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The action of any group on itself by conjugation and the corresponding conjugacy
relation play an important role in group theory. There have been many attempts to
find notions of conjugacy in semigroups that would be useful in special classes of
semigroups occurring in various areas of mathematics, such as semigroups of
matrices, operator and topological semigroups, free semigroups, transition monoids
for automata, semigroups given by presentations with prescribed properties, monoids
of graph endomorphisms, etc. In this paper we study four notions of conjugacy for
semigroups, their interconnections, similarities and dissimilarities. They appeared
originally in various different settings (automata, representation theory,
presentations, and transformation semigroups). Here we study them in full generality.
The paper ends with a large list of open problems.
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1. Introduction and preliminaries

By a notion of conjugacy for a class of semigroups we mean an equivalence rela-
tion defined in the language of that class of semigroups and coinciding with the
group theory notion of conjugacy whenever the semigroup is a group. We study
three notions of conjugacy in the most general setting (that is, in the class of all
semigroups) and, in view of its importance for representation theory, we also study
one notion that was originally only defined for finite semigroups.

When generalizing a concept, it is sometimes tempting to think that there should
be one correct, or even preferred, generalization. The view we take in this paper
is that since semigroup theory is a vast subject, intersecting many areas of pure
and applied mathematics, it is probably not reasonable to expect a one-size-fits-
all notion of conjugacy suitable for all purposes. Searching for the ‘best’ notion of
conjugacy is, from our point of view, akin to searching for, say, the ‘best’ topology.
Instead, we think that the goal of studying conjugacy in semigroups is to determine
what different notions of conjugacy look like in various classes of semigroups, and
how they interact with each other and with other mathematical concepts. It is
thus incumbent upon individual mathematicians to decide, given their needs, which
particular notion fits best with the class of semigroups under consideration and
within the particular context.

In this paper, we consider primarily four notions of conjugacy (and some vari-
ations) that we see as especially interesting given their properties and generality.
However, as happens throughout mathematics, stronger notions can be obtained by
requiring additional properties. Adding to the general requirements in the first para-
graph above, one might require that the notion of conjugacy must be non-trivial, or
first-order definable, or that a given set of results about conjugacy in groups carries
over to some class of semigroups, etc. Therefore, the years to come will certainly
see the rise of many more systems of equivalence relations for semigroups based on
notions of conjugacy.

Before introducing the notions of conjugacy that will occupy us in this paper,
we recall some standard definitions and notation (we generally follow [40]). Other
needed definitions will be given in context.

For a semigroup S, we denote by E(S) the set of idempotents of S; S1 is the
semigroup S if S is a monoid, or otherwise denotes the monoid obtained from S
by adjoining an identity element 1. The relation � on E(S) defined by e � f if
ef = fe = e is a partial order on E(S) [40, p. 69]. A commutative semigroup of
idempotents is said to be a semilattice.

An element a of a semigroup S is said to be regular if there exists b ∈ S such that
aba = a. Setting c = bab, we get aca = a and cac = c, so c is an inverse of a. Since a
is also an inverse of c, we often say that a and c are mutually inverse. A semigroup
S is regular if all elements of S are regular, and it is an inverse semigroup if every
element of S has a unique inverse.

If S is a semigroup and a, b ∈ S, we say that aLb if S1a = S1b, aRb if aS1 = bS1,
and aJ b if S1aS1 = S1bS1. We define H = L ∩ R, and D = L ∨ R, that is,
D is the smallest equivalence relation on S containing both L and R. These five
equivalence relations are known as Green’s relations [40, p. 45], and are among the
most important tools in studying semigroups.
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We now introduce the four notions of conjugacy that we will consider in this
paper. As noted, we expect any reasonable notion of semigroup conjugacy to coin-
cide in groups with the usual notion. For elements a, b, g of a group G, if a = g−1bg,
then we say that a and b are conjugate and g (or g−1) is a conjugator of a and b.
Conjugacy in groups has several equivalent formulations that avoid inverses, and
hence generalize syntactically to any semigroup. For example, if G is a group, then
a, b ∈ G satisfy a = g−1bg (for some g ∈ G) if and only if a = uv and b = vu for
some u, v ∈ G (namely, u = g−1b and v = g). This last formulation has been used
to define the following relation on a free semigroup S (see [48]):

a ∼p b ⇐⇒ ∃u,v∈S1a = uv and b = vu. (1.1)

If S is a free semigroup, then ∼p is an equivalence relation on S [48, corollary 5.2],
and so it can be considered as a notion of conjugacy in S. In a general semigroup
S, the relation ∼p is reflexive and symmetric, but not transitive. If a ∼p b in a
semigroup, we say that a and b are primarily related [47] (hence the subscript in
∼p). The transitive closure ∼∗

p of ∼p has been defined as a conjugacy relation in
a general semigroup [39, 46, 47]. Lallement credited the idea of the relation ∼p to
Lyndon and Schützenberger [51].

Again looking to group conjugacy as a model, for a, b in a group G, a = g−1bg
for some g ∈ G if and only if ag = gb for some g ∈ G if and only if bh = ha, for
some h ∈ G (namely, h = g−1). A corresponding semigroup conjugacy is defined as
follows:

a ∼o b ⇐⇒ ∃g,h∈S1ag = gb and bh = ha. (1.2)

This relation was defined by Otto for monoids presented by finite Thue systems [54],
and, unlike ∼p, it is an equivalence relation in any semigroup. However, ∼o is
the universal relation in any semigroup S with zero. Since it is generally believed
[25, 35, 56] that limn→∞ zn/sn = 1, where sn (respectively, zn) is the number of
semigroups (respectively, the number of semigroups with zero) of order n, it would
follow that ‘almost all’ finite semigroups have a zero, and hence this notion of
conjugacy might be of interest only in particular classes of semigroups.

In [19] a new notion of conjugacy was introduced. This notion coincides with
Otto’s concept for semigroups without zero, but does not reduce to the universal
relation when S has a zero. The key idea was to restrict the set from which con-
jugators can be chosen. For a semigroup S with zero and a ∈ S \ {0}, let P(a) be
the set of all elements g ∈ S such that (ma)g �= 0 for all ma ∈ S1a \ {0}. We
also define P(0) = {0}. If S has no zero, we set P(a) = S for every a ∈ S. Let
P

1(a) = P(a) ∪ {1}, where 1 ∈ S1. Define a relation ∼c on any semigroup S by

a ∼c b ⇐⇒ ∃g∈P1(a)∃h∈P1(b)ag = gb and bh = ha. (1.3)

(See [19, § 2] for the motivation of using the sets P
1(a).) Restricting the choice of

conjugators, as happens in the definition of ∼c, is not unprecedented for semigroups.
For example, if S is a monoid and G is the group of units of S, we say that a
and b in S are G-conjugated and write a ∼G b if there exists g ∈ G such that
b = g−1ag [46]. The restrictions proposed in the definition of ∼c are much less
stringent. Their choice was motivated by considerations in the context of semigroups
of transformations. The translation of these considerations into abstract semigroups
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resulted in the sets P
1(a). Roughly speaking, conjugators selected from P

1(a) satisfy
the minimal requirements needed to avoid the pitfalls of ∼o.

The relation ∼c turns out to be an equivalence relation on an arbitrary semigroup
S. Moreover, if S is a semigroup without zero, then ∼c = ∼o. If S is a free semigroup,
then ∼c = ∼o = ∼p. In the case in which S has a zero, the conjugacy class of 0
with respect to ∼c is {0}.

The last notion of conjugacy that we will consider has been inspired by consid-
erations in the representation theory of finite semigroups (for details we refer the
reader to Steinberg’s book [59]). Let M be a finite monoid and let a, b ∈ M . We say
that a ∼tr b if there exist g, h ∈ M such that ghg = g, hgh = h, hg = aω, gh = bω

and gaω+1h = bω+1, where, for a ∈ M , aω denotes the unique idempotent in the
monogenic semigroup generated by a (see [40, § 1.2]) and aω+1 = aaω. The relation
∼tr is an equivalence relation in any finite monoid.

The same notion can be alternatively introduced (see, for example, [47]) via
characters of finite-dimensional representations. Given a finite-dimensional complex
representation ϕ : S → EndC(V ) of a semigroup S, the character of ϕ is the function
χϕ : S → C defined by χϕ(s) = trace(ϕ(s)) for all s ∈ S. In a finite monoid S,
a ∼tr b if and only if χϕ(a) = χϕ(b) (see [52, theorem 2.2] or [59, proposition 8.9,
8.3 and theorem 8.10]). This explains the subscript notation ∼tr.

The relation ∼tr, in its equational definition, can be naturally extended from the
class of finite monoids to the class of epigroups. We need some definitions first. Let
S be a semigroup. An element a ∈ S is an epigroup element (or, more classically,
a group-bound element) if there exists a positive integer n such that an belongs
to a subgroup of S, that is, the H-class Han of an is a group. If this positive
integer is 1, then a is said to be completely regular. If we denote by e the identity
element of Han , then ae is in Han and we define the pseudo-inverse a′ of a by
a′ = (ae)−1, where (ae)−1 denotes the inverse of ae in the group Han [58, (2.1)]. An
epigroup is a semigroup consisting entirely of epigroup elements, and a completely
regular semigroup is a semigroup consisting entirely of completely regular elements.
Finite semigroups and completely regular semigroups are examples of epigroups.
Following Petrich and Reilly [55] for completely regular semigroups and Shevrin [58]
for epigroups, it is now customary to view an epigroup (S, ·) as a unary semigroup
(S, ·,′ ) where x �→ x′ is the map sending each element to its pseudo-inverse. In
addition, the superscript ω notation introduced above for finite semigroups can be
extended to an epigroup S [58, § 2], where, for a ∈ S, aω denotes the idempotent
of the group to which some power of a belongs. (In the finite case, aω itself is a
power of a.) We can therefore extend the definition of ∼tr from finite monoids to
epigroups: for all a, b in a epigroup S,

a ∼tr b ⇐⇒ ∃g,h∈S1ghg = g, hgh = h, gaω+1h = bω+1, hg = aω and gh = bω.
(1.4)

In any epigroup, we have aω = aa′ (see [58, § 2.2.]), and therefore aω+1 = aa′a =
a′′. Thus, in epigroups, as is sometimes convenient, we can express the conjugacy
relation ∼tr entirely in terms of pseudo-inverses: for all a, b ∈ S,

a ∼tr b ⇐⇒ ∃g,h∈Sghg = g, hgh = h, ga′′h = b′′, hg = aa′ and gh = bb′. (1.5)

We will refer to ∼p, ∼∗
p, ∼o, ∼c, and ∼tr as p-conjugacy, p∗-conjugacy, o-conju-

gacy, c-conjugacy, and trace conjugacy, respectively. Of course, ∼p is a valid notion
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Figure 1. Inclusions between the four conjugacies.

of conjugacy only in the class of semigroups in which it is transitive, and trace
conjugacy is only defined for epigroups.

For epigroups (and, in particular, for finite semigroups), we have the inclusions
depicted in figure 1 (which will be justified later). The corresponding picture for
arbitrary semigroups can be extracted from figure 1 by removing ∼tr. The following
semigroup S, which is SmallSemigroup(7,542155) of [26], shows that all inclusions
in figure 1 are strict:

· 0 1 2 3 4 5 6
0 0 0 0 0 4 4 0
1 0 0 0 0 4 4 0
2 0 0 0 0 4 4 0
3 0 0 0 0 4 4 0
4 4 4 4 4 4 4 4
5 4 4 4 4 4 4 4
6 0 0 2 3 4 5 6

Since S has a zero (the element 4) it follows that ∼o = S × S; in addition, it
is obvious from the table that ∼p (viewed as a directed graph) consists of all
loops together with the edges 0–2, 0–3, and 4–5. Therefore, the partition induced
by ∼∗

p is {{0, 2, 3}, {4, 5}, {1}, {6}}. On the other hand, ∼tr induces the partition
{{0, 1, 2, 3}, {5, 6}, {4}}. Finally, we have P(0) = P(1) = P(2) = P(3) = P(6) =
{0, 1, 2, 3, 6}; P(4) = {4}, and P(5) = ∅. From that we infer that ∼c induces the
partition {{0, 1, 2, 3, 6}, {4}, {5}}. Now, ∼c ∩ ∼p consists of all loops and the edges
0–2 and 0–3; ∼c ∩ ∼∗

p induces the partition {{0, 2, 3}, {4}, {5}, {1}, {6}}; finally,
∼c ∩ ∼tr induces the partition {{0, 1, 2, 3}, {4}, {5}, {6}}.

In § 2 we study c-conjugacy, trace conjugacy, and p-conjugacy in one of the most
important classes of inverse semigroups with proper divisors of zero, namely, sym-
metric inverse semigroups (see [40, theorem 5.1.5]). We give a complete description
of the c-conjugacy classes, answering a question posed by the referee of [19]. In the
symmetric inverse semigroup I(X) on a set X, we find that ∼c ⊂ ∼p when X is
finite, and ∼p and ∼c are not comparable when X is countably infinite. Note that
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1174 J. Araújo, M. Kinyon, J. Konieczny and A. Malheiro

∼p ⊆ ∼o in every semigroup S [19, theorem 2.2]. However, as I(X) shows, the
relation between ∼c and ∼p is more complex.

In § 3 we study the relationship between conjugacies and Green’s relations. We
find that, in general, Green’s relations and the conjugacies under consideration are
not comparable with respect to inclusion, but there are some comparison results for
some transformation semigroups. Our general perception, however, is that conjuga-
cies and Green’s relations form two ‘orthogonal’ systems of equivalence relations.

The bulk of our results is contained in § 4 and § 5. Roughly speaking, in the first
we deal with conditions under which the conjugacies tend to be equal; in the second
we deal with the opposite situation. Given the definition of ∼tr, epigroups form the
largest class of semigroups in which all the notions are defined, and hence is the
largest class in which all the relations could be equal; therefore § 4 only deals with
epigroups. In particular, to have ∼p equal to one of the other notions of conjugacy,
a necessary condition is the transitivity of ∼p. A complete classification of the
semigroups in which ∼p is transitive is still an open problem. Besides groups and
free semigroups [48, corollary 5.2], a recent result of Kudryavtseva [44, corollary 4]
shows that p-conjugacy is transitive in completely regular semigroups. We generalize
this result by introducing a wider class of epigroups that contains completely regular
semigroups and their variants.

In § 5 we prove a number of properties and separation results of the four notions
of conjugacy. We conclude the section by extending various results about conjugacy
in groups to conjugacy in semigroups. For example, if ∼ is any of ∼p, ∼c, ∼o or
∼tr, then a ∼ b implies ak ∼ bk, just like in groups.

Finally, § 6 lists open problems regarding the notions of conjugacy under discus-
sion, showing how wide open this topic is.

2. Conjugacy in symmetric inverse semigroups

The symmetric inverse semigroup on a non-empty set X is the semigroup I(X)
of partial injective transformations on X under composition [40, p. 148]. The aim
of this section is to answer a question of the referee of [19] regarding c-conjugacy
in I(X) for a countable X, and also compare these results with the existing ones
on the other notions of conjugacy. For I(X), with countable X, p-conjugacy was
described in [33] (for X finite) and [46] (for X countably infinite). It will follow
from these descriptions and our result that in I(X), ∼c ⊂ ∼p if X is finite, and ∼c
and ∼p are not comparable (with respect to inclusion) if X is countably infinite.
We note that since the semigroup I(X) has a zero, o-conjugacy in I(X) is universal
for every X. Also, if X is infinite, then I(X) is not an epigroup, so trace conjugacy
is only defined for I(X) if X is finite. We will get back to this later.

The importance of symmetric inverse semigroups comes from the fact that every
inverse semigroup can be embedded in I(X) for some X [40, theorem 5.1.7]. The role
of I(X) in the theory of inverse semigroups is analogous to that of the symmetric
group Sym(X) of permutations on X in group theory.

To describe ∼c in I(X), we will use the cycle-chain-ray decomposition of a partial
injective transformation [43], which is an extension of the cycle decomposition of a
permutation.

