 3.15: Let X be a random variable as described in Lemma 3.12 such that CEn(X) <
+∞. Then

CEn(X) =
1
n!

∫ +∞

0

rX(z)
[∫ z

0

[Λ(x)]n−1FX(x)dx

]
dz, n = 1, 2, . . . . (3.20)

Proof: From (3.1) we have

CEn(X) =
1
n!

∫ +∞

0

FX(x)[Λ(x)]n−1Λ(x)dx

=
1
n!

∫ +∞

0

FX(x)[Λ(x)]n−1
[ ∫ +∞

x

rX(z)dz
]
dx. (3.21)

Applying Fubini’s theorem in (3.21) we get the desired result. �

Theorem 3.16: Let X be a random variable as described in Lemma 3.12 and Xk+1 is
the (k + 1)th record with probability density function fk+1(x). Then for n = 1, 2, . . . , the
following relation holds:

CEn(X) =
1
n

[
n−1∑
k=0

E(μn(Xk+1)) − k CEk(X)

]
. (3.22)

Proof: From (3.20) we have

k CEk(X) =
1

(k − 1)!

∫ +∞

0

rX(z)
[∫ z

0

[Λ(x)]k−1FX(x)dx

]
dz. (3.23)

Taking summation both sides with respect to k from 1 to n we get
n∑

k=1

k CEk(X) =
∫ +∞

0

rX(z)
n∑

k=1

1
(k − 1)!

∫ z

0

[Λ(x)]k−1FX(x)dxdz

=
∫ +∞

0

rX(z)
n−1∑
k=0

1
k!

∫ z

0

[Λ(x)]kFX(x)dxdz

=
∫ +∞

0

rX(z)μn(z)
n−1∑
k=0

[Λ(z)]k

k!
FX(z)dz (from(2.3))

=
∫ +∞

0

μn(z)
n−1∑
k=0

[Λ(z)]k

k!
fX(z)dz

=
n−1∑
k=0

∫ +∞

0

μn(z)fk+1(z)dz

=
n−1∑
k=0

E(μn(Xk+1)). (3.24)

Using (3.24) and the relation
∑n

k=1 k CEk(X) =
∑n−1

k=0 k CEk(X) + n CEn(X), we get the
desired result. �
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Remark 3.17: In particular, when n = 1, from Theorem 3.16 we get CE1(X) = E(μ1(X1)),
where μ1(x) =

∫ x

0
FX(t)dt/FX(x).

Proposition 3.18: Let X be a non-negative random variable with absolutely continuous
cumulative distribution function FX(x). Then for n = 1, 2, . . . , we have

CEn(X) =
1
n

[
n−1∑
k=0

1
k!

E([Λ(X)]kμn(X)) −
n−2∑
k=0

1
k!

E([Λ(X)]kμn−1(X))

]
. (3.25)

Proof: From (2.2) we have

Fn(t) − Fn−1(t) =
[Λ(t)]n−1

(n − 1)!
FX(t), n = 1, 2, . . . . (3.26)

Using (3.26) in (3.20) we obtain

CEn(X) =
1
n

∫ +∞

0

rX(z)
[∫ z

0

{Fn(x) − Fn−1(x)}dx

]
dz

=
1
n

∫ +∞

0

rX(z)[Fn(z)μn(z) − Fn−1(z)μn−1(z)]dz (from(2.3))

=
1
n

∫ +∞

0

fX(z)

[
n−1∑
k=0

[Λ(z)]k

k!
μn(z) −

n−2∑
k=0

[Λ(z)]k

k!
μn−1(z)

]
dz

=
1
n

n−1∑
k=0

1
k!

∫ +∞

0

fX(z)[Λ(z)]kμn(z)dz − 1
n

n−2∑
k=0

1
k!

∫ +∞

0

fX(z)[Λ(z)]kμn−1(z)dz

=
1
n

[
n−1∑
k=0

1
k!

E([Λ(X)]kμn(X)) −
n−2∑
k=0

1
k!

E([Λ(X)]kμn−1(X))

]
. (3.27)

This completes the proof. �

The GCE can be represented in another form which follows from (3.27) and hence the
proof is omitted.

