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Abstract

In this paper, conceptual points regarding electron elastic (Kapitza–Dirac effect) and inelastic diffraction effects on the
slowed electromagnetic wave-structures/light-gratings are considered. From the unified point of view it is analyzed the
main works on this subject for last four decades in chronological order, pointing out the essential peculiarity inherent
in induced Cherenkov, Compton, and undulator/wiggler processes too. This review paper has also purpose to resolve
confusion in scientific literature connected with the recently appeared paper Hayrapetyan et al. in 2015 regarding
electron diffraction effect on a traveling wave in a dielectric medium.

Keywords: Electron diffraction; Bragg resonance; Laser-grating; Dielectric; Undulator/wiggler

1. INTRODUCTION

The tremendous advancement of last two decades in laser
and accelerator-plasma technologies has allowed the appear-
ance of superpower laser sources of relativistic intensities and
high brightness electron beams that predetermine the behav-
ior of coherent interaction and multiphoton character of laser-
induced processes with free electrons. Many classical,
quantum-mechanical, and quantum electrodynamics (QED)
effects, the observation of which seemed practically unreal
because of small cross-section of electron–photon electro-
magnetic (EM) interaction and poor parameters of particle
and photon beams, became observable with relativistic/ultra-
relativistic laser and high brightness electron beams. Good
example of the latter is electron diffraction effect on a standing
EM wave lattice – Kapitza–Dirac effect (Kapitza & Dirac,
1933), the interest to which has been increased especially
after the successful realization of experiment with high-
intensity and strongly coherent laser beams-gratings by Frei-
mund et al. (2001). For the acquaintancewith the experimental
situation in this area since the advent of Kapitza–Dirac effect
up to the implemented experiment Freimund et al. (2001) and
for detailed references on earlier work we refer the reader to
review papers by Schwarz (1967, 1973), Takeda and Matsui
(1968), Bucksbaum et al. (1988), Batelaan (2007).

The scope of the Kapitza–Dirac effect has been extended
since 1975 in the works Haroutunian and Avetissian
(1975), Avetissian (1976), Avetissian et al. (1981a) for in-
elastic diffraction scattering of electrons on a slowed travel-
ing wave propagating with the phase velocity smaller than
light speed in vacuum in the induced Compton, Cherenkov,
and undulator/wiggler processes. These are the processes of
threshold nature, which possess an essential peculiarity con-
sisted in the existence of a critical intensity of the effective
wave-field at which electron’s longitudinal velocity in the
field reaches the resonance value (for an each induced pro-
cess) irrespective of its initial value and stipulates non-linear
resonance of threshold nature in the critical point that leads to
electron-slowed-wave impact interaction [for electron scat-
tering on a potential in the field of bichromatic waves, see,
for example, Florescu & Cionga (2000)]. This radically
changes the ordinary dynamics of electrons interaction with
a periodic wave: the slowed traveling wave becomes a poten-
tial barrier for electrons at the intensities above critical values
[in general case of arbitrary interaction angle these classical
critical values are given in the works Avetissian (1978,
1979, 1982–1983), Avetissian et al. (1981a, b)] that “re-
flects” the electrons (Haroutunian & Avetissian, 1972,
1976; Avetissian et al., 1978) violating the synchronous
motion of electrons with the effective slowed wave and, con-
sequently, the necessary condition for diffraction scattering
in these coherent processes. This concerns the multiphoton
Kapitza–Dirac effect on a standing wave as well, as a partic-
ular case of induced Compton process Haroutunian and
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Avetissian (1975, 1976). So, at the consideration of electron
diffraction effect on the strong waves-lattice/laser-beams-
gratings the mentioned peculiarity – existence of critical in-
tensity in the induced Cherenkov, Compton, and undulator
processes cannot be neglected. Note that the term “strong
wave” here is relative, since the mentioned non-linear reso-
nance takes place even in the very weak wave-fields if the
electrons initially are close to the resonance state, that is,
the electrons’ initial longitudinal velocities are close to the
phase velocity of the slowed wave, at which the critical
field is also very small and, respectively, very low laser inten-
sities may be above critical for such electrons (Avetissian,
1997).
The Kapitza–Dirac effect has been predicted in 1933, so