We will write functions on the right and compose from left to right; that is,
for f : A → B and g : B → C, we will write xf rather than f(x), and x(fg)

https://doi.org/10.1017/S0308210517000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210517000099


Four notions of conjugacy for abstract semigroups 1175

rather than g(f(x)). Let α ∈ I(X). We denote the domain of α by dom(α) and
the image of α by im(α). The union dom(α) ∪ im(α) will be called the span of α
and be denoted span(α). We say that α and β in I(X) are completely disjoint if
span(α) ∩ span(β) = ∅.

Definition 2.1. Let M be a set of pairwise completely disjoint elements of I(X).
The join of the elements of M , denoted

⊔
γ∈M γ, is the element of I(X) whose

domain is
⋃

γ∈M dom(γ) and whose values are defined by

x

( ⊔
γ∈M

γ

)
= xγ0,

where γ0 is the (unique) element of M such that x ∈ dom(γ0). If M = ∅, we define⊔
γ∈M γ to be 0 (the zero in I(X)). If M = {γ1, γ2, . . . , γk} is finite, we may write

the join as γ1 � γ2 � · · · � γk.

Definition 2.2. Let . . . , x−2, x−1, x0, x1, x2, . . . be pairwise distinct elements of
X. The following elements of I(X) will be called basic partial injective transforma-
tions on X.

• A cycle of length k (k � 1), denoted by (x0 x1 · · ·xk−1), is an element δ ∈
I(X) with dom(δ) = {x0, x1, . . . , xk−1}, xiδ = xi+1 for all 0 � i < k − 1, and
xk−1δ = x0.

• A chain of length k (k � 1), denoted by [x0 x1 · · ·xk], is an element θ ∈ I(X)
with dom(θ) = {x0, . . . , xk−1} and xiθ = xi+1 for all 0 � i � k − 1.

• A double ray, denoted by 〈· · ·x−1 x0 x1 · · · 〉, is an element ω ∈ I(X) with
dom(ω) = {. . . , x−1, x0, x1, . . . } and xiω = xi+1 for all i.

• A right ray, denoted by [x0 x1 x2 · · · 〉, is an element υ ∈ I(X) with dom(υ) =
{x0, x1, x2, . . . } and xiυ = xi+1 for all i � 0.

• A left ray, denoted by 〈· · ·x2 x1 x0], is an element λ ∈ I(X) with dom(λ) =
{x1, x2, x3, . . . } and xiλ = xi−1 for all i > 0.

By a ray we will mean a double, right, or left ray.

We note the following.

• The span of a basic partial injective transformation is exhibited by the nota-
tion. For example, the span of the right ray [1 2 3 · · · 〉 is {1, 2, 3, . . . }.

• The left bracket in ‘η = [x · · · ’ indicates that x /∈ im(η), while the right
bracket in ‘η = · · ·x]’ indicates that x /∈ dom(η). For example, for the chain
θ = [1 2 3 4], dom(θ) = {1, 2, 3} and im(θ) = {2, 3, 4}.

• A cycle (x0 x1 · · ·xk−1) differs from the corresponding cycle in the symmetric
group of permutations on X in that the former is undefined for every x ∈
X \ {x0, x1, . . . , xk−1}, while the latter fixes every such x.

The following decomposition result was proved in [43, proposition 2.4].
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Proposition 2.3. Let α ∈ I(X) with α �= 0. Then there exist unique sets ∆α of
cycles, Θα of chains, Ωα of double rays, Υα of right rays, and Λα of left rays such
that the transformations in ∆α ∪Θα ∪Ωα ∪Υα ∪Λα are pairwise completely disjoint
and

α =
⊔

δ∈∆α

δ �
⊔

θ∈Θα

θ �
⊔

ω∈Ωα

ω �
⊔

υ∈Υα

υ �
⊔

λ∈Λα

λ. (2.1)

We will call the join (2.1) the cycle-chain-ray decomposition of α. If η ∈ ∆α ∪
Θα ∪ Ωα ∪ Υα ∪ Λα, we will say that η is contained in α (or that α contains η). We
note the following.

• If α ∈ Sym(X), then
α =

⊔
δ∈∆α

δ �
⊔

ω∈Ωα

ω

(since Θα = Υα = Λα = ∅), which corresponds to the usual cycle decomposi-
tion of a permutation [57, § 1.3.4].

• If dom(α) = X, then

α =
⊔

δ∈∆α

δ �
⊔

ω∈Ωα

ω �
⊔

υ∈Υα

υ

(since Θα = Λα = ∅), which corresponds to the decomposition given in [49].

• If X is finite, then
α =

⊔
δ∈∆α

δ �
⊔

θ∈Θα

θ

(since Ωα = Υα = Λα = ∅), which is the decomposition given in [50, theo-
rem 3.2].

For example, if X = {1, 2, 3, 4, 5, 6, 7, 8, 9}, then

α =
(

1 2 3 4 5 6 7 8 9
3 6 – 5 9 8 – 2 –

)
∈ I(X)

written in cycle-chain decomposition (no rays since X is finite) is α = (2 6 8)�[1 3]�
[4 5 9]. The following β is an example of an element of I(Z) written in cycle-chain-
ray decomposition:

β = (2 4) � [6 8 10] � 〈· · · − 6 − 4 − 2 − 1 − 3 − 5 · · · 〉 � [1 5 9 13 · · · 〉 � 〈· · · 15 11 7 3].

Notation 2.4. We will fix an element � /∈ X. For α ∈ I(X) and x ∈ X, we will
write xα = � if and only if x /∈ dom(α). We will also assume that �α = �. With this
notation, it will make sense to write xα = yβ or xα �= yβ (α, β ∈ I(X), x, y ∈ X)
even when x /∈ dom(α) or y /∈ dom(β).

Notation 2.5. For 0 �= α ∈ I(X), let ∆α be the set of cycles and Θα be the set of
chains that occur in the cycle-chain-ray decomposition of α (see (2.1)). For k � 1,
we denote by ∆k

α the set of cycles in ∆α of length k, and by Θk
α the set of chains

in Θα of length k.
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Definition 2.6. Let α ∈ I(X). The sequence of cardinalities

〈|∆1
α|, |∆2

α|, |∆3
α|, . . . ; |Θ1

α|, |Θ2
α|, |Θ3

α|, . . . ; |Ωα|, |Υα|, |Λα|〉

(indexed by the elements of the ordinal 2ω+3) will be called the cycle-chain-ray type
of α. This notion generalizes the cycle type of a permutation [27, p. 126]. Suppose
that dom(α) is finite. Then α does not have any rays and its cycle-chain-ray type
reduces to the cycle-chain type

〈|∆1
α|, |∆2

α|, |∆3
α|, . . . ; |Θ1

α|, |Θ2
α|, |Θ3

α|, . . . 〉.

The cycle-chain-ray type of α is completely determined by the form of the cycle-
chain-ray decomposition of α. The form is obtained from the decomposition by
omitting each occurrence of the symbol ‘�’ and replacing each element of X by
some generic symbol, say ‘∗’. For example, α = (2 6 8) � [1 3] � [4 5 9] has the form
(∗ ∗ ∗)[∗ ∗][∗ ∗ ∗], and

β = (2 4) � [6 8 10] � 〈· · · − 6 − 4 − 2 − 1 − 3 − 5 · · · 〉 � [1 5 9 13 · · · 〉 � 〈· · · 15 11 7 3].

has the form (∗ ∗)[∗ ∗ ∗]〈· · · ∗ ∗ ∗ · · · 〉[∗ ∗ ∗ · · · 〉〈· · · ∗ ∗ ∗].
A directed graph (or a digraph) is a pair Γ = (A, R), where A is a set (not

necessarily finite and possibly empty) and R is a binary relation on A. Any element
x ∈ A is called a vertex of Γ , and any pair (x, y) ∈ R is called an arc of Γ . We will
call a vertex y terminal if there is no x ∈ A such that (x, y) ∈ R.

Let Γ1 = (A1, R1) and Γ2 = (A2, R2) be digraphs. A mapping φ : A1 → A2 is
called a homomorphism from Γ1 to Γ2 if for all x, y ∈ A1, if (x, y) ∈ R1, then
(xφ, yφ) ∈ R2 [36].

Definition 2.7. Let Γ1 = (A1, R1) and Γ2 = (A2, R2) be digraphs. A homomor-
phism φ : A1 → A2 is called a restrictive homomorphism (or an r-homomorphism)
from Γ1 to Γ2 if for every terminal vertex x of Γ1, xφ is a terminal vertex of Γ2.

Any partial transformation α on a set X (injective or not) can be represented
by the digraph Γ (α) = (Aα, Rα), where Aα = span(α) and for all x, y ∈ Aα,
(x, y) ∈ Rα if and only if x ∈ dom(α) and xα = y.

The following proposition is a special case of [19, theorem 3.8].

Proposition 2.8. For all α, β ∈ I(X), α ∼c β if and only if there are φ, ψ ∈ I(X)
such that φ is an r-homomorphism from Γ (α) to Γ (β) and ψ is an r-homomorphism
from Γ (β) to Γ (α).

Definition 2.9. Let . . . , x−1, x0, x1, . . . be pairwise distinct elements of X. Let
δ = (x0 · · ·xk−1), θ = [x0 x1 · · ·xk], ω = 〈· · ·x−1 x0 x1 · · · 〉, υ = [x0 x1 x2 · · · 〉,
and λ = 〈· · ·x2 x1 x0]. For any η ∈ {δ, θ, ω, υ, λ} and any φ ∈ I(X) such that
span(η) ⊆ dom(φ), we define ηφ∗ to be η in which each xi has been replaced with
xiφ. For example,

δφ∗ = (x0φ x1φ · · ·xk−1φ) and λφ∗ = 〈· · ·x2φ x1φ x0φ].

Consider θ = [x0 x1 · · ·xk], ω = 〈· · ·x−1 x0 x1 · · · 〉, υ = [x0 x1 x2 · · · 〉, and λ =
〈· · ·x2 x1 x0] in I(X). Then any [xi xi+1 · · ·xk] (0 � i < k) is a terminal segment of
θ; any [xi xi+1 xi+2 · · · 〉 is a terminal segment of ω; any [xi xi+1 xi+2 · · · 〉 (i � 0) is
a terminal segment of υ; and any [xi xi−1 · · ·x0] (i � 1) is a terminal segment of λ.

https://doi.org/10.1017/S0308210517000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210517000099
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The following proposition follows easily from more general results proved in [19]
(see [19, propositions 4.18 and 7.3]).

Proposition 2.10. Let α, β, φ ∈ I(X). Then φ is an r-homomorphism from Γ (α)
to Γ (β) if and only if for all k � 1, δ ∈ ∆k

α, θ ∈ Θk
α, ω ∈ Ωα, υ ∈ Υα and λ ∈ Λα:

(1) δφ∗ ∈ ∆k
β, ωφ∗ ∈ Ωβ and λφ∗ ∈ Λβ;

(2) either there is a unique θ1 ∈ Θm
β with m � k such that θφ∗ is a terminal

segment of θ1 or there is a unique λ1 ∈ Λβ such that θφ∗ is a terminal
segment of λ1;

(3) either there is a unique υ1 ∈ Υβ such that υφ∗ is a terminal segment of υ1 or
there is a unique ω1 ∈ Ωβ such that υφ∗ is a terminal segment of ω1.

Definition 2.11. Let α, β, φ ∈ I(X) such that φ is an r-homomorphism from Γ (α)
to Γ (β). We define a mapping hφ : ∆α∪Θα∪Ωα∪Υα∪Λα → ∆β ∪Θβ ∪Ωβ ∪Υβ ∪Λβ

by

ηhφ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ηφ∗ if η ∈ ∆α ∪ Ωα ∪ Λα,

θ1 if η ∈ Θα and ηφ∗ is a terminal segment of θ1 ∈ Θβ ,

λ1 if η ∈ Θα and ηφ∗ is a terminal segment of λ1 ∈ Λβ ,

υ1 if η ∈ Υα and ηφ∗ is a terminal segment of υ1 ∈ Υβ ,

ω1 if η ∈ Υα and ηφ∗ is a terminal segment of ω1 ∈ Ωβ .

Note that hφ is well defined (by proposition 2.10) and injective (since φ is injective).

For a countable set X, we define two cardinal numbers that will be crucial in our
characterization of c-conjugacy in the semigroup I(X). We denote by Z+ the set
of positive integers and by N the set Z+ ∪ {0}.

Definition 2.12. Let X be countable and suppose that α ∈ I(X). We define
kα ∈ N ∪ {ℵ0} by

kα = sup{k ∈ Z+ : Θk
α �= ∅}.

If Θk
α = ∅ for every k ∈ Z+, we define kα to be 0.

Suppose that kα ∈ Z+, that is, kα is the largest positive integer k such that
Θk

α �= ∅. We define mα ∈ N by

mα = max{m ∈ {1, 2, . . . , kα} : |Θm
α | = ℵ0}.

If Θm
α is finite for every m ∈ {1, 2, . . . , kα}, we define mα to be 0.

For any chain θ in I(X), we denote the length of θ by l(θ). For example, if
θ = [1 2 3] then l(θ) = 2.

Lemma 2.13. Let X be countably infinite and let α, β ∈ I(X). Suppose that kα =
kβ = ℵ0. Then there exists an injective mapping p : Θα → Θβ such that for every
θ ∈ Θα, if θ ∈ Θk

α and θp ∈ Θm
β , then m � k.
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Proof. Since kβ = ℵ0, the set {k ∈ Z+ : Θk
β �= ∅} is unbounded, which implies that

there is a sequence η1, η2, η3, . . . of chains in Θβ such that l(η1) < l(η2) < l(η3) <
· · · . Since kα = ℵ0, Θα is countably infinite. Let Θα = {θ1, θ2, θ3, . . . }. For every
i ∈ Z+, select ni ∈ Z+ such that l(θi) � l(ηni). Then p : Θα → Θβ defined by
θip = ηni is a desired injective mapping.

Theorem 2.14. Suppose that X is countable. Let α, β ∈ I(X). Then α ∼c β if and
only if the following conditions are satisfied:

(1) |∆k
α| = |∆k

β | for every k ∈ Z+, |Ωα| = |Ωβ | and |Λα| = |Λβ |;

(2) if Ωα is finite, then |Υα| = |Υβ |; and

(3) if Λα is finite, then

(i) kα = kβ; and
(ii) if kα ∈ Z+, then mα = mβ and for every k ∈ {mα + 1, . . . , kα}, |Θk

α| =
|Θk

β |.

Proof. Suppose that α ∼c β. By proposition 2.8, there exists φ ∈ I(X) such that
φ is an r-homomorphism from Γ (α) to Γ (β). Let k ∈ Z+. Define fk : ∆k

α → ∆k
β by

δfk = δhφ, g : Ωα → Ωβ by ωg = ωhφ, and d : Λα → Λβ by λd = λhφ. Each of the
mappings fk, g and d is injective since hφ is injective. Thus, |∆k

α| � |∆k
β |, |Ωα| �

|Ωβ | and |Λα| � |Λβ |. By symmetry, |∆k
β | � |∆k

α|, |Ωβ | � |Ωα| and |Λβ | � |Λα|.
Hence, (1) holds.

Suppose that Ωα is finite. Then g : Ωα → Ωβ defined above is a bijection (since
g is injective and |Ωα| = |Ωβ |). Thus, for every ω1 ∈ Ωβ there is ω ∈ Ωα such that
ωhφ = ωg = ω1. Since hφ is injective, it follows that for every υ ∈ Υα, υhφ ∈ Υβ

(since vhφ can not belong to Ωβ), which implies that |Υα| � |Υβ |. By symmetry,
|Υβ | � |Υα|. Hence, (2) holds.