Proposition 3.19: Let X be a non-negative random variable as described in Lemma 3.12
and Xk+1 be the (k + 1)th record with probability density function fk+1(x). Then for n =
1, 2, . . . , we have

CEn(X) =
1
n

[
n−1∑
k=0

E(μn(Xk+1)) −
n−2∑
k=0

E(μn−1(Xk+1))

]
. (3.28)

4. DYNAMIC GCE

A dynamic version of the GCRE was proposed by Psarrakos and Navarro [21]. They consid-
ered GCRE for residual lifetime, which deals with the uncertainty of future lifetime. There
are many situations where uncertainty is related to past. Assume that at time t, a system
which is observed only at certain preassigned inspection times, is found to be down. Then
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the uncertainty of the system life relies on the past, that is, on which instant in (0, t) it
has failed. Based on this idea Di Crescenzo and Longobardi [7] studied the past entropy
over (0, t). In the following, we introduce a new dynamic generalized information measure
known as dynamic generalized cumulative entropy (DGCE). It is given by

CEn(X; t) = CEn(X[t]) =
1
n!

∫ t

0

FX(x)
FX(t)

[
− ln

FX(x)
FX(t)

]n

dx, n = 1, 2, . . . , (4.1)

for t > 0 such that FX(t) > 0. Note that CEn(X; +∞) = CEn(X) and CE0(X; t) = μ1(t),
where

μ1(t) = E(X[t]) =
∫ t

0

FX(x)
FX(t)

dx.

Also for n = 1, (4.1) reduces to (1.5). The following proposition which extends the
result given in Remark 5.1 of Di Crescenso and Longobardi [8] shows that the DGCE can
be expressed in terms of expectation.

Proposition 4.1: Let X be a non-negative random variable with absolutely continuous
cumulative distribution function FX(x). Then

CEn(X; t) = E[R(2)
n (X; t)|X ≤ t], n = 1, 2, . . . , (4.2)

where

R(2)
n (x; t) =

1
n!

∫ t

x

[
− ln

FX(z)
FX(t)

]n

dz. (4.3)

Proof: Using FX(x) =
∫ x

0
fX(z)dz in (4.1) and on the application of Fubini’s theorem we

get the desired result. �

Remark 4.2: From (4.1) and Proposition 4.1, the following observations can be made.

• CEn(X; t) is always non-negative for all t > 0.

• lim
t→0+

CEn(X; t) = 0.

• lim
t→+∞CEn(X; t) = CEn(X).

In the following proposition, we obtain relation between DGCE and the dynamic gen-
eralized cumulative residual entropy (DGCRE) for a symmetric distribution. Proof follows
along the lines of that of the Theorem 5.1 of Di Crescenzo and Longobardi [8], and hence
it is omitted.

Proposition 4.3: Let X be a random variable with support [0, b] with b finite. Also assume
that X is symmetric with respect to b/2. Then

CEn(X; t) = En(X; b − t), 0 < t < b. (4.4)

In our next result, in analogy to Proposition 3.14, we obtain bounds of the DGCE.

Proposition 4.4: Let X be a non-negative random variable with absolutely continuous
cumulative distribution function FX(x). Then
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• CEn(X; t) ≥ ∑n
i=0

(−1)i

i!(n−i)!

∫ t

0

[
FX(x)
FX(t)

]i+1

dx, n = 1, 2, . . . .

• CEn(X; t) ≥ R
(2)
n (μ̄(t); t), where R

(2)
n (x; t) is given by (4.3) and the mean inactivity

time E(X|X ≤ t) = μ̄(t) < +∞.

• CEn(X; t) ≤ 1
n!

∫ t

0
[− ln FX(x)

FX(t) ]ndx.

Hereafter, we obtain the effect of the linear transformations on the DGCE.

Lemma 4.5: Let Y = aX + b, where a > 0 and b ≥ 0 are constants. Then for t > b we have

CEn(Y ; t) = a CEn

(
X;

t − b

a

)
. (4.5)

Proof: The proof follows from FY (x) = FX(x − b/a) for x ∈ R, hence omitted. �

In this part of the paper, we introduce two-dimensional version of (4.1) as

CEn(X,Y ; t1, t2) =
1
n!