that for a long time it had been considered for the one-photon
interaction in the low-intensity fields of common light sourc-
es because of the absence of high-intensity and coherent light
sources. With the appearance of laser sources Kapitza–Dirac
diffraction effect achieved multiphoton character. The Kapit-
za–Dirac effect in the strong counterpropagating laser beams
has been considered in the papers Li et al. (2004), Rosenberg
(2004), Smirnova et al. (2004), Kaplan and Pokrovsky
(2005), Dellweg and Muller (2015), as well as in the
papers of relevant subject Eichmann et al. (2009), Gadway
et al. (2009), Eilzer et al. (2014). The multiphoton probabil-
ity of electron diffraction at Kapitza– Dirac effect in the field
of strong counterpropagating laser beams has been done by
Ehlotzky and Leubner in 1974 on the base of the Helm-
holtz–Kirchhoff diffraction theory Ehlotzky and Leubner
(1974, 1975) [see, also the papers by Fedorov (1967), Fedor-
ov (1975), and Fedorov & McIver (1980) where theoretical
analysis of electrons scattering by a strong standing wave
in adiabatic switching of interaction regime is considered].
Then, in 1975 this phenomenon has been developed by Har-
outunian and Avetissian for bichromatic counterpropagating
waves and electron inelastic diffraction scattering on a
slowed interference wave has been stated (Haroutunian &
Avetissian, 1975). In this process, due to the induced Comp-
ton effect in the two wave fields electron absorbs s photons
from the one wave and coherently radiates s photons into
the other wave and vice versa. This is the condition of coher-
ency in the induced Compton process corresponding to the
resonance between the Doppler-shifted frequencies in the in-
trinsic frame of reference of an electron in the bichromatic
counterpropagating waves at which the conservation of the
number of photons in the induced Compton process takes
place Haroutunian and Avetissian (1975), Fedorov and
McIver (1980) in contrast to spontaneous Compton effect
in the strong wave field, where after the multiphoton absorp-
tion, a single photon is emitted Goldman (1964). Note that
here we do not consider nonlinear optics effects of wave
mixing – up- or down-conversion processes, when a single
electron can be considered as a nonlinear medium in the
high-intensity laser field, and matter wave of the electron
may diffract from the stationary laser-grating to generate
the new wave, etc. at which the conservation of the number

of photons in the induced Compton process evidently does
not take place [for diffraction effect in this case, see the
paper by Batelaan (2007) and references therein]. The
result of coherent scattering at the satisfaction of the condi-
tion of coherency in the induced Compton process is equiv-
alent to diffraction of electrons on a slowed interference wave
that has the form of a plane traveling wave.

The significance of Kapitza–Dirac effect, apart from its
quantum-mechanical meaning as a best example of demon-
stration of electron matter wave diffracted by light and, more-
over, as an unique sample of a diffraction system with
reversed properties of the matter and light, is also conditioned
by important applications since electron beams diffracted
from highly coherent laser gratings are coherent with each
other. Hence, the Kapitza–Dirac effect is a very convenient,
even maybe an irreplaceable means to realize coherent elec-
tron beams. Such beams can serve as a basis for construction
of new important tools of diverse species, for example, co-
herent beam splitters, new type electron interferometers,
which would operate at rather low electron energies (typical
for atomic physics) etc. Note also that the interference of
above-threshold de Broglie waves – electrons matter waves
may lead to formation of attosecond electron pulses, as it
has been reported in the paper Varro and Farkas (2007).

The present review article is devoted to comprehensive
consideration of elastic and inelastic diffraction effects of
electrons on the slowed traveling waves with the mentioned
peculiarity stipulated by non-linear resonance in the induced
coherent processes. We will specifically consider in detail
electrons diffraction effect on a traveling wave in a dielectric
medium because of confusion arisen in literature on this sub-
ject connected with the appearance recently of a paper in New
Journal of Physics (Hayrapetyan et al., 2015). Therefore,
apart from the pure scientific interest, in this paper we will
clarify the state-of-the-art on the considering subject for
last four decades in chronological order, to avoid the further
confusions and misunderstandings in scientific literature.