Suppose that Λα is finite. Then, by the foregoing argument for Ωα and Υα applied
to Λα and Θα, we conclude that |Θα| = |Θβ | and that for every θ ∈ Θα, θhφ ∈ Θβ .
Suppose to the contrary that kα �= kβ . We may assume that kα > kβ . Then there
exists k ∈ Z+ such that kβ < k � kα and Θk

α �= ∅. Select some θ ∈ Θk
α. Then θhφ is

a terminal segment of some θ1 ∈ Θβ . But this is a contradiction since k > kβ and
Θm

β = ∅ for every m > kβ . Thus, kα = kβ .
Let kα ∈ Z+. Suppose to the contrary that mα �= mβ . We may assume that

mα > mβ . By definition, |Θmα
α | = ℵ0. For every θ ∈ Θmα

α , θhφ is a terminal
segment of some θ1 ∈ Θβ , so θhφ ∈ Θl

β for some l with kβ � l � mα > mβ . But
this is a contradiction since hφ is injective, the set {θhφ : θ ∈ Θmα

α } is infinite, and
the set Θmα

β ∪ · · · ∪ Θ
kβ

β is finite. Thus, mα = mβ .
Finally, suppose to the contrary that there exists k ∈ {mα +1, . . . , kα} such that

|Θk
α| �= |Θk

β |. Select the largest such k. We may assume that |Θk
α| > |Θk

β |. Then
|Θk

α ∪ · · · ∪ Θkα
α | > |Θk

β ∪ · · · ∪ Θkα

β | and hφ maps Θk
α ∪ · · · ∪ Θkα

α to Θk
β ∪ · · · ∪ Θkα

β ,
which is a contradiction since hφ is injective. Hence, |Θk

α| = |Θk
β | for every k ∈

{mα +1, . . . , kα}. We have proved (3), which concludes the direct part of the proof.
Conversely, suppose that conditions (1), (2) and (3) are satisfied. We will define

an injective homomorphism φ from Γ (α) to Γ (β). By (1), for every k ∈ Z+, there
is an injective mapping fk : ∆k

α → ∆k
β .
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Suppose that both Ωα and Λα are infinite. Then |Ωα∪Υα| = |Ωβ | and |Λα∪Θα| =
|Λβ |, and so there are injective mappings g : Ωα ∪ Υα → Ωβ and d : Λα ∪ Θα → Λβ .
For all k � 1, δ ∈ ∆k

α, ω ∈ Ωα, λ ∈ Λα, υ ∈ Υα and θ ∈ Θk
α, we define φ on

span(δ) ∪ span(ω) ∪ span(λ) ∪ span(υ) ∪ span(θ) in such a way that δφ∗ = δfk,
ωφ∗ = ωg, λφ∗ = λd, υφ∗ is a terminal segment of υg, and θφ∗ is a terminal
segment of θd. Note that this defines φ for every vertex x in Γ (α). By the definition
of φ and proposition 2.10, φ ∈ I(X) and φ is an r-homomorphism from Γ (α) to
Γ (β).

Suppose that Ωα is finite and Λα is infinite. Then |Υα| = |Υβ | by (2), and so
there exists an injective mapping j : Υα → Υβ . Let fk : ∆k

α → ∆k
β (k ∈ Z+) and

d : Λα ∪ Θα → Λβ be the injective mappings defined in the previous paragraph.
Since |Ωα| = |Ωβ |, there exists an injective mapping g : Ωα → Ωβ . We define φ as
in the previous paragraph, except that υφ∗ = υj for every υ ∈ Υα. Again, φ ∈ I(X)
and φ is an r-homomorphism from Γ (α) to Γ (β).

Suppose that Ωα is infinite and Λα is finite. Then kα = kβ by (3)(i). Let fk : ∆k
α →

∆k
β (k ∈ Z+) and g : Ωα ∪ Υα → Ωβ be the injective mappings defined in the case

in which both Ωα and Λα are infinite. Since |Λα| = |Λβ |, there exists an injective
mapping d : Λα → Λβ .

Suppose that kα = ℵ0. Then by lemma 2.13, there is an injective mapping
p : Θα → Θβ such that for every θ ∈ Θα, if θ ∈ Θk

α and θp ∈ Θm
β , then m � k.

We define φ as in the case in which both Ωα and Λα are infinite, except that
θφ∗ is a terminal segment of θp for every θ ∈ Θα. Again, φ ∈ I(X) and φ is an
r-homomorphism from Γ (α) to Γ (β).

Suppose that kα < ℵ0. If kα = 0, then Θα = Θβ = ∅. Suppose that kα ∈ Z+.
Then by (3)(ii), mα = mβ and for every k ∈ {mα + 1, . . . , kα}, |Θk

α| = |Θk
β |. Let

m = mα. We have |Θ1
α ∪ · · · ∪ Θm

α | = |Θm
β | = ℵ0 and |Θk

α| = |Θk
β | for every k > m.

Thus, there are injective mappings s : Θ1
α ∪ · · · ∪ Θm

α → Θm
β and tk : Θk

α → Θk
β for

every k > m. We define φ (whether kα is 0 or not) as in the case when both Ωα

and Λα are infinite, except that for every θ ∈ Θα, θφ∗ is a terminal segment of θs
if θ ∈ Θk

α with 1 � k � m, and θφ∗ is a terminal segment of θtk if θ ∈ Θk
α with

k > m. As in the previous cases, φ ∈ I(X) and φ is an r-homomorphism from Γ (α)
to Γ (β).

Finally, if both Ωα and Λα are finite, we define an injective r-homomorphism φ
from Γ (α) to Γ (β) as in the case in which Ωα is infinite and Λα is finite, except
that υφ∗ = υj for every υ ∈ Υα, where j : Υα → Υβ is an injective mapping from
the case in which Ωα is finite and Λα is infinite.

We have proved that there exists an injective r-homomorphism φ from Γ (α) to
Γ (β). By symmetry, there exists an injective r-homomorphism ψ from Γ (β) to
Γ (α). Hence, α ∼c β by proposition 2.8.

Suppose that X is finite. Then for every α ∈ I(X), Ωα = Υα = Λα = ∅, kα �= ℵ0,
and mα = 0 if kα ∈ Z+. Thus, theorem 2.14 implies the following corollary, which
generalizes the result for the symmetric group Sym(X) [27, proposition 11, p. 126].

Corollary 2.15. Suppose that X is finite. Then for all α, β ∈ I(X), α ∼c β if
and only if α and β have the same cycle-chain type.
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Remark 2.16. By corollary 2.15, for a finite set X, the relation ∼c on I(X) can
also be characterized by α ∼c β if and only if there exists a permutation σ on the
set X such that α = σ−1βσ.

Corollary 2.15 implies that if X is finite, then in I(X), ∼c is strictly included
in ∼p.

Proposition 2.17. Suppose that X is finite with |X| � 2. Then ∼c ⊂ ∼p in I(X).

Proof. Let α, β ∈ I(X) and suppose that α ∼c β. By remark 2.16, there exists
σ ∈ Sym(X) such that σ−1ασ = β. For µ = ασ and ν = σ−1 in I(X), we have
µν = α and νµ = β, and so α ∼p β.

We have proved that ∼c ⊆ ∼p. The inclusion is strict. Select x, y ∈ X with x �= y.
Then for α = [x y] and β = 0 in I(X), α ∼p β (since α = α(y) and β = (y)α) but
(α, β) /∈ ∼c by corollary 2.15.

Since ∼p ⊆ ∼∗
p in any semigroup, we also have ∼c ⊂ ∼∗

p in I(X) when X
is finite. The relation ∼∗

p in a finite I(X) was characterized by Ganyushkin and
Kormysheva [33] (see also [46, theorem 1]): for all α, β ∈ I(X), α ∼∗

p β if and only
if α and β have the same cycle type (while there are no restrictions on the chain
type of α and β).

Regarding ∼tr in I(X), for a finite X, we have α ∼tr β if and only if α and β have
the same cycle type [59, example 8.4]. Therefore, in these semigroups, ∼tr = ∼∗

p.
Thus, in I(X) and for finite X, we have the following chain:

∼c•

∼p•

∼∗
p = ∼tr•

∼o = I(X)2•

Proposition 2.17 does not extend to the infinite case. Suppose that X is countably
infinite. Consider the following transformations in I(X):

α = [y0 y1 y3] � 〈· · ·x1
2 x1

1 x1
0] � 〈· · ·x2

2 x2
1 x2

0] � 〈· · ·x3
2 x3

1 x3
0] � · · · ,

β = 〈· · · z1
2 z1

1 z1
0 ] � 〈· · · z2

2 z2
1 z2

0 ] � 〈· · · z3
2 z3

1 z3
0 ] � · · · .

Then ∆α = ∆β = Ωα = Ωβ = Υα = Υβ = ∅ and Λα = Λβ = ℵ0. Thus, α ∼c β
by theorem 2.14. By [46, lemma 4], if α and β were p-conjugate, then there would
exist an injective mapping j : Θ2

α → Θ1
β ∪ Θ2

β ∪ Θ3
β . Since Θ2

α = {[y0 y1 y2]} and
Θ1

β ∪ Θ2
β ∪ Θ3

β = ∅, such a mapping does not exist, and so (α, β) /∈ ∼p.
Now consider α = [y0 y1 y2] and β = [z0 z1] in I(X). Then α ∼p β by [46,

lemma 4], but α and β are not c-conjugate by theorem 2.14 (since Λα = ∅, kα = 2,
and kβ = 1). Thus (α, β) /∈ ∼c.

The foregoing examples prove the following proposition.
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Proposition 2.18. Suppose that X is countably infinite. Then, with respect to
inclusion, ∼p and ∼c are not comparable in I(X).

Since ∼∗
p is the transitive closure of ∼p and ∼c is an equivalence relation, it

follows from proposition 2.18 that if X is infinitely countable, then ∼∗
p and ∼c are

not comparable in I(X) either. For a countably infinite set X, the relation ∼∗
p in

I(X) was characterized by Kudryavtseva and Mazorchuk [46, theorem 2].
Therefore, in I(X), for a countably infinite X, we have the following diamond:

∼c•

∼c ∩ ∼p
•

∼p•

∼∗
p•

∼o = I(X)2
•

��
��

��
� ������

������		
		

		
	

If X is infinite, the semigroup I(X) is not an epigroup, and hence ∼tr is not
defined in I(X). However, in § 4, we show that ∼tr can be defined, and is an
equivalence relation, on the set of epigroup elements of an arbitrary semigroup. We
then characterize ∼tr as the relation on the set of epigroup elements of I(X) for a
countably infinite X (theorem 4.12).

3. Conjugacy and Green’s relations

Green’s relations play an important role in studying semigroups. In a group, any
two elements are G-related, for any Green relation G. Thus, any two conjugate group
elements are G-related. The general situation for semigroups is quite different. In
this section we will show that Green’s relations and our four conjugacies are not
comparable in general, but there are some inclusion results for the symmetric inverse
semigroup I(X) and its subsemigroup consisting of full injective transformations
on X.

Fixing some terminology, for a set X and α : X → X, the kernel of α is the
equivalence relation on X defined by ker(α) = {(x, y) ∈ X × X : xα = yα}.

Theorem 3.1. Let G be any Green relation and let ∼ ∈ {∼p, ∼∗
p, ∼tr, ∼c, ∼o}.

Then there exists a semigroup S such that G �⊆∼ and ∼�⊆ G in S.

Proof. Suppose that ∼ ∈ {∼p, ∼∗
p, ∼tr} and consider S = I(X), where X = {1, 2}.

In any I(X), we have αJ β ⇐⇒ |dom(α)| = |dom(β)| and αHβ ⇐⇒ (dom(α) =
dom(β) and im(α) = im(β)). In any semigroup, J is the largest and H is the
smallest Green relation with respect to inclusion. Let α = [1 2] and β = 0 in I(X).
Then α ∼p β since α = α(2) and β = (2)α, but (α, β) /∈ J since |dom(α)| = 1 and
|dom(β)| = 0. Hence, ∼p �⊆ J , and so ∼p �⊆ G. It follows that ∼∗

p, ∼tr �⊆ G since
∼p ⊆ ∼∗

p ⊆ ∼tr in any finite semigroup (see figure 1). Now let γ = (1) � (2) = idX

and δ = (1 2) in I(X). Then γHδ, but (γ, δ) /∈ ∼tr since, by [59, example 8.4], for
X finite, γ ∼tr δ in I(X) if and only if γ and δ have the same cycle type. Hence,
H �⊆ ∼tr, and so G �⊆ ∼tr. It follows that G �⊆ ∼p, ∼∗

p since ∼p ⊆ ∼∗
p ⊆ ∼tr.
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Suppose that ∼ = ∼c and consider S = T (X), where X = {1, 2, 3} and T (X) is
the semigroup of all full transformations on X. In any T (X), we have αJ β ⇐⇒
|im(α)| = |im(β)| and αHβ ⇐⇒ (ker(α) = ker(β) and im(α) = im(β)). Let

α =
(

1 2 3
3 3 3

)
and β =

(
1 2 3
2 3 3

)

in T (X). Then α ∼c β by [19, corollary 6.3], but (α, β) /∈ J since |im(α)| = 1 and
|im(β)| = 2. Hence, ∼c �⊆ J , and so ∼c �⊆ G. Now let γ = (1) � (2) � (3) = idX

and δ = (1 2 3) in T (X). Then γHδ, but (γ, δ) /∈ ∼c by [19, corollary 6.3]. Hence,
H �⊆ ∼c, and so G �⊆ ∼c. Since T (X) does not have a zero, we have ∼c = ∼o in
T (X). Thus, the foregoing argument can be applied to ∼o, which concludes the
proof.

Although c-conjugacy is not comparable with Green’s relations in general, it is
strictly included in Green’s relation J in the symmetric inverse semigroup on a
countable set.

Proposition 3.2. Suppose that X is countable with |X| � 2. Then ∼c ⊂ J in
I(X).

Proof. Let α, β ∈ I(X) with α ∼c β. Suppose that dom(α) is infinite. Then dom(β)
is also infinite by theorem 2.14. Thus, |dom(α)| = |dom(β)| = ℵ0, which implies
that αJ β. Suppose that dom(α) is finite. Then, by theorem 2.14, α and β have the
same cycle-chain decomposition, which implies that |dom(α)| = |dom(β)|. Thus,
αJ β in this case also. We have proved that ∼c ⊆ J . The inclusion is strict since
for x, y ∈ X with x �= y, α = (x)� (y) and β = (x y) in I(X) are J -related but not
c-conjugate.

By the proof of theorem 3.1, ∼p �⊆ J in I(X) when |X| � 2. However, ∼p
is strictly included in J in the semigroup of full injective transformations on a
countably infinite set X.

Denote by I∗(X) the subsemigroup of I(X) consisting of all transformations
α ∈ I(X) with dom(α) = X. If X is finite, then I∗(X) = Sym(X) but this is not
the case for an infinite X. The semigroup I∗(X) is universal for right cancellative
semigroups with no idempotents (except possibly the identity), that is, any such
semigroup can be embedded in I∗(X) for some X [23, lemma 1.0].

If α ∈ I∗(X), then there are no chains or left rays in the cycle-chain-ray decom-
position of α, that is, Θα = Λα = ∅. By [42, theorem 2.3], for all α, β ∈ I∗(X),
αJ β if and only if |X \im(α)| = |X \im(β)|. For every α ∈ I∗(X), the set X \im(α)
consists of the initial points of the right rays on α, so |X \im(α)| = |Υα|. Thus, for
all α, β ∈ I∗(X),

αJ β in I∗(X) ⇐⇒ |Υα| = |Υβ |. (3.1)

Lemma 3.3. For all α, β ∈ I∗(X), α ∼p β in I∗(X) if and only if α ∼p β in I(X).