∫ t2

0

∫ t1

0

FXY (x, y)
FXY (t1, t2)

[
− ln

FXY (x, y)
FXY (t1, t2)

]n

dxdy, n = 1, 2, . . . .(4.6)

In particular, for n = 1, (4.6) reduces to the two-dimensional analog of (1.5). Using binomial
expansion, (4.6) can be written as

CEn(X,Y ; t1, t2) =
n∑

k=0

CEn−k(X; t1) CEk(Y ; t2). (4.7)

For n = 1, we have from (4.7)

CE1(X,Y ; t1, t2) = μ̄Y (t2)CE(X; t1) + μ̄X(t1)CE(Y ; t2), (4.8)

where

μ̄X(t1) =
∫ t1

0

FX(x)
FX(t1)

dx

and

μ̄Y (t2) =
∫ t2

0

FY (x)
FY (t2)

dx

are mean inactivity times of X and Y, respectively. In analogy to Propositions 3.9 and 3.10,
we have the following results. We omit the proofs as these follow from (4.6).

Proposition 4.6: Let Y1 and Y2 be two non-negative random variables with joint cumula-
tive distribution function FY1Y2(y1, y2). Assume Yi = biXi + ci, with bi > 0 and ci ≥ 0, i =
1, 2. Then

CEn(Y1, Y2; t1, t2) = b1b2 CEn

(
X1,X2;

t1 − b1

c1
,
t2 − b2

c2

)
, n = 1, 2, . . . , (4.9)

where t1 > b1 and t2 > b2.
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Proposition 4.7: Let Y1 and Y2 be two non-negative random variables as described in
Proposition 4.6 Also, let Yi = φi(Xi), i = 1, 2 be one-to-one transformations with φi(xi)’s
are differentiable functions. Then for n = 1, 2, . . . ,

CEn(Y1, Y2; t1, t2) =
1
n!

∫ t2

0

∫ t1

0

FX1X2(x1, x2)
FX1X2(t1, t2)

[
− ln

FX1X2(x1, x2)
FX1X2(t1, t2)

]n

|J |dx1dx2, (4.10)

where J is the Jacobian of the transformations. It shows that the bivariate DGCE is not
invariant under non-singular transformations.

Using binomial expansion on (4.1), we get the following proposition which is useful to
obtain our next results.

Proposition 4.8: Let X be a non-negative random variable with absolutely continuous
cumulative distribution function FX(x) such that CEn(X; t) < +∞. Then

CEn(X; t) =
1

FX(t)

n∑
k=0

(−1)n−k

k!(n − k)!
[Λ(t)]n−k

∫ t

0

FX(x)[Λ(x)]kdx, n = 1, 2, . . . . (4.11)

Hereafter, we discuss monotonicity property of the DGCE. In this purpose, we prove
the following theorem.

Theorem 4.9: Let X be a non-negative random variable with absolutely continuous
cumulative distribution function FX(x). Then

CE ′
n(X; t) = rX(t)[CEn−1(X; t) − CEn(X; t)], (4.12)

for n = 1, 2, . . . , where ′ denotes the derivative with respect to t.

Proof: From (4.11) we have

CEn(X; t)FX(t) =
n∑

k=0

(−1)n−k

k!(n − k)!
[Λ(t)]n−k

∫ t

0

FX(x)[Λ(x)]kdx. (4.13)

Differentiating (4.13) with respect to t we get

CE ′
n(X; t)FX(t) + CEn(X; t)fX(t) =

n∑
k=0

(−1)n−k

k!(n − k)!

[
[Λ(t)]nFX(t)

−(n − k)[Λ(t)]n−k−1rX(t)
∫ t

0

FX(x)[Λ(x)]kdx

]
.

(4.14)

Again,

n∑
k=0

(−1)n−k

k!(n − k)!

[
[Λ(t)]nFX(t)

]
= 0. (4.15)
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Now using (4.15) in (4.14) we obtain

CE ′
n(X; t)FX(t) + CEn(X; t)fX(t) =

n−1∑
k=0

(−1)n−k−1

k!(n − k − 1)!
[Λ(t)]n−k−1rX(t)

×
∫ t

0

FX(x)[Λ(x)]kdx

= rX(t)FX(t)CEn−1(X; t).