Kapitza–Dirac effect is a particular case of the induced
Compton process in the field of two counterpropagating
EM waves of the same frequencies at which the scattering
electron moves in perpendicular direction to wavevectors of
counterpropagating waves, to exclude the Doppler shift of
waves’ frequencies because of longitudinal component
of electron velocity. Note that the perpendicular incidence
of electron to counterpropagating waves corresponds to clas-
sical condition of coherence – resonance between the elec-
tron and two waves of the same frequencies in the induced
Compton process, which is valid at the neglect of quantum
recoil in the result of photons absorption–radiation by elec-
tron. At the quantum consideration, taking into account the
quantum recoil as well, the exact condition of resonance is
satisfied at the small angle to perpendicular direction that
corresponds to elastic Bragg diffraction on the phase lattice
of a standing wave Freimund and Batelaan (2002). The
Bragg regime of the two-particle Kapitza–Dirac effect is con-
sidered in the paper Sancho (2011) [for two-particle
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Kapitza–Dirac diffraction effect see Sancho (2010)]. Howev-
er, the phase matching between the electron and counterpro-
pagating waves in the induced Compton process can also be
fulfilled in general case of bichromatic EM waves if electron
moves at the certain angle with respect to wavevectors of
counterpropagating waves at which the condition of coheren-
cy between the electron and waves of different frequencies is
satisfied. It is evident that this is the condition of resonance
between the Doppler shifted waves’ frequencies in the
frame of reference moving with the electron. On the other
hand, consideration of the dynamics of induced Compton
process shows that coherent interaction of electron in this
case occurs with the effective interference wave-field that
has form of a slowed traveling wave propagating with the
phase velocity smaller than the light speed in vacuum. In
the frame of reference connected with the electron this
slowed traveling wave at the satisfaction of resonance condi-
tion becomes a stationary phase lattice (standing light-wave
structure) for electron, since this condition is equivalent to
the condition of synchronous motion of electron with the
slowed effective wave, and due to such phase matching a co-
herent scattering of electrons – diffraction on the slowed in-
terference wave in the vacuum occurs Haroutunian and
Avetissian (1975). In contrast to Kapitza–Dirac effect (Kapit-
za & Dirac, 1933), diffraction of electron in this case Harou-
tunian and Avetissian (1975) is inelastic.
The organization of the paper is as follows. In Section 2,

the relativistic quantum theory of electron inelastic diffrac-
tion effect on a traveling EM wave (intense laser beam) in
a dielectric medium is presented, which is the result of
multiphoton-induced Cherenkov interaction of electron
with a slowed plane EM wave-grating (“Cherenkov diffrac-
tion”). In Section 3, the formation of a slowed traveling
wave in vacuum – responsible for electron diffraction effect
at the induced coherent processes is considered. In Section
3.1, the effective interaction of electron with a slowed inter-
ference traveling wave formed by the two intense bichro-
matic counterpropagating waves in vacuum is considered.
In Section 3.2, the electron effective interaction with a
slowed in undulators/wiggler traveling wave formed in the
result of interference of a laser radiation and undulators’ pe-
riodic electric or magnetic fields is presented. In Section 4,
the quantum dynamics of relativistic electron in the induced
Cherenkov, Compton, and undulator processes is investigat-
ed in diffraction and strongly quantum Bragg regimes – at the
exact quantum resonance taking also into account the quan-
tum recoil of electron because of photons absorption–radia-
tion. Finally, conclusions are given in Section 5.

2. ELECTRON DIFFRACTION EFFECT ON A
TRAVELING EM WAVE IN A DIELECTRIC
MEDIUM

In this section, we will represent theoretical description of
electron inelastic diffraction effect on a strong traveling EM
wave in a dielectric medium in the original form

corresponding to the paper Avetissian (1976) and mono-
graphs Avetissian (2006, 2016) or the book Saakyan and
Chubaryan (1982) for its direct comparison with the result
of the paper Hayrapetyan et al. (2015) pretended to priority
for proposed effect of electron diffraction on a traveling
wave in a dielectric medium after four decades of the paper
Avetissian (1976).
In general, we will start from the relativistic quantum equa-

tions of motion for electron wave function Ψ. As far as the
spin interaction of an electron with a light-field is rather
small compared with the charge interaction and by its
nature is different than the considering diffraction dynamics,
we can neglect the spin interaction, and then the Dirac equa-
tion in quadratic form passes to Klein–Gordon equation for
electron in the field of a plane EM wave in a dielectric
medium [e.g., regarding the spin dynamics in the Kapitza–
Dirac effect – spin flips or spin rotation, see the papers of
Ahrens et al. (2012, 2013)]. So, we will consider diffraction
problem on the basis of the Klein–Gordon equation:

− h− 2 ∂
2Ψ

∂t2
= c2 −ih− ∇+ e

c
A

[ ]2
+m2c4

{ }
Ψ, (1)

where h− is the Planck constant, e is the elementary charge,
m is the electron mass, c is the light speed in vacuum, A=
A(t, r) is the vector potential of a plane EM wave in a dielec-
tric medium. A plane quasimonochromatic EM wave in a
medium may be described by the vector potential A(t, r) =
A(t − nn0r/c), where n≡ n(ω) is the refractive index of
the medium at the carrier frequency ω of the wave (laser
beam), n0 is the unit vector along the wave propagation direc-
tion. We will assume that the frequency ω is far from the
main resonance transitions between the atomic levels of the
medium to prohibit the wave absorption and non-linear
optical effects in the medium and consequently n = �����

ε0μ0
√ =

const will correspond to the linear refractive index of the
medium (ε0 and μ0 are the dielectric and magnetic permittiv-
ities of the medium, respectively).
Choosing a concrete polarization of the wave and directing

vector n0 along the OX-axis of a Cartesian coordinate system
one can write:

A = 0,A0(τ) cosω t − nx/c
( )

, 0
{ }

, (2)

where A0(τ)is a slowly varying amplitude of the vector
potential of a quasimonochromatic laser pulse, τ= t− nx/c
is the plane wave coordinate. As the existence of a plane
wave does not violate the homogeneity of the space in the
plane of the wave polarization (r⊥) the variables y and z
are cyclic and the corresponding components of generalized
momentum p⊥ are conserved. Then the solution of Eq. (1)
can be represented in the form:

Ψ x, y, z, t
( ) = ψ(x, t) exp i

h− p⊥r⊥

{ }
. (3)
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Substituting Eq. (3) into (1) for the function Ψ(x, t) yields the
equation[

− h− 2 ∂2

∂t2
+ h− 2c2

∂2

∂x2
− c2p2⊥ − m2c4 − 2ecp sin ϑ

· A0(τ) cosω t − nx/c
( )]

ψ(x, t) = 0. (4)

Here ϑ is the angle between the electron initial momentum (p)
and wave propagation direction (OX-axis): p⊥ = p sin ϑ. In
Eq. (4), we have neglected the term ∼A2

0(τ) since for actual
values of parameters p sin ϑ/mc≫ξmax and to be below the
ionization threshold of a dielectric medium too it should be
ξmax <ξcr≪ 1 (ξcr is the aforementioned critical intensity
of the induced Cherenkov process above which diffraction
effect cannot proceed). Here the quantity ξ≡ eA0/mc

2=
eE0/mcω is the dimensionless relativistic invariant parameter
of the wave intensity (E0 is the amplitude of the wave electric
field strength).
Equation (4) describes diffraction of electron on the phase

lattice of a slowed traveling wave A0 (τ)cosω(t− nx/c). To
describe the multiphoton inelastic diffraction effect at the in-
teraction of electron with strong laser field, Eq. (4) is solved
in the eikonal approximation by electron wave function

Ψ(x, t) =
���
N0

2E

√
f (x, t) exp i

h− pxx− Et( )[ ]
, (5)

(E is the electron initial energy) according to which f (x,t) is a
slowly varying function with respect to free-electron wave
function (the latter is normalized on N0 particles per unit
volume):

∂f
∂t

∣∣∣∣ ∣∣∣∣≪ E
h− f
∣∣ ∣∣; ∂f

∂x

∣∣∣∣ ∣∣∣∣≪ px
h− f
∣∣ ∣∣. (6)

Choosing a concrete polarization of the wave (assume a
linear one along the axis OY) and taking into account Eq.
(4) for f (x,t) we will have a differential equation of the first
order:

∂f
∂t

+ v cos ϑ
∂f
∂x

= i

h− E ecp sin ϑ · A0(τ)[ × cosω t − nx/c
( )]

f (x, t).
(7)

Changing to characteristic coordinates τ′ = t − x/v cos ϑ and
η′ = t, it will be obvious that at the fulfillment of the induced
Cherenkov condition

1− n
v

c
cos ϑch = 0

the traveling wave in this frame of coordinates becomes a dif-
fraction lattice over the coordinate τ′ and for the scattered am-
plitude of the electron wave function from Eq. (7) we have

f (τ′) = exp
iecp sin ϑch

h− E cosωτ′
∫η2
η1

A(η′)dη′
{ }

, (8)

where η1 and η2 are the moments of the electron entrance into
the wave and exit, respectively. If one returns to coordinates x
and t and expands the exponential (8) into a series by Bessel
functions for the total wave function (5) we will have