Proof. Let α, β ∈ I∗(X). If α ∼p β in I∗(X), then α ∼p β in I(X) since I∗(X) ⊆
I(X). Conversely, suppose that α ∼p β in I(X). Then α = µν and β = νµ for
some µ, ν ∈ I(X). Since dom(α) = X and α = µν, we have dom(µ) = X. Similarly,
dom(ν) = X. Thus, µ, ν ∈ I∗(X), and so α ∼p β in I∗(X).
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Let α, β ∈ I∗(X), where X is countably infinite. By [46, lemma 4], α ∼p β in
I(X) if and only if |∆k

α| = |∆k
β | for all k ∈ Z+, |Ωα| = |Ωβ | and |Υα| = |Υβ |. Thus,

by lemma 3.3, for all α, β ∈ I∗(X),

α ∼p β in I∗(X) ⇐⇒ ∀k∈Z+ |∆k
α(α)| = |∆k

β(β)|, |Ωα| = |Ωβ | and |Υα| = |Υβ |.
(3.2)

For c-conjugacy, we have the following results for an arbitrary set X [19, theo-
rem 7.6]:

α ∼c β in I∗(X) ⇐⇒ ∀k∈Z+ |∆k
α(α)| = |∆k

β(β)|, |Ωα| = |Ωβ |
and |Υα| + |Ωα| = |Υβ | + |Ωβ |. (3.3)

Now, when X is countably infinite, p-conjugacy in I∗(X) is strictly included in J .
In fact, we have an even stronger result.

Theorem 3.4. Suppose that X is countably infinite. Then ∼p = ∼c ∩J in I∗(X).
Moreover, ∼p ⊂ ∼c and ∼p ⊂ J .

Proof. The equality ∼p = ∼c ∩ J follows immediately from (3.1), (3.2) and (3.3).
Thus, ∼p ⊆ ∼c and ∼p ⊆ J . Let X = {xi

j : i, j ∈ Z+ with i � 1} ∪ {yj : j ∈ Z+}.
Consider

α = [y0 y−1 y1 y−2 y2 · · · 〉 � 〈· · ·x1
−1 x1

0 x1
1 · · · 〉 � 〈· · ·x2

−1 x2
0 x2

1 · · · 〉
� 〈· · ·x3

−1 x3
0 x3

1 · · · 〉 � · · · ,

β = 〈· · · y−1 y0 y1 · · · 〉 � 〈· · ·x1
−1 x1

0 x1
1 · · · 〉 � 〈· · ·x2

−1 x2
0 x2

1 · · · 〉
� 〈· · ·x3

−1 x3
0 x3

1 · · · 〉 � · · ·

in I∗(X). Then ∆α = ∆β = ∅, |Ωα| = |Ωβ | = ℵ0, |Υα| = 1 and |Υβ | = 0. Thus,
α ∼c β by (3.3), but (α, β) /∈ ∼p by (3.2). Hence ∼p ⊂ ∼c. Now, let X = {x, y} ∪
{z1, z2, z3, . . . } and consider

γ = (x y) � [z1 z2 z3 · · · 〉 and δ = (x) � (y) � [z1 z2 z3 · · · 〉

in I∗(X). Then γJ δ by (3.1), but (γ, δ) /∈ ∼p by (3.2). Hence, ∼p ⊂ J .

Transformations α and β from the proof of theorem 3.4 are c-conjugate but not
J -related. Thus, in I∗(X), where |X| = ℵ0, ∼c is not included in J . However, the
following result holds for an arbitrary infinite set X.

Proposition 3.5. Suppose that X is infinite. Let α, β ∈ I∗(X) be transformations
such that α has finitely many double chains. If α ∼c β, then αJ β.

Proof. Suppose that α ∼c β. Then |Ωα| = |Ωβ | and |Υα| + |Ωα| = |Υβ | + |Ωβ | by
(3.2). Since |Ωα| is finite, it follows that |Υα| = |Υβ |, and so αJ β by (3.1).

Since the semigroup I∗(X) does not have a zero, ∼c = ∼o in I∗(X), so the-
orem 3.4 and proposition 3.5 also hold for o-conjugacy. The symmetric inverse
semigroup I(X) does have a zero, so o-conjugacy is the universal relation in any
I(X). Since ∼c and J are equivalence relations in any semigroup, it follows from
theorem 3.4 that ∼p is transitive in I∗(X) for a countably infinite X. Thus, theo-
rem 3.4 also holds for ∼∗

p. Trace conjugacy is not defined in I(X) or I∗(X) when
X is infinite.
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4. Conjugacy in epigroups and epigroup elements

The principal aim of this section is to explore the relations between the four con-
jugacies in epigroups, the largest class for which all four notions can be defined.
We will prove that in any epigroup, ∼p ⊆ ∼∗

p ⊆ ∼tr ⊆ ∼o (see figure 1). We will
also investigate when and which conjugacies coincide in a variety of epigroups that
contains all variants of completely regular semigroups. For background information
on epigroups, we refer the reader to the survey paper of Shevrin [58].

Let S be a semigroup. As noted in the introduction, an element a ∈ S is an
epigroup element (or a group-bound element) if there exists a positive integer n
such that an is contained in a subgroup of S. The smallest n for which this is
satisfied is the index of a, and, for all k � n, ak is contained in the group H-class
of an. Let Epi(S) denote the set of all epigroup elements of S and let Epin(S)
denote the subset of Epi(S) consisting of elements of index no more than n. Thus,
Epim(S) ⊆ Epin(S) for m � n and Epi(S) =

⋃
n�1 Epin(S). The elements of

Epi1(S) are more commonly called completely regular (or group elements).
For a ∈ Epin(S), the maximum subgroup of S containing an is its H-class H. Let

e denote the identity element of H. Then ae = ea is in H and we define the pseudo-
inverse a′ of a by a′ = (ae)−1, the inverse of ae in the group H [58, (2.1)]. This
leads to a characterization: a ∈ Epi(S) if and only if there exists a positive integer
n and a (necessarily unique) a′ ∈ S such that the following hold (see [58, § 2]):

a′aa′ = a′, aa′ = a′a, an+1a′ = an. (4.1)

If a is an epigroup element, then so is a′ with a′′ = aa′a. The element a′′ is always
completely regular and a′′′ = a′. Borrowing finite semigroups standard notation (see
[56,59]), for an epigroup element a, we set aω = aa′. We also have aω = a′′a′ = a′a′′,
(a′)ω = (a′′)ω = aω, and more generally aω = (aa′)m = (a′)mam = am(a′)m for all
m > 0.

A semigroup S is said to be an epigroup if Epi(S) = S. If Epi1(S) = S (that is, if
S is a union of groups), then S is called a completely regular semigroup. For n > 0,
the class En consists of all epigroups S such that S = Epin(S); thus, E1 is the class
of completely regular semigroups.

The conclusion of the following lemma is an identity in epigroups, but here we
need a version for epigroup elements. The lemma seems to be a folk result, but we
include a brief proof for completeness.

Lemma 4.1. Let S be a semigroup and suppose that xy, yx ∈ Epi(S) for some
x, y ∈ S. Then (xy)′x = x(yx)′.

Proof. Let n denote the larger of the indices of xy and yx. Then

(xy)ωx = ((xy)′)n+1(xy)n+1x = ((xy)′)n+1x(yx)n+1

= ((xy)′)n+1x(yx)n(yx)′ = ((xy)′)n+1(xy)nx(yx)′ = (xy)′x(yx)′.

By a dual calculation, we also have x(yx)ω = (xy)′x(yx)′, and thus

(xy)ωx = x(yx)ω. (4.2)
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Now we compute

(xy)′x = (xy)′(xy)ωx
(4.2)
= (xy)′x(yx)ω = (xy)′xyx(yx)′

= (xy)ωx(yx)′ (4.2)
= x(yx)ω(yx)′ = x(yx)′,

as claimed.

Throughout the rest of the section, the conditions gh = aω, hg = bω for some
a, b ∈ Epi(S), some g, h ∈ S1, will recur frequently (as, for example, in the definition
of ∼tr). We record two obvious consequences of this for later use:

aωg = gbω and bωh = haω. (4.3)

Indeed, both sides of the first equation are equal to ghg and both sides of the second
are equal to hgh.

The relation ∼tr is not, in general, well defined for an arbitrary semigroup S, but
it is a well-defined relation on Epi(S): for a, b ∈ Epi(S), we set

a ∼tr b ⇐⇒ ∃g,h∈S1ghg = g, hgh = h, ha′′g = b′′, gh = aω, hg = bω. (4.4)

In fact many of the results on ∼tr do not require the whole semigroup to be an
epigroup, rather only the involved elements must be epigroup elements; as an illus-
tration, the next eight results will be proved on ∼tr restricted to epigroup elements.

We start by observing that the asymmetry in our definition of ∼tr, which follows
[59], is only for the sake of brevity.

Lemma 4.2. Let S be a semigroup, let a, b ∈ Epi(S), and suppose that there exist
g, h ∈ S1 such that gh = aω and hg = bω. The following are equivalent:

(1) ha′′g = b′′, (2) gb′′h = a′′, (3) a′′g = gb′′, (4) b′′h = ha′′,

(5) ha′g = b′, (6) gb′h = a′, (7) a′g = gb′, (8) b′h = ha′.

Proof.
(1) =⇒ (2) gb′′h = gha′′gh = aωa′′aω = a′′.

(2) =⇒ (3) a′′g = gb′′hg = gb′′bω = gb′′.

(3) =⇒ (1) ha′′g = hgb′′ = bωb′′ = b′′.

(1) =⇒ (4) =⇒ (2) This follows by an obvious symmetry.

To get (5) =⇒ (6) =⇒ (7) =⇒ (5) and (5) =⇒ (8) =⇒ (6), we just repeat the
same calculations with a′ in place of a and b′ in place of b. Here we use a′′′ = a′,
b′′′ = b′, (a′)ω = aω and (b′)ω = bω.

Showing (3) ⇐⇒ (7) will conclude the proof. Assume (3). Then

a′g = a′aωg
(4.3)
= a′gbω = a′gb′′b′ = a′a′′gb′ = aωgb′ (4.3)

= gbωb′ = gb′.

This establishes (7). Conversely, if (7) holds, then since a′′′ = a′, b′′′ = b′, we may
repeat the same calculation, replacing a with a′ and b with b′ to get (3).
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Proposition 4.3. Let S be a semigroup and let a, b ∈ Epi(S). Then a ∼tr b if and
only if a′ ∼tr b′.

Proof. This follows from lemma 4.2 together with a′′′ = a′, b′′′ = b′, aω = (a′)ω and
bω = (b′)ω.

One theme of this section is to discuss when various notions of conjugacy coincide.
The following lemma will be useful later when we discuss epigroups in which all
notions on the right-hand side of figure 1 coincide. Although we will not use it
right away, we state it here because it is a lemma about epigroup elements (in fact,
idempotents) in arbitrary semigroups.

Lemma 4.4. Let S be a semigroup. Suppose that e, f ∈ E(S) satisfy e � f and
e ∼tr f . Then e = f .

Proof. Since e ∼tr f , there exist g, h ∈ S1 such that ghg = g, hgh = h, gh = e,
hg = f and heg = f (using e′′ = eω = e and f ′′ = fω = f). We have he = h(gh) =
(hg)h = fh, and so e = fe = f(hg) = (fh)g = heg = f .

We now provide alternative definitions of ∼tr and compare trace conjugacy to
p-conjugacy. In particular, we show that the requirement that g and h be mutually
inverse can be omitted from the definition of ∼tr (see (4.4)).

Theorem 4.5. Let S be a semigroup. For a, b ∈ Epi(S), the following are equiva-
lent:

(1) a ∼tr b;

(2) ∃g,h∈S1ha′′g = b′′, gh = aω, hg = bω

(3) ∃g,h∈S1a′′g = gb′′, gh = aω, hg = bω;

(4) ∃g,h∈S1ag = gb, bh = ha, gh = aω, hg = bω;

(5) ∃g,h∈S1hgh = h, ha′′g = b′′, gb′′h = a′′;

(6) a′′ ∼p b′′.

The asymmetries in the statements of the theorem are explained by lemma 4.2.

Proof. The implication (1) =⇒ (2) is trivial. Assume (2) and set ḡ = aωg and
h̄ = bωh. Then

h̄a′′ḡ = bωha′′aωg = bωha′′g = bωb′′ = b′′,

ḡh̄ = aωgbωh
(4.3)
= aωghaω = aωaωaω = aω,

h̄ḡ = bωhaωg
(4.3)
= bωhgbω = bωbωbω = bω,

ḡh̄ḡ = aωaωg = aωg = ḡ,

h̄ḡh̄ = bωbωh = bωh = h̄.

This proves (1). The equivalence (2) ⇐⇒ (3) follows from lemma 4.2.
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Assume (3). Since we have already proved that (3) implies (1), we can conclude
by lemma 4.2 that there are g, h ∈ S1 such that ghg = g, hgh = h, a′′g = gb′′,
gh = aω and hg = bω. Thus,

ag = aghg = aaωg = a′′g = gb′′ = gbωb = ghgb = gb.

This proves half of (4) and the proof of the other part is similar. Assume (4). Then
a′′g = aωag = aωgb = ghgb = gbωb = gb′′, which proves (3).

So far, we have proved (1) ⇐⇒ (2) ⇐⇒ (3) ⇐⇒ (4). In view of lemma 4.2, (1)
clearly implies (5).

Assume (5). Set u = gb′′, v = h. Then uv = gb′′h = a′′ and vu = hgb′′ =
hgha′′g = ha′′g = b′′. Thus, a′′ ∼p b′′, which proves (6).

Finally, assume (6). Then a′′ = uv, b′′ = vu for some u, v ∈ S1, which implies
that

a′′u = ub′′ and b′′v = va′′. (4.5)

Since a′ = a′′′ = (uv)′ and b′ = b′′′ = (vu)′, lemma 4.1 implies that

a′u = ub′ and b′v = va′. (4.6)

Now set g = a′u and h = bωv. Then

gh = a′ubωv = a′ub′b′′v
(4.5)
= a′ub′va′′ (4.6)

= a′uva′a′′

= a′uvaω = a′a′′aω = aωaω = aω,

hg = bωva′u
(4.6)
= bωvub′ = bωb′′b′ = bω,

a′′g = a′′a′u
(4.6)
= a′′ub′ (4.5)

= ub′′b′ = ub′b′′ (4.6)
= a′ub′′ = gb′′.

This proves (3) and completes the proof of the theorem.

The equivalence of (5) and (6) in theorem 4.5 was proved for regular semigroups
by Kudryavtseva [44, corollary 6 and theorem 2]. The equivalence of (1) and (6) for
finite semigroups can also be extracted from the literature since each is equivalent
to the notion of conjugacy defined by having all characters coincide; see [52, theo-
rem 2.2], [59]. A direct proof of the equivalence in the finite case is also straightfor-
ward (B. Steinberg 2014, personal communication).

If we adapt the implications (1) ⇐⇒ (3) ⇐⇒ (5) ⇐⇒ (6) of theorem 4.5 to
completely regular elements, we obtain the following.

Corollary 4.6. Let S be a semigroup and let a, b ∈ Epi1(S). The following are
equivalent:

(1) a ∼tr b;

(2) ∃g,h∈S1ag = gb, gh = aω, hg = bω;

(3) ∃g,h∈S1ghg = g, hgh = h, hag = b, gbh = a;

(4) a ∼p b.

The equivalence of (3) and (4) in corollary 4.6 was proved by Kudryavtseva [44,
theorem 1(1)].
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Theorem 4.7. Let S be a semigroup. Then

(1) ∼tr is an equivalence relation on Epi(S);

(2) for all x ∈ Epi(S), x ∼tr x′′;

(3) for all x, y ∈ S such that xy, yx ∈ Epi(S), xy ∼tr yx;

(4) ∼tr is the smallest equivalence relation on Epi(S) such that (2) and (3) hold.

Proof.
(1) The proof of [59, proposition 8.2] can be repeated verbatim in this setting.

(2) Setting g = x′′, h = x′, we have ghg = g, hgh = h, hx′′g = x′x′′x′ = x′′ = (x′′)′′

and gh = hg = (x′′)ω = xω.

(3) Since (xy)′′ = xy(xy)′xy = x · y(xy)′xy and (yx)′′ = yx(yx)′yx = y(xy)′xy · x
using lemma 4.1, we have (xy)′′ ∼p (yx)′′, and so xy ∼tr yx by theorem 4.5.