Hence, the result follows. �

In particular, for n = 1 we get from (4.12)

CE ′
1(X; t) = rX(t)[μ(t) − CE1(X; t)]. (4.16)

The reversed failure rate of the inactivity time X[t] = [t − X|X ≤ t] is rX[t](t) = f(t − x)/
(F (t) − F (t − x)) for x > 0. It can be shown that if X[t] is decreasing (increasing) reversed
failure rate, then from (3.3) and (4.1) we obtain

CEn(X; t) ≥ (≤) CEn+1(X; t), n = 0, 1, . . . , (4.17)

for all t > 0. Thus in analogy to (3.5), the normalized version of (4.1) can be defined when
X[t] is decreasing reversed failure rate. It is given by

NCEn(X; t) =
CEn(X; t)
CE0(X; t)

, (4.18)

for t > 0 such that FX(t) > 0. It is easy to see that the normalized DGCE lies in the interval
[0, 1].

Theorem 4.10: Let X be a non-negative random variable with absolutely continuous
cumulative distribution function FX(x). Then for n = 1, 2, . . . , we have

CEn(X) =
1
n

E
(
CEn−1(X;X)

)
+

1
n!

n−2∑
k=0

(
n − 1

k

)
(−1)n−k

×
∫ +∞

0

∫ z

0

rX(z)FX(x)[Λ(z)]n−k−1[Λ(x)]kdxdz. (4.19)

Proof: From (4.11) and after some simplification we get

∫ t

0

FX(x)[Λ(x)]ndx = n!FX(t)CEn(X; t)

−
n−1∑
k=0

(
n

k

)
(−1)n−k[Λ(t)]n−k

∫ t

0

FX(x)[Λ(x)]kdx. (4.20)
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Substituting the expression from (4.20) into (3.20) we obtain

CEn(X) =
1
n!

∫ +∞

0

rX(z)[(n − 1)!FX(z)CEn−1(X; z)

+
n−2∑
k=0

(
n − 1

k

)
(−1)n−k[Λ(z)]n−k−1

∫ z

0

FX(x)[Λ(x)]kdx]dz

=
1
n

∫ +∞

0

CEn−1(X; z)fX(z)dz +
1
n!

n−2∑
k=0

(
n − 1

k

)
(−1)n−k

×
∫ +∞

0

∫ z

0

rX(z)FX(x)[Λ(z)]n−k−1[Λ(x)]kdxdz. (4.21)

Hence, the desired result follows. �

Below, we obtain relationship between μn(t) and CEn(X; t). First we prove the following
lemma.

Lemma 4.11: Let X be a non-negative random variable with absolutely continuous cumula-
tive distribution function FX(x). Then Mk(t) defined in (2.6) can be expressed as

Mk(t) =
k∑

j=0

k!
(k − j)!

1
[Λ(t)]j

CEj(X; t).

Proof: From (2.6) we have

Mk(t) =
∫ t

0

[− ln(FX(x)/FX(t))
− ln FX(t)

+ 1
]k

FX(x)
FX(t)

dx

=
∫ t

0

k∑
j=0

(
k

j

) [− ln(FX(x)/FX(t))
− ln FX(t)

]j
FX(x)
FX(t)

dx

=
k∑

j=0

(
k

j

)
1

[Λ(t)]j

∫ t

0

[
− ln

FX(x)
FX(t)

]j
FX(x)
FX(t)

dx

=
k∑

j=0

k!
(k − j)!

1
[Λ(t)]j

∫ t

0

[− ln(FX(x)/FX(t))]j

j!
FX(x)
FX(t)

dx

=
k∑

j=0

k!
(k − j)!

1
[Λ(t)]j

CEj(X; t).

This completes the proof. �
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Theorem 4.12: Let X be a non-negative random variable with absolutely continuous
cumulative distribution function FX(x). Then the MWIT of X can be expressed as follows:

μn(t) =
n−1∑
j=0

CEj(X; t) ζj(t),

where

ζj(t) =
∑n−j−1

k=0 [Λ(t)]k/k!∑n−1
i=0 [Λ(t)]i/i!

, j = 0, 1, 2, . . . .

Proof: From (2.8) we have

μn(t) =
n−1∑
k=0

Mk(t)pk(t)

=
n−1∑
k=0

k∑
j=0

k!
(k − j)!