Ψ r, t( ) =
���
N0

2E

√
exp

i

h− yp sin ϑch

( ) ∑+∞

s=−∞

isJs(α)

× exp
i

h− p cos ϑch − snh− ω

c

( )
x− i

h− E − sh− ω( )t
[ ]

, (9)

where the argument of the Bessel function

α = ev sin ϑch
h− ω

∫t2
t1

E(η′)dη′, (10)

and E is the wave electric field strength (see the definition of
amplitudes of electric field E0 and vector potential A0 for a
monochromatic wave in the above-stated parameter ξ of the
wave intensity: E0= A0ω/c). The wave function (9) de-
scribes inelastic diffraction scattering of the electron on the
slowed traveling wave in a dielectric-like medium. The elec-
tron’s energy and momentum after the scattering are

E′ = E − sh− ω, p′x = p cos ϑch − snh− ω

c
, (11)

py = const; s = 0,±1, . . . . (12)

The probability of this process

Ws = J2s
ec2p sin ϑch

h− ωE
∫t2
t1

E(η′)dη′
[ ]

. (13)

The condition of the applied eikonal approximation (6) with
Eq. (8) is equivalent to the conditions |p′x− px|≪ px and
E′ − E∣∣ ∣∣≪ E, which with Eq. (12) gives: s| |nh− ω/c ≪ p.
In the case of a monochromatic wave from Eq. (13), we

have

Ws = J2s ξ
mc2

h−
cp sin ϑch

E t0

( )
, (14)

where t0= t2− t1 is the duration of the electron motion in the
wave.

As is seen from Eq. (14) for the actual values of the param-
eters α≫ 1, that is, the process is essentially multiphoton.
The most probable number of absorbed/emitted Cherenkov
photons is

�s≃ ξ
mc2

h−
v

c
sin ϑch · t0. (15)

The energetic width of themain diffractionmaximums Γ(�s)≃�s1/3
Γ(�s)≃�s1/3h− ω0 and since �s≫1, then Γ(�s)≪ E′ − E∣∣ ∣∣.
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The scattering angles of the s-photon Cherenkov diffrac-
tion are determined by Eq. (12):

tan ϑs = snh− ω sin ϑch
cp+ snh− ω cos ϑch

. (16)

From Eq. (16) it follows that at the inelastic diffraction there
is an asymmetry in the angular distribution of the scattered
electron: ϑ−s| |> ϑs, that is, the main diffraction maximums
are situated at different angles with respect to the direction
of electron initial motion. However, in accordance with the
condition s| |nh− ω/c≪p of the eikonal approximation this
asymmetry is negligibly small and for the scattering angles
of the main diffraction maximums from Eq. (16) we have
ϑ−s≃− ϑs. Hence, the main diffraction maximums will be
situated at the angles

ϑ±�s = ±�s
nh− ω

cp
sin ϑch (17)

with respect to the direction of the electron initial motion.
Note that the formula (14) has been applied by Avetissian

in 1977 for explanation of the experiment on energetic wid-
ening of an electron beam interacting with a laser beam at the
induced Cherenkov process in a gaseous medium (Avetis-
sian, 1977, 1982–1983) implemented in SLAC by the
group Piestrup et al. (1975) (see, also the next experiment
of this group Edighoffer et al. (1981), made in the same
conditions).
These results, in particular, inelastic Kapitza–Dirac effect

and electron diffraction on a traveling wave in a dielectric
medium, as was mentioned above, had been received 40
years ago and included in the monographs of Avetissian
(2006, 2016), as well as in the book of Saakyan and Chu-
baryan (1982). Nevertheless, after the four decades, in
2015 a paper has been published in New Journal of Physics
Hayrapetyan et al. (2015), where authors report in the Ab-
stract on the possibility of electrons diffraction scattering
on a traveling EM wave in a dielectric medium: “We report
on the possibility of diffracting electrons from light waves
traveling inside a dielectric medium. We show that, in the
frame of reference, which moves with the group velocity of
light, the traveling wave acts as a stationary diffraction grat-
ing from which electrons can diffract, similar to the conven-
tional Kapitza–Dirac effect” (citation from the Abstract).
Here only the difference with the known results is in the
physical characteristic “group velocity of light” which is a
rough mistake repeated also in the text, even for a monochro-
matic wave. As it has been shown above, diffraction effect is
thoroughly the result of the phase relations and is conditioned
exceptionally by the phase velocity of light that must be
smaller than c. Beside this incorrectness, authors of the
paper Hayrapetyan et al. (2015) ignored the existence of crit-
ical field in this process and influence of mentioned phenom-
enon of a particle “reflection” or capture on the diffraction
effect. Meanwhile, one of the authors (Hayrapetyan et al.,