(4) Suppose that θ is an equivalence relation on Epi(S) such that xθx′′ for all
x ∈ Epi(S) and xyθyx for all x, y ∈ S such that xy, yx ∈ Epi(S). If a ∼tr b for
some a, b ∈ Epi(S), then by theorem 4.5 there exist u, v ∈ S1 such that a′′ = uv,
b′′ = vu. Thus, aθa′′ = uvθvu = b′′θb. Therefore, ∼tr ⊆ θ, as claimed.

Now we have reached one of our goals of this section, which is to verify the
inclusions on the right-hand side of figure 1.

Theorem 4.8. Let S be a semigroup. As relations on Epi(S), the following inclu-
sions hold:

∼p ⊆ ∼∗
p ⊆ ∼tr ⊆ ∼o.

Proof. The second inclusion follows from theorem 4.7. The third inclusion follows
from theorem 4.5.

The transitivity of ∼p on completely regular elements, a result first obtained
by Kudryavtseva [44, corollary 4], now follows easily. We interpret it here as the
equality of certain notions of conjugacy.

Corollary 4.9. Let S be a semigroup. As relations on Epi1(S), we have ∼p =
∼∗

p = ∼tr. In particular, ∼p is transitive on completely regular semigroups.

Proof. This follows from corollary 4.6 and theorem 4.7(1).

In corollary 4.9, we cannot include ∼o among the notions of conjugacy that
coincide. To see this, consider an abelian group with a zero adjoined. In such a
semigroup, ∼p = ∼∗

p = ∼tr is the identity relation, but ∼o is the universal relation.
We pointed out in § 2 that for an infinite set X, the symmetric inverse semi-

group I(X) is not an epigroup, so trace conjugacy is not defined in I(X). However,
by theorem 4.7, ∼tr is an equivalence relation on Epi(I(X)). Using the results of
this section, we can characterize ∼tr on Epi(I(X)) for a countably infinite X. The
following lemma shows that the elements of Epi(I(X)) are precisely the transforma-
tions in I(X) that do not have any rays and whose lengths of chains are uniformly
bounded. The lemma follows immediately from the fact that β ∈ I(X) is an element
of a subgroup of I(X) if and only if β is a join of cycles.
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Lemma 4.10. Let α ∈ I(X). Then α is an epigroup element if and only if Ωα =
Υα = Λα = ∅ and there is a positive integer n such that Θk

α = ∅ for all k > n.

Recall that an idempotent ε ∈ I(X) is completely determined by its domain: for
every x ∈ dom(ε), xε = x. For A ⊆ X, we will denote the idempotent in I(X) with
domain A by εA.

Lemma 4.11. Let α ∈ Epi(I(X)). Then α and α′′ have the same cycle type.

Proof. By lemma 4.10, α does not contain any rays and there is a positive integer
n such that Θk

α = ∅ for all k > n. Thus, α =
⊔

δ∈∆α
δ �

⊔
θ∈Θα

θ and its cycle-chain
type is

〈|∆1
α|, |∆2

α|, |∆3
α|, . . . ; |Θ1

α|, |Θ2
α|, . . . , |Θn

α|〉.

Then αn is in a group H-class of I(X) whose identity is the idempotent αω = εA,
where A =

⋃
{dom(δ) : δ ∈ ∆α}. Thus,

α′′ = (α′)−1 = ((ααω)−1)−1 = αεA =
⊔

δ∈∆α

δ,

and the result follows.

Theorem 4.12. Let X be a countably infinite set. Then for all α, β ∈ Epi(I(X)),
α ∼tr β if and only if α and β have the same cycle type.

Proof. Let α, β ∈ Epi(I(X)). The following statements are true:

(a) α ∼tr β if and only if α′′ ∼p β′′ (by theorem 4.5);

(b) α′′ ∼p β′′ if and only if α′′ and β′′ have the same cycle type (by [46, lemma 4]);

(c) α and α′′ have the same cycle type, and the same is true for β and β′′ (by
lemma 4.11).

The result clearly follows from (a)–(c).

Now we would like to exhibit a larger class of semigroups in which ∼p = ∼∗
p ⊂ ∼tr,

where the last inclusion is proper. At this point we will no longer work with epigroup
elements in arbitrary semigroups, but rather with epigroups. In particular, this
means we will change our point of view about the role of pseudo-inverses.

Following Petrich and Reilly [55] for completely regular semigroups and Shevrin
[58] for epigroups, it is now customary to view an epigroup (S, ·) as a unary semi-
group (S, .,′ ), where x �→ x′ is the map sending each element to its pseudo-inverse.
By a variety of epigroups, we will mean a class of epigroups viewed as a variety of
unary semigroups in the usual sense: closed under unary subsemigroups, homomor-
phic images and direct products. The class of all epigroups is not a variety because
it is not closed under arbitrary direct products, but the following identities, all of
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which we have already seen, hold in epigroups:

x′xx′ = x′, (4.7)
xx′ = x′x, (4.8)

xx′x = x′′, (4.9)
(xy)′x = x(yx)′, (4.10)

x′′′ = x′. (4.11)

We note that the class En (that is, the epigroups S such that S = Epin(S)) is a
variety of epigroups axiomatized [58, proposition 2.10] by associativity, (4.7), (4.8)
and

xn+1x′ = xn. (4.12)

Let W be the class of semigroups S such that the subsemigroup S2 := {ab | a, b ∈
S} is completely regular. This class contains all completely regular semigroups, all
null semigroups (semigroups satisfying the identity xy = uv) and, more generally,
all variants of completely regular semigroups. (We will recall the definition of a
variant of a semigroup later in the section.) We first prove that W is a variety of
epigroups.

Proposition 4.13. Any semigroup in W is an epigroup. The following proper
inclusions of epigroup varieties hold: E1 ⊂ W ⊂ E2.

Proof. For S ∈ W, every a ∈ S satisfies a2 ∈ Epi1(S), that is, a2 lies in a subgroup of
S. Thus, S ∈ E2, which both verifies the first assertion and the second inclusion. The
second inclusion is also proper, as can be seen by considering a three-element monoid
S = {e, a, b}, where e is the identity element and {a, b} is a null subsemigroup with
xy = a for all x, y ∈ {a, b}. Then S is clearly in E2, but ea = a is not completely
regular, so S is not in W.

Finally, the first inclusion is obvious from the definition of W, and since every
null semigroup is in W, the inclusion is also proper.

The following result characterizes W in terms of pseudo-inverses.

Proposition 4.14. Let S be a semigroup. Then S is in W if and only if S is an
epigroup in E2 satisfying the additional identity

(xy)′′ = xy. (4.13)

Proof. If S is in W, then S is in E2 by proposition 4.13. We have already noted that
the completely regular elements a in an epigroup are characterized by the equation
a′′ = a, so (4.13) holds by the definition of W.

Conversely, if S is an epigroup in E2 satisfying (4.13), then combining (4.9) and
(4.13) shows that each xy lies in a subgroup of S.

Theorem 4.15. Let S be an epigroup in W. Then ∼p = ∼∗
p ⊂ ∼tr.

Proof. Suppose that a ∼p b and b ∼p c, that is, a = uv, b = vu = xy and
c = yx for some u, v, x, y ∈ S1. If a = b or b = c, then clearly a ∼p c. Otherwise,
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a, b, c ∈ S2 ⊆ Epi1(S), so a ∼p c by corollary 4.9. Thus, ∼p is transitive, and so
∼p = ∼∗

p.
To see that the inclusion ∼∗

p ⊂ ∼tr is proper, consider a two-element null semi-
group S = {a, b} with xy = a for all x, y ∈ S. Then a′ = b′ = a. As already noted,
null semigroups are in W. Since a′′ = b′′, we have a ∼tr b (by theorem 4.5), but a
and b are evidently not p-conjugate.

To show that the variety W is of more than just formal interest, we will now
show that it contains all variants of completely regular semigroups. First, we recall
the notion of variant.

Let S be a semigroup and let a ∈ S. Then the pair (S, ◦), where ◦ is a binary
operation on S defined by x ◦ y = xay, is called the variant of S at a. Variants
of semigroups are semigroups. Besides giving a construction of new semigroups
from old ones, variants also provide an interesting interpretation of Nambooripad’s
natural partial order on regular semigroups [53]. (See [37,38] and also [41,45].)

Since W can be viewed as a variety of unary semigroups, we will also find it
helpful to introduce unary variants. Let (S, .,′ ) be a unary semigroup, and fix
a ∈ S. Then the unary semigroup (S, ◦, ∗), where (S, ◦) is the variant of S at a and
x∗ = (xa)′x(ax)′, is called the unary variant of S at a. Since it will always be clear
from the context when we mean a unary variant, we will usually drop the word
‘unary’ when referring to variants.

Variants of completely regular semigroups are not, in general, completely regular.

Example 4.16. Let S = {0, 1} be the 2-chain. Since S is a semilattice, it is certainly
completely regular. However, its variant at 0 is the null semigroup, which is not
even regular.

Theorem 4.17. Let (S, .,′ ) be a completely regular semigroup, and fix a ∈ S. Let
(S, ◦, ·∗) be the variant of S at a, that is,

x ◦ y = xay and x∗ = (xa)′x(ax)′

for all x, y ∈ S. Then (S, ◦, ·∗) is in W.

Proof. All we need to show is that S ◦ S is a subsemigroup of (S, ◦, ·∗) that is
completely regular. We will first prove that (S, ◦, ·∗) is an epigroup in E2, which
implies that S ◦S is also an epigroup, and then show that S ◦S satisfies the identity
(4.12).

We begin by proving that x∗ ◦ x ◦ x∗ = x∗. Indeed, we have

x∗ ◦ x ◦ x∗ = (xa)′x(ax)′ax a(xa)′︸ ︷︷ ︸ x(ax)′

(4.10)
= (xa)′x(ax)′ax (ax)′ax(ax)′︸ ︷︷ ︸

(4.7)
= (xa)′x (ax)′ax(ax)′︸ ︷︷ ︸

(4.7)
= (xa)′x(ax)′

= x∗.
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Then we also have x ◦ x∗ = x∗ ◦ x since

x ◦ x∗ = xa(xa)′︸ ︷︷ ︸ x(ax)′

(4.8)
= (xa)′x ax(ax)′︸ ︷︷ ︸

(4.8)
= (xa)′x(ax)′ax

= x∗ ◦ x.

Finally, x3 ◦ xk = x2 since

x ◦ x ◦ x ◦ x∗ = xa xaxa(xa)′︸ ︷︷ ︸ x(ax)′

(4.12)
= x axax(ax)′︸ ︷︷ ︸ ((S, .,′ ) is completely regular)

(4.12)
= xax ((S, .,′ ) is completely regular)
= x ◦ x,

and so (S, ◦, ·∗) is an epigroup of E2.
Given an element x◦y of S ◦S we will show that (x◦y)2 ◦ (x◦y)∗ = x◦y. Indeed,

(x∗)∗ = (x ◦ y) ◦ (x ◦ y) ◦ (x ◦ y)∗

= xayaxaya(xaya)′︸ ︷︷ ︸ xay(axay)′

(4.12)
= xay axay(axay)′︸ ︷︷ ︸

(4.8)
= xa︸︷︷︸ y(axay)′axay

(4.12)
= xa(xa)′︸ ︷︷ ︸ xay(axay)′axay ((S, .,′ ) is completely regular),

(4.8)
= (xa)′x axay(axay)′axay︸ ︷︷ ︸

(4.12)
= (xa)′xa︸ ︷︷ ︸ xay ((S, .,′ ) is completely regular),

(4.8)
= xa(xa)′xa︸ ︷︷ ︸ y

(4.12)
= xay ((S, .,′ ) is completely regular)
= x ◦ y. �

Corollary 4.18. The relation ∼p is transitive in every variant of a completely
regular semigroup.

From the preceding result, it is natural to conjecture that if p-conjugacy is transi-
tive in some epigroup, then perhaps the relation is transitive in all of the epigroup’s
variants. The following example shows this is not true even for regular epigroups
from E2.
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Example 4.19. Let S be the following semigroup, which is both regular and in E2:

· 0 1 2 3 4
0 0 0 0 0 0
1 0 0 0 1 2
2 0 1 2 1 2
3 0 0 0 3 4
4 0 3 4 3 4

Let T be the variant of S at 1:

◦ 0 1 2 3 4
0 0 0 0 0 0
1 0 0 0 0 0
2 0 0 0 1 2
3 0 0 0 0 0
4 0 0 0 3 4

In S, p-conjugacy is an equivalence relation that induces the partition {{0, 1},
{2, 3, 4}}. However, in T , p-conjugacy is not transitive because 2 ∼p 0 and 0 ∼p 1,
but (2, 1) /∈ ∼p.

Next we will consider epigroups in which all notions of conjugacy on the right-
hand side of figure 1 coincide. An obvious necessary condition is that ∼∗

p = ∼p,
that is, that ∼p must be transitive. Another necessary condition follows from just
the assumed equality of ∼tr and ∼o.

Proposition 4.20. Let S be an epigroup in which ∼tr = ∼o. Then E(S) is an
antichain.

Proof. Suppose that e, f ∈ E(S) satisfy e � f . Setting g = h = e, we have eg =
ee = e = ef = gf and fh = fe = e = ee = he. Thus, e ∼o f . Since ∼tr = ∼o, we
have e ∼tr f , and so e = f by lemma 4.4. It follows that E(S) is an antichain.

A natural class of semigroups in which ∼p is transitive and idempotents form
an antichain is the class of completely simple semigroups. A semigroup S is simple
if it has no proper ideals [40, p. 66]. A simple semigroup S is called completely
simple if it has a primitive idempotent (that is, an idempotent that is minimal
with respect to the partial order �) [40, p. 77]. This turns out to be equivalent to
every idempotent in S being primitive, that is, the idempotents in S forming an
antichain.

A completely simple semigroup can be identified with its Rees matrix represen-
tation M(G; I, J ; P ), with elements from I × G × Λ, where I and Λ are non-empty
sets, G is a group, and multiplication is defined by

(i, a, λ)(j, b, µ) = (i, apλjb, µ), (4.14)

where P = (pλj) is a Λ × I matrix with entries in G [40, theorem 3.3.1]. From this
characterization, it is clear that every element of a completely simple semigroup
is contained in a subgroup, that is, completely simple semigroups are completely
regular.
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Theorem 4.21. In completely simple semigroups, we have ∼p = ∼∗
p = ∼tr = ∼o.

Proof. By theorem 4.8, it suffices to prove that ∼o ⊆ ∼p. To do this, we identify S
with its Rees matrix representation S = M(G; I, J ; P ). Let (i, a, λ), (j, b, µ) ∈ S and
suppose that (i, a, λ) ∼o (j, b, µ). Then, by (4.14), there exist (i, c, µ), (j, d, λ) ∈ S
such that

(i, a, λ)(i, c, µ) = (i, c, µ)(j, b, µ) and (j, b, µ)(j, d, λ) = (j, d, λ)(i, a, λ),

which implies that
apλic = cpµjb and bpµjd = dpλia. (4.15)

Consider x = (dpλi)−1b and y = d. Then, by (4.15),

(i, x, µ)(j, y, λ) = (i, xpµjy, λ) = (i, (dpλi)−1bpµjd, λ)

= (i, (dpλi)−1dpλia, λ) = (i, a, λ),

(j, y, λ)(i, x, µ) = (j, ypλix, µ) = (j, dpλi(dpλi)−1b, µ) = (j, b, µ),

which implies that (i, a, λ) ∼p (j, b, µ).

Theorem 4.22. Let S be a regular epigroup without zero. The following are equiv-
alent:

(1) ∼p = ∼o in S,

(2) S is completely simple.

Proof. Suppose that ∼o = ∼p in S. Since S is an epigroup, we also have ∼tr = ∼o,
and thus E(S) is an antichain by proposition 4.20, that is, every idempotent in S
is primitive. Since S is also regular, we conclude that S is completely simple [40,
theorem 3.3.3].

The converse follows from theorem 4.21.

Theorem 4.23. Let S be an epigroup in W without zero. The following are equiv-
alent:

(1) ∼p = ∼o in S,

(2) S is completely simple.