1
[Λ(t)]j

CEj(X; t)pk(t) (from Lemma 4.11). (4.22)

After changing the orders of the sums we get from (4.22)

μn(t) =
n−1∑
j=0

n−1∑
k=j

k!
(k − j)!

1
[Λ(t)]j

CEj(X; t)pk(t)

=
n−1∑
j=0

1
[Λ(t)]j

CEj(X; t)
n−1∑
k=j

k!
(k − j)!

[Λ(t)]k/k!∑n−1
i=0 [Λ(t)]i/i!

=
n−1∑
j=0

CEj(X; t)

∑n−1
k=j [Λ(t)]k−j/(k − j)!∑n−1

i=0 [Λ(t)]i/i!

=
n−1∑
j=0

CEj(X; t)
∑n−j−1

k=0 [Λ(t)]k/k!∑n−1
i=0 [Λ(t)]i/i!

.

Hence, the desired result. �

4.1. Class of Lifetime Distributions

In this section, we introduce a class of distributions. Di Crescenzo and Longobardi [8]
pointed out that the dynamic CE cannot be decreasing in t. From Remark 4.2, we also
observe the same behavior of the DGCE. Consider the following definition.

Definition 4.13: The cumulative distribution function FX(x) is said to be increasing
dynamic generalized cumulative entropy (IDGCE), if for n = 1, 2, . . . , CEn(X; t) is an
increasing function of t > 0.

There are many distributions which belong to this class. For example, uniform and
exponential distributions. In Figure 2, we plot CEn(X; t) for exponential distribution with
cumulative distribution function FX(x) = 1 − exp{−x}, x > 0 for different values of n. In
the next result we obtain necessary and sufficient conditions for CEn(X; t) to be IDGCE.
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Figure 2. Plot of CEn(X; t) for exponential distribution for n = 1, 2, 3, 4 (from above).

Theorem 4.14: The cumulative distribution function FX(x) is IDGCE if, and only if, for
t > 0.

CEn−1(X; t) ≥ CEn(X; t), n = 1, 2, . . . . (4.23)

Proof: The proof follows from (4.12) and hence omitted. �

Hereafter, we consider variational behavior of IDGCE class under increasing linear
transformations.

Theorem 4.15: Let X be a non-negative random variable with absolutely continuous cumu-
lative distribution function FX(x). Also let Y = aX + b, a > 0, b ≥ 0. Then Y is IDGCE
if X is IDGCE.

Proof: The proof follows from the Lemma 4.11 and the Definition 4.13 and hence omitted.
�

Remark 4.16: From the Theorem 4.15, it is clear that IDGCE class is closed under the
positive linear transformations.

As a consequence of the Theorem 4.15 we get the following corollary.

Corollary 4.17: For a non-negative random variable X we have
(i) aX is IDGCE if X is IDGCE, where a > 0; and
(ii) X + b is IDGCE if X is IDGCE, where b ≥ 0.

5. EMPIRICAL GCE

Di Crescenzo and Longobardi [8] addressed the problem of estimating the CE by means
of the empirical CE. The empirical CE may be used as a tool to measure information of
neural firing data (see Di Crescenzo and Longobardi [9]). In this section, we consider the
empirical GCE which can be used as an estimator of the GCE. Let X1,X2, . . . , Xm be a
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random sample of size m from a lifetime distribution with absolutely continuous cumulative
distribution function FX(x). From (3.1), the empirical GCE is defined as

CEn(F̂m) =
1
n!

∫ +∞

0

F̂m(x)[− ln F̂m(x)]ndx, n = 1, 2, . . . , (5.1)

where

F̂m(x) =
1
m

m∑
i=1

I(Xi≤x), x ∈ R (5.2)

is the empirical distribution of the sample and I is the indicator function. Denote X(1) ≤
X(2) ≤ · · · ≤ X(m) as the order statistics of the sample. Thus, (5.1) can be written as

CEn(F̂m) =
m−1∑
j=1

1
n!

∫ X(j+1)

X(j)

F̂m(x)[− ln F̂m(x)]ndx, n = 1, 2, . . . . (5.3)

Moreover,

F̂m(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, x < X(1),

j

m
, X(j) ≤ x < X(j+1), j = 1, 2, . . . , n − 1,

1, x ≥ X(j+1).

Hence, (5.3) can be written as

CEn(F̂m) =
m−1∑
j=1

1
n!

Uj+1
j

m

(
− ln

j

m

)n

, n = 1, 2, . . . , (5.4)

where Ui = X(i) − X(i−1), i = 1, 2, . . . , n and X(0) = 0. In the following, we study the
empirical GCE for exponentially distributed random samples.

Example 5.1: Let X1,X2, . . . , Xm be a random sample drawn from exponential distribution
with parameter θ. Here the sample spacings are independent and Uj+1 is exponentially
distributed with parameter θ(m − j). For detail we refer to Pyke [22]. Then from (5.4) we
obtain

E(CEn(F̂m)) =
1
θ

m−1∑
j=1

1
n!(m − j)

j

m

(
− ln

j

m

)n

, n = 1, 2, . . . (5.5)

and

V ar(CEn(F̂m)) =
1
θ2

m−1∑
j=1

1
n!(m − j)2

( j

m

)2(
− ln

j

m

)2n

, n = 1, 2, . . . . (5.6)

Below, we present the numerical values of the empirical GCE of the random samples
drawn from exponential distribution. We consider different sample sizes (m = 10, 20, 30)
and different values of the parameter (θ = 0.2, 0.5, 1.5). Assume n = 1, 2, 3, 4, 5. From Tables
3 and 4, the following observations are made:
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Table 3. Numerical values of E(CEn(F̂m)) for exponential distribution.

θ m E(CE1(F̂m)) E(CE2(F̂m)) E(CE3(F̂m)) E(CE4(F̂m)) E(CE5(F̂m))

0.2 10 2.95875 0.971355 0.362776 0.136520 0.048475
20 3.09498 0.997255 0.392034 0.161878 0.065533
30 3.13907 1.003530 0.400491 0.170552 0.072464

0.5 10 1.18350 0.388542 0.145111 0.054608 0.019390
20 1.23799 0.398902 0.156814 0.064751 0.026213
30 1.25563 0.401412 0.160196 0.068221 0.028985

1.5 10 0.39450 0.129514 0.048370 0.018203 0.006464
20 0.41267 0.132967 0.052271 0.021584 0.008738
30 0.41854 0.133804 0.053399 0.022740 0.009662

Table 4. Numerical values of Var(CEn(F̂m)) for exponential distribution.

θ m Var(CE1(F̂m)) Var(CE2(F̂m)) Var(CE3(F̂m)) Var(CE4(F̂m)) Var(CE5(F̂m))

0.2 10 1.080700 0.124214 0.027173 0.005931 0.001049
20 0.571024 0.063199 0.015301 0.004226 0.001059
30 0.387547 0.042257 0.010482 0.003118 0.000891

0.5 10 0.172912 0.019874 0.004347 0.000949 0.000168
20 0.091364 0.010112 0.002448 0.000676 0.000169
30 0.062008 0.006761 0.001677 0.000499 0.000143

1.5 10 0.019212 0.002208 0.000483 0.000105 0.000019
20 0.010152 0.001124 0.000272 0.000075 0.000019
30 0.006889 0.000751 0.000186 0.000055 0.000016

• The mean of the empirical GCE is increasing (decreasing) in m(n).
• Variance of the empirical GCE is decreasing in m and n.

In the following, we consider example with real dataset taken from Kass, Ventura, and
Cai [16].

Example 5.2: The dataset presented below with m = 29 is due to a case-study based on a
dataset of 242 spike times observed in eight trials on a single neuron.

136.842, 145.965, 155.088, 175.439, 184.561, 199.298, 221.053, 231.579, 246.316, 263.158,

274.386, 282.105, 317.193, 329.123, 347.368, 360.702, 368.421, 389.474, 392.982, 432.281,

449.123, 463.86, 503.86, 538.947, 586.667, 596.491, 658.246, 668.772, 684.912.

Based on these data we get CE1(F̂29) = 131.223, CE2(F̂29) = 55.2174, CE3(F̂29) =
24.482, CE4(F̂29) = 10.6918 and CE5(F̂29) = 4.46299.
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