Proof. Suppose that ∼o = ∼p in S. Arguing as in the preceding proof, we have
that every idempotent in S is primitive. Next, since ∼o = ∼p, we have x ∼p x′′, by
theorem 4.7 and theorem 4.8. Hence, there exist u, v ∈ S1 such that x′′ = uv and
x = vu. But then x′′ = (vu)′′ = vu = x, using (4.13) (since S is in W). Therefore,
x is completely regular. It follows that S is completely regular. Finally, since S
is completely regular and every idempotent is primitive in S, it follows that S is
completely simple [40, theorem 3.3.3].

The converse follows from theorem 4.21.

We now give two examples of inverse epigroups (epigroups that are also inverse
semigroups) to illustrate some possible relations between the conjugacies in the
variety E2.
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Example 4.24. In a semigroup from the epigroup variety E2, we can have ∼p ⊂
∼∗

p = ∼tr ⊂ ∼c = ∼o, where the inclusions are strict. (In particular, ∼p need not
be transitive in a semigroup from E2.) Consider, for example, the inverse semigroup
S given by the following multiplication table:

· 0 1 2 3 4 5
0 0 0 0 3 3 3
1 0 1 0 3 4 3
2 0 0 2 3 3 5
3 3 3 3 0 0 0
4 3 3 4 0 0 1
5 3 5 3 0 2 0

This is an E-unitary inverse semigroup. (An inverse semigroup S is E-unitary if for
all e, a ∈ S, if e and ea are idempotents, then a is an idempotent.) This semigroup
is in E2 since every entry on the main diagonal of the table is an idempotent, but it
is not Clifford (that is, both completely regular and inverse), not even in W, which
can be checked directly, but also follows because p-conjugacy in S is not transitive.
Indeed, we have 4 ∼p 3 (since 4 = 1 · 4 and 3 = 4 · 1) and 3 ∼p 5 (since 3 = 1 · 5 and
5 = 5 · 1), but there are no x, y such that 4 = xy and 5 = yx. It is straightforward
to check that ∼p is the symmetric and reflexive closure of {(1, 2), (3, 4), (3, 5)}, that
∼∗

p = ∼tr, and that ∼c = ∼o has equivalence classes {0, 1, 2} and {3, 4, 5}. Thus,
we have the claimed strict inclusions.

Example 4.25. There are epigroups in E2 but not W in which p-conjugacy is tran-
sitive. Consider, for example, the following inverse semigroup S, which is an ideal
extension of the group {1, a} by the Brandt semigroup {0, b, c, e, f} [40, p. 152]:

· 1 a 0 b c e f
1 1 a 0 b c e f
a a 1 0 e f b c
0 0 0 0 0 0 0 0
b b f 0 0 f b 0
c c e 0 e 0 0 c
e e c 0 0 c e 0
f f b 0 b 0 0 f

The semigroup S is an E∗-unitary inverse monoid. (An inverse semigroup S with
zero is E∗-unitary if for all e, a ∈ S, if e and ea are non-zero idempotents, then a
is an idempotent.) Again, S is in E2 since every entry on the main diagonal of the
table is an idempotent, but it is not Clifford because neither b nor c are completely
regular, not even in W because, for instance, a · e = b.

However, this time, ∼p is an equivalence relation, with the equivalence classes
{1}, {a}, {0, b, c} and {e, f}. Also ∼p = ∼tr. This semigroup, incidentally, is the
smallest example of an inverse semigroup that is not completely regular but in
which p-conjugacy is transitive. Note that ∼c has equivalence classes {1}, {a}, {0},
{b, c} and {e, f}, and therefore ∼c ⊂ ∼p.
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Let us now turn our attention to semigroups with zero. A semigroup S with
zero is 0-simple if S2 �= {0} and {0} and S are the only ideals of S [40, p. 66].
A 0-simple semigroup S is called completely 0-simple if it contains a primitive
idempotent [40, p. 70]. A completely 0-simple semigroup S can be identified with its
Rees matrix representation M0(G; I, Λ; P ), with elements from (I × G × Λ) ∪ {0},
where I and Λ are non-empty sets, G is a group, and multiplication is defined
by (i, a, λ)(j, b, µ) = (i, apλjb, µ) if pλj �= 0, (i, a, λ)(j, b, µ) = 0 if pλj = 0, and
(i, a, λ)0 = 0(i, a, λ) = 0, where P = (pλj) is a Λ × I matrix with entries in G ∪ {0}
such that no row or column of P consists entirely of zeros [40, theorem 3.2.3].

Theorem 4.23 does not remain true if ∼o is replaced with ∼c and ‘completely
simple’ with ‘completely 0-simple.’ Indeed, suppose that in the matrix P , we have
pλj �= 0 and pµi = 0. Let a, b ∈ G. Then (i, a, λ)(j, b, µ) = (i, apλjb, µ) �= 0
and (j, b, µ)(i, a, λ) = 0. Thus, (i, apλjb, µ) ∼p 0, while (i, apλjb, µ) and 0 are
not ∼c-related since in every semigroup with zero the c-conjugacy class of 0 is
{0} [19, lemma 2.3]. Hence, ∼c �= ∼p in completely 0-simple semigroups.

We have, however, the following results.

Proposition 4.26. For a completely 0-simple semigroup M0(G; I, Λ; P ), we have
∼c ⊆ ∼p. Moreover, ∼c = ∼p if and only if the sandwich matrix P has only non-
zero elements.

Proof. Let (i, a, λ), (j, b, µ) be non-zero elements of S = M0(G; I, Λ; P ) such that
(i, a, λ) ∼c (j, b, µ). By (1.3), there exist non-zero elements (i, c, µ), (j, d, λ) with
pλi �= 0, pµj �= 0 such that

(i, a, λ)(i, c, µ) = (i, c, µ)(j, b, µ) and (j, b, µ)(j, d, λ) = (j, d, λ)(i, a, λ).

Using the same arguments as in the proof of theorem 4.21, we obtain (i, a, λ) ∼p
(j, b, µ).

Now, suppose first that ∼c = ∼p. By the argument showing that ∼c �= ∼p in
completely 0-simple semigroups (see the paragraph above this proposition), we can
conclude that whenever pµi = 0, for some i ∈ I and µ ∈ Λ, then pλj = 0, for all
j ∈ I and λ ∈ Λ.

Conversely, suppose that the sandwich matrix P has only non-zero elements.
Then we have that S is isomorphic to T 0, where T is the completely simple semi-
group M(G; I, Λ; P ). But then, by theorem 4.21, ∼T

p = ∼T
o in T . Since S has no

zero divisors, we have ∼S
c = {(0, 0)}∪∼T

o and {0} is one of the p-conjugacy classes
of S. Therefore, ∼S

c = {(0, 0)} ∪ ∼T
p = ∼S

p .

Lemma 4.27. Let S be an epigroup with zero and suppose that ∼c ⊆ ∼tr. Then
E(S) \ {0} is an antichain.

Proof. Suppose that e, f ∈ E(S) with 0 �= e � f . Since e is in both P
1(e) and

P
1(f), ee = e = ef and fe = e = ee, we have e ∼c f . Since ∼c ⊆ ∼tr, we have

e ∼tr f , and so e = f by lemma 4.4. It follows that E(S) \ {0} is an antichain.

A semigroup S with zero is called a 0-direct union of completely 0-simple semi-
groups if S =

⋃
i∈I Si, where each Si is a completely 0-simple semigroup and

Si ∩ Sj = SiSj = {0} if i �= j [40, pp. 79–80].
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Theorem 4.28. Let S be a regular epigroup with zero. The following are equivalent:

(1) ∼c ⊆ ∼p,

(2) ∼c ⊆ ∼tr,

(3) S is a 0-direct union of completely 0-simple semigroups.

Proof. (1) =⇒ (2) is true because ∼p ⊆ ∼tr in any epigroup.
Assume (2). By lemma 4.27, every non-zero idempotent is primitive. Since S is

also regular, then by [40, theorem 3.3.4], we obtain (3).
Now assume (3), that is, S =

⋃
i∈I Si, where each Si is a completely 0-simple

semigroup and Si ∩ Sj = SiSj = {0} if i �= j.
We will show that if a ∼c b in S, then both a and b belong to the same subsemi-

group Si, for some i ∈ I, and that a ∼Si
c b in Si. Since the c-conjugacy class of

0 is {0}, we may assume that a, b �= 0. Suppose that a ∼c b in S. By (1.3) there
exist non-zero elements g, h ∈ S, with ag �= 0 and bh �= 0, satisfying ag = gb and
bh = ha. Thus, since SiSj = {0}, for all i, j ∈ I, we conclude that a, b, g, h ∈ Si for
some i ∈ I. But then a ∼Si

c b in Si.
So any two c-conjugate elements in S are c-conjugate elements in a completely

0-simple semigroup Si. Hence, by proposition 4.26, any two c-conjugate elements
are also p-conjugate in Si, for some i ∈ I. Since p-conjugate elements in Si are also
p-conjugate in S, we have ∼c ⊆ ∼p in S.

In the last part of this section, we will examine o-conjugacy in all epigroups and
c-conjugacy in the variety W.

If two elements a, b with a �= b of a semigroup are o-conjugate, say, ag = gb
and bh = ha, then in general there is no apparent connection between g and h
beyond these two equations. In a group, of course, one may assume without loss of
generality that h = g−1. The next result shows that in epigroups we may similarly
restrict the choice of conjugators for ∼o without loss of generality.

Theorem 4.29. Let S be an epigroup and suppose that a ∼o b for some a, b ∈ S.
Then there exist mutually inverse g, h ∈ S1 such that ag = gb and bh = ha.

Proof. Since a ∼o b, there exist c, d ∈ S1 such that ac = cb and bd = da. These
imply that acd = cda, a fact we will use without comment in what follows. Set

h = da(cda)′ and g = chc. (4.16)

Then hch = da(cda)′cda(cda)′ (4.7)
= da(cda)′ = h. Thus, h is regular and so an

inverse of h is given by chc = g, that is, g and h are mutually inverse as claimed.
Now we check that g and h are conjugators of a and b. First, we have

bh = bd︸︷︷︸ a(cda)′ = da a(cda)′︸ ︷︷ ︸ (4.10)
= da(acd)′a = ha.

Then we use this in the third step of the following calculation:

ag = ac︸︷︷︸ hc = c bh︸︷︷︸ c = ch ac︸︷︷︸ = chcb = gb.

This completes the proof.
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Example 4.30. In the completely regular case, it is not possible, in general, to
choose the mutually inverse g and h of theorem 4.29 to be g and g′ = g−1, the
commuting inverse of g. To see this, consider a two-element left zero semigroup
{a, b}. Since aba = a, bab = b, a and b are mutually inverse. We also have aa = ab
and bb = ba, so a ∼o b. However, a′ = a and b′ = b, so we cannot have both ax = xb
and bx′ = x′a for either x = a or x = b.

Now we consider c-conjugacy. We do not know if there is a full analogue of
theorem 4.29 for all epigroups, but there is one for our variety W. First we need
the following result.

Lemma 4.31. Let S be an epigroup with zero in W. If st = 0 for some s, t ∈ S1,
then sxt = 0 for all x ∈ S1.

Proof. First,

ts
(4.13)
= (ts)′′ (4.9)

= ts (ts)′ts︸ ︷︷ ︸ (4.8)
= t st︸︷︷︸ s(ts)′ = 0.

Then
sxt

(4.13)
= (sxt)′′ (4.9)

= sxt (sxt)′sxt︸ ︷︷ ︸ (4.8)
= sx ts︸︷︷︸ xt(sxt)′ = 0. �

Theorem 4.32. Let S be an epigroup with zero in W and suppose that a ∼c b for
some a, b ∈ S. Then there exist mutually inverse g ∈ P

1(a), h ∈ P
1(b) such that

ag = gb and bh = ha.

Proof. We may assume that a, b �= 0. Since a ∼c b, there exist c ∈ P
1(a), d ∈ P

1(b)
such that ac = cb and bd = da. As before, we will use acd = cda without comment.

Define h and g by (4.16). By the proof of theorem 4.29, we have that g, h are
mutually inverse and satisfy ag = gb, bh = ha. What remains is to show that
h ∈ P

1(b) and g ∈ P
1(a).

Suppose that (mb)h = 0 for some m ∈ S1. We wish to prove mb = 0. By
lemma 4.31, mxbh = 0 for all x ∈ S1, and so, in particular, we have mcbh = 0.
Thus,

0 = mc bh︸︷︷︸ = mcha = mcda(cda)′a.

Multiply both sides on the right by cd to get

0 = mcda(cda)′ acd︸︷︷︸ = mcda(cda)′cda
(4.9)
= m(cda)′′ (4.13)

= mc da︸︷︷︸ = mcbd.

Now, since d ∈ P
1(b), the result of this last calculation implies that mcb = 0. Thus,

0 = mcb = mac. Since c ∈ P
1(a), we conclude that ma = 0. Using lemma 4.31

once again, mxa = 0 for all x ∈ S1. In particular, we have 0 = mda = mbd. Since
d ∈ P

1(b), we obtain mb = 0 as claimed.
Finally, suppose that (ma)g = 0 for some m ∈ S1. We wish to prove ma = 0.

Thus,
0 = mag = m ac︸︷︷︸ hc = mc bh︸︷︷︸ c = mchac.

Since c ∈ P
1(a), we have mcha = 0, that is, mcbh = 0. Since h ∈ P

1(b), 0 = mcb =
mac. Using c ∈ P

1(a) one last time, we get ma = 0 as claimed.
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Example 4.33. The proof of theorem 4.32 depends heavily on the epigroup S being
in the variety W, and indeed the method of proof does not work for all epigroups
in general. For example, consider the commutative monoid S with zero defined by
the following multiplication table:

· 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 0 0 2 2
3 0 3 0 0 2 2
4 0 4 2 2 5 5
5 0 5 2 2 5 5

This is an epigroup with pseudo-inverse given by 0′ = 2′ = 3′ = 0, 1′ = 1, 4′ =
5′ = 5. It is easy to see that S is in E2 since every element on the diagonal is an
idempotent. S is not in W because, for instance, (2 · 4)′′ = 2′′ = 0 �= 2 · 4. If a = 2,
b = 3, c = d = 4, then ac = cb, bd = da, c ∈ P

1(a) and d ∈ P
1(b). Thus, a ∼c 3.

Note that c is not regular, but if we try to define g, h by (4.16), we get g = h = 0.
Thus, the proof of theorem 4.32 does not apply here. However, note that by setting
g = h = 5, we do obtain mutually inverse g, h, which will suffice. Therefore, in this
example, the conclusion of theorem 4.32 is still correct.

5. Comparison results

In this section, we compare the four notions of conjugacy under discussion in various
settings. In every semigroup, ∼p ⊆ ∼∗

p ⊆ ∼tr ⊆ ∼o and ∼c ⊆ ∼o.
Regarding ∼p and ∼c, we have the following result.

Theorem 5.1. For each of the conditions

(a) ∼c ⊂ ∼p,

(b) ∼p ⊂ ∼c,

(c) ∼p and ∼c are not comparable with respect to inclusion,

there exists a semigroup with zero in which the condition holds.

Proof. Proposition 2.17 shows that ∼c ⊂ ∼p in any symmetric inverse semigroup
I(X), where 2 � |X| < ∞.

Example 4.24 provides an example of a semigroup S without zero in which ∼p ⊂
∼∗

p ⊂ ∼c = ∼o. Let S0 denote the semigroup obtained from S by adding an extra
element 0 acting as a zero. Then ∼S0

p = ∼S
p ∪ {(0, 0)} and ∼S0

c = ∼S
c ∪ {(0, 0)}.

Thus, S0 is a semigroup with zero in which ∼p ⊂ ∼c as claimed.
Finally, by proposition 2.18, relations ∼p and ∼c are not comparable with respect

to inclusion in the symmetric inverse semigroup I(X) on a countably infinite set X.
There are also finite semigroups in which ∼p and ∼c are not comparable. Indeed,
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let S = {0, 1, 2, 3, 4} be the monoid given by the following multiplication table:

· 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 0 2 0
3 0 3 4 3 4
4 0 4 0 4 0

It is straightforward to check that 1 ∼c 3 and all other ∼c-classes are trivial, while
2 ∼p 4 and all other ∼p-classes are trivial.

Regarding ∼tr and ∼c, we have the following result.

Theorem 5.2. For each of the conditions

(a) ∼c ⊂ ∼tr,

(b) ∼tr ⊂ ∼c,

(c) ∼tr and ∼c are not comparable with respect to inclusion,

there exists a semigroup with zero in which the condition holds.

Proof. The following semigroup [26, SmallSemigroup(4,22)] satisfies condition (a):

· 0 1 2 3
0 0 0 0 0
1 0 0 0 1
2 0 0 0 1
3 0 1 1 3

where ∼tr = {{0, 1, 2}, {3}} and ∼c = {{0}, {1, 2}, {3}}.
The following semigroup [26, SmallSemigroup(4,113)] satisfies condition (b):

· 0 1 2 3
0 0 0 0 0
1 0 1 1 1
2 0 1 2 1
3 0 3 3 3

where ∼tr = {{0}, {2}, {1, 3}} and ∼c = {{0}, {1, 2, 3}}.
Finally, the following semigroup [26, SmallSemigroup(4,56)] satisfies condi-

tion (c):
· 0 1 2 3
0 0 0 0 0
1 0 0 0 0
2 0 0 2 2
3 0 0 2 3

where ∼tr = {{0, 1}, {2}, {3}} and ∼c = {{0}, {1}, {2, 3}}.
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Figure 2. Bounded anti-chain.

Table 1. c-conjugacy in small monoids with zero divisors.

|S| # of monoids with 0-divisors ∼c is the identity ∼c is ‘universal’

3 1 1 0
4 7 3 1
5 58 14 7
6 574 115 74
7 8742 3016 972

Our next result separates c-conjugacy and o-conjugacy. As already mentioned, ∼o

is the universal relation in any semigroup with zero and ∼c = ∼o in any semigroup
without zero. Therefore, a trivial way of separating ∼c and ∼o is to consider any
semigroup without zero and then adjoin a zero to that semigroup.

Less trivially, we can separate ∼c and ∼o in semigroups with proper zero divisors.
The next theorem shows that the two notions might be different in such a semigroup
in the most extreme way – see figure 2.

Theorem 5.3. In a semilattice S that is an anti-chain with 0 and 1, ∼o is univer-
sal, while ∼c is the identity.

Proof. Observe that P
1(1) = {1}, P

1(0) = {0} and P
1(x) = {x, 1} for all x ∈

S \ {0, 1}. Therefore, in this semigroup ∼c is the identity, while ∼o is the universal
relation.

The same result holds for every null semigroup. Table 1 was produced using the
Smallsemi package for GAP [26]. It contains data illustrating how common the
extreme behaviour of ∼c is in monoids with zero divisors. In table 1, |S| is the order
of the semigroup; the column labelled by ‘# of monoids with 0-divisors’ contains
the number of monoids of order |S| that have a zero and zero divisors; the column
‘∼c is the identity’ contains the number of such monoids in which ∼c is the identity
relation; the column ‘∼c is ‘universal” contains the number of such monoids in
which all non-zero elements form a single conjugacy class.

For a large proportion of the monoids from table 1, c-conjugacy is the identity.
Observe that in groups, conjugacy is the identity relation if and only if the group
is abelian. This is not the case for c-conjugacy in monoids, as the following monoid
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with proper divisors of zero shows:

· 0 1 2 3 4
0 0 0 0 0 0
1 0 0 0 0 1
2 0 0 0 0 2
3 0 0 1 0 3
4 0 1 2 3 4

Every element in this monoid is only c-conjugate to itself, and the monoid is not
commutative. This monoid is SmallSemigroup(5,110) in the Smallsemi package
for GAP [26]

However, the result analogous to group conjugacy holds for p-conjugacy.

Theorem 5.4. Let S be a semigroup. Then ∼p is the identity relation in S if and
only if S is commutative.

Proof. If S is commutative and if x = uv and y = vu, then obviously x = uv =
vu = y, and so ∼p is the identity relation. Conversely, suppose that each element
of S is p-conjugate only to itself. For all a, b ∈ S, ab ∼p ba, and so ab = ba by the
assumption.

Theorem 5.5. Let S be an epigroup. Then ∼tr is the identity relation in S if and
only if S is a commutative completely regular epigroup.

Proof. Suppose first that ∼tr is the identity relation. Since ∼p ⊆ ∼tr, it follows that
∼p is also the identity relation, and hence, by theorem 5.4, S is commutative. In
every epigroup, we have a ∼tr a′′ by theorem 4.7. Since ∼tr coincides with equality,
we have a = a′′ for all a ∈ S. Thus, S is a commutative completely regular epigroup
(or, equivalently, a commutative inverse epigroup).

Conversely, if S is a commutative completely regular epigroup, then ∼tr = ∼p
by corollary 4.6, and so ∼tr is the identity relation by theorem 5.4.

The corresponding result for o-conjugacy is as follows.

Theorem 5.6. Let S be a semigroup. Then

(1) if S is commutative, then ∼o is the minimum cancellative congruence on S;

(2) ∼o is the identity relation in S if and only if S is commutative and cancella-
tive.

Proof. (1) Suppose that S is commutative. Then for all a, b ∈ S, a ∼o b if and only
if ag = bg for some g ∈ S1. Thus, whenever a ∼o b we have ca ∼o cb and ac ∼o bc,
for all c ∈ S, which implies that ∼o is a congruence. Denote the congruence class
of x ∈ S by x̄. Let ā, b̄, c̄ ∈ S/ ∼o and suppose that āb̄ = āc̄. Then ab ∼o ac, and
so (ab)g = (ac)g for some g ∈ S1. Since S is commutative, we have b(ag) = c(ag),
and so b ∼o c. Hence, b̄ = c̄, which implies that S/ ∼o is cancellative. Now let
θ be any cancellative congruence on S and suppose that a ∼o b, where a, b ∈ S.
Then ag = bg for some g ∈ S1, so gaθgb. Since θ is cancellative, it follows that aθb.
Therefore, ∼o ⊆ θ, which proves that ∼o is the minimum cancellative congruence
on S.
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(2) If S is commutative and cancellative, then (1) implies that ∼o must be the
identity relation. For the converse, note that xy ∼o yx in any semigroup (since
(xy)x = x(yx) and (yx)y = y(xy)). Thus, if ∼o is the identity relation, then xy = yx
for all x, y ∈ S, that is, S is commutative. By (1), S ∼= S/∼o is cancellative.

Observe that in left zero semigroups (those satisfying the identity xy = x), ∼o is
the universal relation, and thus a congruence, but the semigroup is not commuta-
tive.

In commutative semigroups, p-conjugacy is the identity, and non-trivial cancella-
tive semigroups cannot have a zero. Thus, the following result holds.

Corollary 5.7. Let S be a commutative and cancellative semigroup. Then ∼p,
∼o and ∼c all coincide and are equal to the identity relation.

By the definition of the notion of conjugacy, all semigroup conjugacies coincide
in a group. The following result is a sort of converse.

Corollary 5.8. Let S be an epigroup. Then ∼p, ∼o, ∼tr and ∼c all coincide and
are equal to the identity relation if and only if S is a commutative group.

Proof. Regarding the direct implication, observe that if ∼tr is the identity, then the
semigroup is completely regular and commutative; in addition, ∼o trivial implies
that S is cancellative. It is well known that a regular cancellative semigroup is a
group.

The converse is obvious.

Now we discuss conditions under which our various notions of conjugacy on a
semigroup S coincide with the universal relation S × S. Regarding o-conjugacy, no
characterization seems likely, because of what we have noted multiple times already:
∼o is universal in any semigroup with a zero.

Thus, we pass immediately to trace conjugacy in epigroups. One would guess that
in epigroups with universal trace conjugacy, each subgroup is trivial, and this does
indeed turn out to be the case; see part (2) of the following result. More interestingly,
the theorem shows that the class of epigroups in which trace conjugacy is universal
forms a variety.

Theorem 5.9. Let S be an epigroup. The following are equivalent:

(1) ∼tr is the universal relation;

(2) E(S) is an antichain and for all x ∈ S, x′′ = xω;

(3) for all x, y ∈ S, x′yx′ = x′;

(4) for all x, y ∈ S, xωyxω = xω;

(5) for all x ∈ S, e ∈ E(S), exe = e.

Proof. We prove (1) =⇒ (2) =⇒ (3) =⇒ (1) and (3) ⇐⇒ (4) ⇐⇒ (5).
Assume that (1) holds, that is, ∼tr = S × S. Since ∼tr ⊆ ∼o, it follows that

∼tr = ∼o. By proposition 4.20, E(S) is an antichain. Now fix an idempotent e.
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Since ∼tr is universal, e ∼tr x′ for all x ∈ S. Thus, by theorem 4.5(6), there exist
u, v ∈ S1 such that e = e′′ = uv and x′ = (x′)′′ = vu. Now,

xω = (x′)ω = x′x′′ = vu(vu)′ (4.10)
= v(uv)′u = ve′u = veu. (5.1)

Thus,

x′′ = x′xω (5.1)
= vuveu = veeu = veu = xω.

This establishes (2).
Assume that (2) holds. Note that for all x ∈ S, x′ = x′′′ = (xω)′ = xω, so x′

is idempotent. We show that for all x, y ∈ S, x′(yx′)′ is idempotent, freely using
(4.10) to rewrite this as (x′y)′x′:

x′(yx′)′︸ ︷︷ ︸ x′(yx′)′ = (x′y)′ x′x′︸︷︷︸(yx′)′ = (x′y)′x′︸ ︷︷ ︸(yx′)′ = x′ (yx′)′(yx′)′︸ ︷︷ ︸ = x′(yx′)′.

Next we show that x′ � x′(yx′)′: x′·x′(yx′)′ = x′(yx′)′ and x′(yx′)′x′ = (x′y)′x′x′ =
(x′y)′x′ = x′(yx′)′.

Now, since E(S) is an antichain and x′, x′(yx′)′ ∈ E(S), we conclude that
x′(yx′)′ = x′. Finally, we have

(yx′)′ = (yx′)ω = y x′(yx′)′︸ ︷︷ ︸ = yx′.

Therefore, x′yx′ = x′(yx′)′ = x′, which establishes (3).
Assume that (3) holds. For x, y ∈ S, set u = x′′y′′ and v = y′′x′′. Then x′′ =

x′′y′′y′′x′′ = uv and y′′ = y′′x′′x′′y′′ = vu. Thus, x′′ ∼p y′′, and so x ∼tr y by
theorem 4.5(6). Thus, ∼tr is the universal relation, that is, (1) holds.

Next, once again assume that (3) holds. Taking y = x′′, we have xωyxω =
x(x′(yx)x′) = xx′ = xω, so that (4) holds.

Assume that (4) holds. Taking y = x, we obtain xω = xωxxω = x′′xω = x′′. Thus,
xx′ = x′′, and so x′ = x′xx′ = x′x′′ = (x′)ω = xω. Therefore, x′yx′ = xωyxω =
xω = x′. This establishes (3).

Finally, the equivalence of (4) and (5) is obvious.

Next we discuss semigroups in which p-conjugacy is the universal relation. Our
description is complete for semigroups with idempotents, and partial for semigroups
without idempotents.

First we need a definition. A rectangular band is an idempotent semigroup sat-
isfying the identity xyx = x for all x, y. Every rectangular band is completely
simple, and, in fact, is isomorphic to the Rees matrix semigroup I × G × Λ with
G = {1} [40, theorem 1.1.3].

Theorem 5.10. Let S be a semigroup.

(1) If S is a rectangular band, then ∼p is the universal relation.

(2) If ∼p is the universal relation in S, then S is simple. If, in addition, S contains
an idempotent, then S is a rectangular band.

Proof. (1) Let S be a rectangular band. For x, y ∈ S, set u = xy, v = yx. Then
x = xyx = xyyx = uv and y = yxy = yxxy = vu. Therefore, x ∼p y for all x, y ∈ S,
that is, ∼p is universal.
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(2) Let S be a semigroup in which ∼p is the universal relation. We first show that
S is simple. For a ∈ S, S1aS1 is the principal ideal of S generated by a. We want
to show that S1aS1 = S. Let b ∈ S. If b = a, then clearly b ∈ S1aS1. Suppose that
b �= a. Since a ∼p b and a �= b, there exist u1, v1 ∈ S such that a = u1v1, b = v1u1.
Note that u1 �= v1 (since otherwise a = b), so there exist u2, v2 ∈ S such that
u1 = u2v2, v1 = v2u2. Now, if u2 = a, then b = v1u1 = v2au1 ∈ SaS, so we may
assume that u2 �= a. Then there exist u3, v3 ∈ S such that a = u3v3, u2 = v3u3,
and so

b = v1u1 = v2u2u2v2 = v2v3u3v3u3v2 = v2v3au3v2 ∈ SaS.

Hence S1aS1 = S, and so S is simple.
Now suppose that S has an idempotent e. We will show that S satisfies the

identity x3 = x2. Since x ∼p e, there exist u, v ∈ S1 with x = uv, e = vu. Then

xxx = uvuvuv = ueev = uev = uvuv = xx.

The identity x3 = x2 implies that S is an epigroup in E2 with x′ = x2, that is,
x′xx′ = x5 = x2 = x′, xx′ = x′x and x3x′ = x2. Since ∼p ⊆ ∼tr, we have that
∼tr is the universal relation. By theorem 5.9(2), E(S) is a chain, that is, every
idempotent is primitive.

We have now shown that S is completely simple. In particular, S is completely
regular and the epigroup pseudo-inverse x′ = x2 is actually an inverse. Thus, x =
xx′x = x4. But this together with x3 = x2 imply x2 = x for all x ∈ S, that
is, S is an idempotent semigroup. Now using theorem 5.9(3), we conclude that
xyx = x′yx′ = x for all x, y ∈ S, that is, S is a rectangular band.

Example 5.11. By theorem 5.10, if ∼p is universal in a semigroup S, then S is
simple. If S does not have an idempotent, then the converse is not necessarily true.
Let X be a countably infinite set. Denote by Γ (X) the semigroup of all injective
mappings from X to X. For α ∈ Γ (X), let im(α) denote the image of α. The set
S consisting of all α ∈ Γ (X) such that X \ im(α) is infinite is a subsemigroup of
Γ (X) called the Baer–Levi semigroup [24, § 8.1]. The Baer–Levi semigroup is simple
without idempotents [24, theorem 8.2]. Partition the set X as follows:

X = {x, y} ∪ {z1
1 , z1

2 , . . . } ∪ {z2
1 , z2

2 , . . . } ∪ {z3
1 , z3

2 , . . . } ∪ · · · .

Define α, β ∈ S by

α(x) = x, α(y) = y, α(zj
i ) = zj

i+1,

β(x) = y, β(y) = x, β(zj
i ) = zj

i+1.

Then (α, β) �∈ ∼p by [46, proposition 4], so ∼p is not the universal relation.

Since, for example, every finite semigroup has an idempotent, theorem 5.10
implies an immediate corollary.

Corollary 5.12. In a finite semigroup (or, more generally, an epigroup) S, ∼p
is the universal relation if and only if S is a rectangular band.

We conclude this section with some results that extend to semigroups familiar
results on conjugacy in groups.
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For elements a1, a2, b1, b2 in a group, if a1a2 is conjugate to b1b2, then a2a1 is
conjugate to b2b1. This result carries over to semigroups as follows. A semigroup S
with zero is categorical at zero if for all a, b, c ∈ S, ab �= 0 and bc �= 0 imply that
abc �= 0 [24, p. 73].

Theorem 5.13. Let S be a semigroup.

(1) For all a1, a2, b1, b2 ∈ S, a1a2 ∼o b1b2 implies that a2a1 ∼o b2b1.

(2) If S is categorical at zero and a1a2, a2a1, b1b2, b2b1 �= 0, then a1a2 ∼c b1b2
implies that a2a1 ∼c b2b1.

(3) The following statements are equivalent:

(a) ∼p is transitive in S;

(b) For all a1, a2, b1, b2 ∈ S, a1a2 ∼p b1b2 implies that a2a1 ∼p b2b1.

(4) For all a1, a2, b1, b2 ∈ S such that a1a2, b1b2, a2a1, b2b1 ∈ Epi(S), a1a2 ∼tr
b1b2 implies that a2a1 ∼tr b2b1.

Proof. Let a1a2 ∼o b1b2. This implies that, for some c, d ∈ S, a1a2c = cb1b2 and
b1b2d = da1a2. Then

a2a1(a2cb1) = a2(a1a2c)b1 = a2(cb1b2)b1 and b2b1(b2da1) = (b2da1)a2a1. (5.2)

Thus, a2a1 ∼o b2b1. We have proved (1).
Regarding ∼c, suppose that S is categorical at zero and let a1a2, a2a1, b1b2, b2b1 �=

0. Suppose that a1a2 ∼c b1b2. This implies that a1a2c = cb1b2 and b1b2d = da1a2
for some c ∈ P

1(a1a2) and d ∈ P
1(b1b2). As in the proof of (1), we obtain (5.2).

It remains to prove that a2cb1 ∈ P
1(a2a1) and b2da1 ∈ P

1(b2b1). First we observe
that in any semigroup categorical at zero, x ∈ P

1(y) if and only if yx �= 0. Since
c ∈ P

1(a1a2), it follows that cb1b2 = a1a2c �= 0, and hence a2c �= 0 �= cb1. Thus,
a2cb1 �= 0 since S is categorical at zero. Similarly, since a2a1 �= 0 and a1a2 �= 0,
we have a2a1a2 �= 0. Now a2a1a2 �= 0 and a2cb1 �= 0 imply that a2a1a2cb1 �= 0,
which implies that a2cb1 ∈ P

1(a2a1). Similarly, b2da1 ∈ P
1(b2b1), which concludes

the proof of (2).
Regarding ∼p, we start by proving (a) =⇒ (b). Suppose that ∼p is transitive and

let a1a2 ∼p b1b2. By the definition of ∼p, we have xy ∼p yx for all x, y ∈ S. Thus

a2a1 ∼p a1a2 ∼p b1b2 ∼p b2b1,

which implies that a2a1 ∼p b2b1 since ∼p is transitive.
For (b) =⇒ (a), assume that a1a2 ∼p b1b2 implies that a2a1 ∼p b2b1 for all

a1, a2, b1, b2 ∈ S. Let a, b, c ∈ S and suppose that a ∼p b and b ∼p c. Then a = xy,
b = yx = uv and c = vu for some x, y, u, v ∈ S1. Thus yx ∼p uv (since xy = uv = b),
and hence xy ∼p vu (by the hypothesis), that is, a ∼p c. Therefore, ∼p is transitive.

Finally, the result for ∼tr follows from theorem 4.7(3).

In a group, if a and b are conjugate, then ak and bk are also conjugate for
all positive integers k. This fact generalizes to the conjugacies ∼p, ∼c and ∼o in
semigroups.
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Theorem 5.14. Let S be a semigroup and let ∼ ∈ {∼o, ∼c, ∼p}. Then for all
a, b ∈ S and integers k � 1, a ∼ b implies ak ∼ bk.

Proof. Let a, b ∈ S and c ∈ S1 be such that ac = cb. We claim that akc = cbk for
all integers k � 1. We proceed by induction on k. The claim is certainly true for
k = 1. Let k � 1 and suppose that akc = cbk. Then ak+1c = a(akc) = a(cbk) =
(ac)bk = cbk+1. The claim has been proved. The result follows immediately for ∼o
and ∼c.

For ∼p, the desired result is [44, lemma 2]: if, say, a = cd and b = dc, then
ak = ((cd)k−1c)d while bk = d((cd)k−1c).

The same result is true for trace conjugacy and epigroup elements.

Theorem 5.15. Let S be a semigroup. Then for all a, b ∈ Epi(S) and integers
k � 1, a ∼tr b implies ak ∼tr bk.

Proof. Suppose that a ∼tr b. Then a′′ ∼p b′′ by theorem 4.5, and so (a′′)k ∼p (b′′)k

by theorem 5.14. Since (a′′)k = (ak)′′ and (b′′)k = (bk)′′, we have (ak)′′ ∼p (bk)′′,
and so ak ∼tr bk by theorem 4.5.

In a group, if a and b are conjugate, then a−1 and b−1 are also conjugate. This
fact generalizes to o-conjugacy and p-conjugacy in epigroups. (See proposition 4.3
for a stronger result for trace conjugacy.)

Theorem 5.16. Let S be an epigroup and let ∼ ∈ {∼o, ∼p}. Then for all a, b ∈ S,
a ∼ b implies a′ ∼ b′.

Proof. Suppose that a ∼o b, so ac = cb and da = bd for some c, d ∈ S1. Set
g = aa′cb′ and h = bb′da′. Then

a′g = a′aa′︸ ︷︷ ︸ cb′ (4.7)
= a′c b′︸︷︷︸ (4.7)

= a′c b′b︸︷︷︸ b′ (4.8)
= a′ cb︸︷︷︸ b′b′

= a′a︸︷︷︸ cb′b′ (4.8)
= aa′cb′b′ = gb′,

and an almost identical calculation shows that b′h = ha′. Thus, a′ ∼o b′.
Now suppose that a ∼p b. Then a = cd and b = dc for some c, d ∈ S1. Set u = c,

v = d(cd)′(cd)′. Then uv = cd(cd)′(cd)′ = (cd)′cd(cd)′ = (cd)′ = a′, using (4.8) and
(4.7), and vu = d(cd)′(cd)′c = (dc)′dc(dc)′ = (dc)′ = b′, using (4.10) twice followed
by (4.7). Thus, a′ ∼p b′.

In a group, if a and b are conjugate and am = ak for some integers m, k � 1,
then bm = bk. This result does not hold in general for semigroups, but we have the
following for ∼p.

Theorem 5.17. Let S be a semigroup and let a, b ∈ S such that b is an epigroup
element with bt (t � 1) lying in a subgroup of S. If a ∼p b and am = ak for some
integers m, k � t, then bm = bk.

Proof. Since a ∼p b, a = cd and b = dc for some c, d ∈ S1. Since bt is in a subgroup
of S, we have, by (4.1), bn+1b′ = bn for every integer n � t. Thus

bm = bm+1b′ = d(cd)mcb′ = damcb′ = dakcb′ = (dc)k+1b′ = bk+1b′ = bk,

which completes the proof.
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Corollary 5.18. Let S be an epigroup in W. If a, b ∈ S satisfy a ∼p b and
am = ak for some integers m, k � 1, then bm = bk.

Proof. Since a ∼p b, we have a = cd and b = dc for some c, d ∈ S1. Since b′′ =
(dc)′′ = dc = b by (4.13), b is completely regular, so theorem 5.17 applies with
t = 1.

Theorem 5.17 fails for ∼o. Indeed, if S has a zero as its unique idempotent, then
∼o is the universal relation, but 02 = 0 while a2 �= a for every non-zero a ∈ S.

6. Open problems

We conclude this paper with some natural questions related to conjugacy.
In § 2, we characterized c-conjugacy in the symmetric inverse semigroup I(X)

for a countable set X. Descriptions of ∼p in this semigroup can be found in [33]
and [46].

Problem 6.1. Characterize the relations ∼c and ∼p in I(X) for an uncountable
set X.

A characterization of c-conjugacy in the full transformation semigroup T (X)
on any set X was obtained in [19]. For a finite set X, p-conjugacy in T (X) was
described in [46]. The partition semigroup PX on a set X [28, 29] has both T (X)
and the symmetric inverse semigroup I(X) as subsemigroups.

Problem 6.2. Characterize the relations ∼c and ∼p in PX , and ∼tr restricted to
the epigroup elements.

We proved in § 4 that p-conjugacy is transitive in completely regular semigroups
and their variants, but noted that the epigroup variety W does not include all
epigroups in which ∼p is transitive.

Problem 6.3. Find other classes of semigroups in which p-conjugacy is transitive.
Describe the (E-unitary) inverse semigroups in which p-conjugacy is transitive.
Ultimately, classify the class of semigroups in which ∼p is transitive.

As already noted, ∼p is transitive in free semigroups. Free semigroups are both
cancellative and embeddable in groups.

Problem 6.4. Is ∼p transitive in every cancellative semigroup? Is it transitive in
every semigroup that is embeddable in a group?

In this paper we studied conjugacy in the symmetric inverse semigroup I(X),
but many other transformation semigroups, or endomorphism monoids of some
relational algebras, may be considered.

Problem 6.5. For ∼c, ∼p and ∼tr, characterize the conjugacy classes and calcu-
late their number for other transformation semigroups such as, for example, those
appearing in the problem list of [9, § 6] or those appearing in the large list of
transformation semigroups included in [30]. Especially interesting would be a char-
acterization of the conjugacy classes in the centralizers of idempotents [6, 7], or in
semigroups whose group of units has an especially rich structure [4, 12,17,20].
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The classes described in the preceding problem have linear analogues and hence
can be extended to the more general setting of independence algebras.

Problem 6.6. Characterize ∼c, ∼p and ∼tr in the endomorphism monoid of an
independence algebra. In [18] a problem on independence algebras was solved using
their classification theorem; it is reasonable to guess that the same technique can
be used to solve the problem proposed here. (For historical notes on how a problem
on idempotent generated semigroups [10, 13] led to these algebras, see [5, 16]; for
definitions and basic results, see [1–3,11,14,22,31,32,34].)

Similarly interesting would be the characterization of the conjugacy classes for
the endomorphism monoids of free objects [15] or for the endomorphisms of alge-
bras admitting some general notion of independence [14]. Regarding the latter, we
propose the problem of calculating the conjugacy classes in the endomorphisms of
MC-algebras, MS-algebras, SC-algebras, and SC-ranked algebras [14, ch. 8]. A
first step would be to solve the conjugacy problem for the endomorphism monoid
of an SC-ranked free M -act [14, ch. 9], and for an SC-ranked free module over an
ℵ1-Noetherian ring [14, ch. 10].

Since all varieties of bands are known, especially interesting would be the descrip-
tion of the conjugacy classes of the endomorphism monoid of the free objects of
each variety of bands (for details and references, see [8]).

The study of the intersection of ∼c with other conjugacies was omitted from this
paper. This suggests the following problem.

Problem 6.7. Let ∼ ∈ {∼o, ∼p, ∼tr}. Study the notion of conjugacy ∼c ∩ ∼. In
particular, describe it in the various types of transformation semigroups listed in
the previous problems.

We have proved that if a semigroup S has an idempotent, then ∼p is the universal
relation in S if and only if S is a rectangular band. We have also proved that every
semigroup in which ∼p is universal is simple, and noted that there are simple
semigroups without idempotents in which ∼p is not universal.

Problem 6.8. Describe the simple semigroups without idempotents in which p-
conjugacy is the universal relation.

We know that o-conjugacy is universal in the semigroups with zero.

Problem 6.9. Describe the semigroups without zero in which o-conjugacy (and
thus c-conjugacy) is the universal relation.

We will say that a given conjugacy ∼ is partition covering if for every set X and
for every partition τ of X, there exists a semigroup S with universe X such that
the ∼-conjugacy classes on S form the same partition as τ .

Problem 6.10. Is it true that o-conjugacy (p-conjugacy, ∼tr-conjugacy) is a par-
tition-covering relation?

We have used the GAP package Smallsemi [26] to check that this is true for
all X = {1, . . . , n}, where 1 � n � 6, and ∼o or ∼p. As Smallsemi contains all
semigroups up to order 8, the following special case of the preceding problem might
take a long time to compute, but it is certainly computationally feasible.
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Problem 6.11. Is it true that o-conjugacy (p-conjugacy, trace conjugacy) is a
partition-covering relation for all sets of size at most 8? What about 9?

In theorem 4.29 we showed that o-conjugacy in epigroups is equivalent to a
stronger notion of conjugacy. Call elements a, b of a semigroup S strongly o-
conjugate, denoted by a ∼so b, if there exist mutually inverse g, h ∈ S1 such that
ag = gb and bh = ha. The relation ∼so is evidently reflexive and symmetric, and
∼so ⊆ ∼o. Theorem 4.29 can be restated as saying that in epigroups, ∼so = ∼o.
This result is not true in general. For example, the transformations α and β defined
in the proof of theorem 3.4 are o-conjugate but not strongly o-conjugate in the
semigroup I∗(X).

Problem 6.12. Find natural classes of semigroups in which ∼so = ∼o.

Since ∼o is transitive in arbitrary semigroups, theorem 4.29 implies that ∼so
is transitive in epigroups. It is also easy to see that ∼so is transitive in inverse
semigroups. (If a ∼so b ∼so c, then ag = gb, bg−1 = g−1a, bk = kc, ck−1 = k−1b
for some g, k. Thus, agk = gbk = gkc and c(gk)−1 = ck−1g−1 = k−1bg−1 =
k−1g−1a = (gk)−1a.)

Problem 6.13. Is ∼so transitive in arbitrary semigroups? Is it transitive in regular
semigroups?

The analogue of strong o-conjugacy for ∼c is as follows. Call elements a, b of
a semigroup S strongly c-conjugate, denoted by a ∼sc b, if there exist g ∈ P

1(a),
h ∈ P

1(b) such that g, h are mutually inverse and ag = gb, bh = ha. Evidently,
∼sc ⊆ ∼c. Theorem 4.32 can be rephrased as saying that for epigroups in W,
∼c = ∼sc.

Problem 6.14. Does theorem 4.32 generalize to all epigroups? Does there exist a
semigroup with a pair of c-conjugate elements that are not strongly c-conjugate?
A regular such semigroup? An inverse semigroup?

Problem 6.15. Is it possible to prove a result similar to theorem 4.28, replacing
regular epigroups by epigroups in W? For semigroups without zero we have a similar
result. Possibly, it is necessary to start by proving that x ∼c x′′ for all x such that
x′′ �= 0. If such a result could be proved, then the result would follow as in the case
without zero.

Problem 6.16. Is there an example of a semigroup S in which ∼o is a congruence,
but S/∼o is not cancellative?

The coordinatization theorem (see [56, definition A.4.18]) for rectangular bands
is probably the most basic such result involving two of Green’s relations.

Problem 6.17. Find a class of semigroups admitting a coordinatization theorem in
terms of ∼c and ∼tr (respectively, ∼c and ∼∗

p). In particular, classify the semigroups
in which ∼c ∩ ∼tr (respectively, ∼c ∩ ∼∗

p) is the identity relation.

The class W seems a very interesting generalization of the class of completely
regular semigroups. It is likely that many of the results for the latter carry over to
the former.
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Problem 6.18. Generalize for W the main results on completely regular semi-
groups. In particular, is it true that ∼p is transitive in the variants of W?

Consider the variety V of unary semigroups (S, .,′ ) defined by associativity,
x′xx′ = x′, xx′ = x′x and

x′′y = xy, (6.1)
xy′′ = xy. (6.2)

This class also generalizes completely regular semigroups and appears to be as
interesting as W.

Problem 6.19. Generalize for V the main results on completely regular semi-
groups. In particular, is it true that ∼p is transitive in the variants of V?

In [21] there are two generalizations of the notion of variants of semigroups; one
appears in proposition 2.1 and relies on translations, and the other is provided by
the concept of interassociates (for definitions we refer the reader to [21]).

Problem 6.20. Do the results on variants in this paper carry over to the two
generalizations introduced in [21]?

As seen in figure 1, ∼c is not related to ∼p or ∼tr.

Problem 6.21. Is it possible to find an infinite set of first-order definable notions
of conjugacy for semigroups such that these notions form an anti-chain (infinite
chain)?

The final problem deals with the converse of example 4.19.

Problem 6.22. Is it true that if ∼p is transitive in all variants of a semigroup,
then it is also transitive in the semigroup itself?

Acknowledgements

The authors thank the referee for the excellent suggestions that led to a much
improved paper. J.A. and M.K. were partly supported by the Fundação para a
Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) through
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