2015) is also a coauthor of both inelastic diffraction effect
(Avetissian et al., 1981a, b) and “reflection” phenomenon
in the undulators (Avetissian et al., 1978). Concerning the ci-
tation of considered papers Avetissian (1976), Avetissian
et al. (1981a, b), devoted to diffraction effect on a traveling
wave, these mechanically are included in the list of Referenc-
es of the paper Hayrapetyan et al. (2015) in irrelevant context
by footnote: “see, for example…”.
Regarding the method of calculation of the probability of

multiphoton diffraction scattering, it is well known that there
are two adequate methods – quantum-mechanical and Helm-
holtz–Kirchhoff diffraction theory. The second method has
been proposed and applied by Ehlotzky and Leubner in
1974 just for the calculation of the multiphoton diffraction
probability of Kapitza–Dirac effect in strong laser fields (Eh-
lotzky & Leubner, 1974), which in particular case of counter-
propagating waves of the same frequencies (ω1= ω2)
coincides with the general formula obtained by Haroutunian
and Avetissian (1975). Hence, the theories of multiphoton
diffraction effect of Kapitza–Dirac and inelastic diffraction
effect on bichromatic counterpropagating waves in general
case of induced Compton process have been done firstly in
the works Ehlotzky and Leubner (1974) and Haroutunian
and Avetissian (1975), respectively.
Authors of the paper Hayrapetyan et al. (2015) following

to the method developed by Ehlotzky and Leubner (1974),
calculated the known formula for the probability of multipho-
ton diffraction scattering in a dielectric medium Eq. (14) and
claim on the possibility of diffraction effect in a dielectric
medium.
Thus, the probability of s-photon diffraction in the paper

Hayrapetyan et al. (2015) is given by the formula 16:

I s = I iJ
2
s Δ( );Δ = eA0d

h− c
. (18)

The analogous expression for s-photon diffraction in the
paper Avetissian (1976) is given by the formula 8 [which
is the same Eq. (14) obtained above]:

Ws = J2s
ec2E0tP sin ϑch

h− ωE
( )

= J2s
eE0d

h− ω

( )
, (19)

where d ≡ tv sin ϑch is the electron–wave interaction length.
Expressing the amplitude of the wave electric field

strength E0 by the amplitude A0 of the wave vector potential
(E0= A0ω/c), Eq. (19) will have a form:

Ws = J2s Δ( ); Δ = eA0d

h− c
; (20)

that is, the formula (18) is the same as formula (19) or (20)
except of undetermined in the paper Hayrapetyan et al.
(2015) normalization constant I i, which should be I i = 1
in accordance to the total probability norm of the process,
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and general formula for the Bessel functions:

∑∞
s=−∞

J2s Δ( ) = 1 (21)

(s> 0 – corresponds to photon radiation, s< 0 - to photon
absorption in the wave field).

3. FORMATION OF SLOWED TRAVELING WAVE
IN VACUUM

For the unified consideration of electron diffraction effect in
the induced Compton and undulator/wiggler coherent pro-
cesses, in this section we will describe the general picture
of formation of a slowed traveling EM wave in vacuum cor-
responding to effective coherent interaction of electron with
vacuum-traveling waves and responsible for electron inelas-
tic diffraction effect on diverse moving light gratings. In
other physical interpretation, just the slowed traveling EM
wave can provide the satisfaction of conservation laws of en-
ergy–momentum for real radiation–absorption of photons
propagating with phase velocity smaller c by a free electron.
Hence, from the physical point of view the problem of elec-
tron inelastic diffraction effect reduces to fulfillment of con-
ditions for real radiation–absorption of photons by electron in
corresponding induced process.
Thus, the conservation laws of energy–momentum for real

radiation–absorption of photons by a free electron after the
interaction with a plane monochromatic wave propagating
in general with phase velocity vph= c/n, where n is the effec-
tive refraction index (in case of a medium n = �����

ε0μ0
√

where
ε0 and μ0 are respectively dielectric and magnetic permittiv-
ities of the medium, as it was mentioned above; in other –
vacuum cases see below) can be written in the form:

E = E0 + sh− ω, p = p0 + sh− k, k = n
ω

c
n0, n0| | = 1, (22)

where E0, p0 are electron initial energy and momentum, E, p
are its final values after the absorption (s> 0) or radiation
(s< 0) of photons with frequency ω and wavevector k. For
a real particle after the absorption/radiation of photons the
dispersion relation of energy–momentum must be satisfied.
Hence, the dispersion law of relativistic electron
E2 = c2p2 + m2c4 with Eq. (22) gives:

E0 + sh− ω( )2= c2 p0 + sh− n
ω

c
n0

( )2
+m2c4. (23)

From Eq. (23) we obtain the following relation:

1− n
v0
c
cos ϑ = sh− ω(n2 − 1)

2E0
, (24)

where v0 = c2p0/E0

∣∣ ∣∣ is the electron initial velocity and

ϑ = v̂0k is the angle between the electron and photon prop-
agation directions.

Equation (24) is the exact quantum conservation law for
real absorption–radiation of photons by a free electron. The
term in the right-hand side of Eq. (24) is the quantum
recoil of electron acquired due to the photons absorption–ra-
diation in each induced process. In case of a medium, Eq.
(24) shows that the latter must be of dielectric character for
satisfaction of conservation law of energy–momentum for
real radiation–absorption of photons by electron that is
must be n> 1. Thus, in vacuum – at n= 1 the right-hand
side of Eq. (24) is zero, while the term in the left-hand side
1− (v0/c) cos ϑ> 0 always. In plasma – at n< 1 the
left-hand side of Eq. (24) 1− n(v0/c) cos ϑ> 0, but the
right-hand side at s> 0 is negative: n2− 1< 0, that is,
the conservation law of energy–momentum does not satisfied
again. However, at s< 0 though the right-hand side of Eq.
(24) may be positive: s(n2− 1)> 0, nevertheless the disper-
sion relation of energy–momentum for final electron after the
interaction that is equivalent to conservation law for real ab-
sorption–radiation process:

1− n
v

c
cos ϑ = − sh− ω(n2 − 1)

2E (25)

at s< 0 again cannot be satisfied.
Equations (24) and (25) in the plasma (n< 1) are satisfied

for electron–positron pair production and annihilation process-
es when in Eq. (24) for initial electron one should assume an
electron in the Dirac sea with negative energy E0 < 0. Hence,
the real radiation–absorption processes by a free electron pro-
ceed in dielectric media, the electron–positron pair production
and annihilation processes – in the plasma.

In dielectric media, the conservation laws (24) and (25)
correspond to induced multiphoton Cherenkov process with
exact quantum description (taking into account the quantum
recoil as well), which represent the condition of coherency
for Bragg resonant scattering on the slowed traveling EM
wave. As will be shown below, the diffraction effect takes
place at the satisfaction of the classical condition of
coherency:

1− n
v0
c
cos ϑch = 0, (26)

when the quantum recoil of electron due to radiation–absorp-
tion of photons (the term in the right-hand side of Eq. (24) is
neglected. It is just the condition of spontaneous Cherenkov
radiation at the angle ϑch to rectilinear uniform motion of a
charge at the absence of external EM wave.

Consider now the vacuum cases of formation of slowed
traveling EM waves corresponding to induced Compton
and undulator/wiggler coherent processes. As it is shown
in the next subsection, the slowed traveling wave of frequen-
cy ω1− ω2 formed at the interference of bichromatic counter-
propagating waves in the induced Compton process [see Eq.
(36)] propagates with the phase velocity vph= c|ω1− ω2|/
(ω1+ ω2) <c [see Eq. (38)]. Consequently, the effective
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refraction index n including in the formulas Eqs (22)–(25) in
this case has the form:

nc = ω1 + ω2

ω1 − ω2| |> 1. (27)

With Eq. (27) the exact quantum condition of coherency of
the induced Compton process reads (without loss of general-
ity let ω1> ω2 when the slowed interference wave propagates
along the wavevector k1 of higher frequency wave ω1):

ω1 1− v0
c
cos ϑ

( )
− ω2 1+ v0

c
cos ϑ

( )
= 2

sh−
E0

ω1ω2. (28)

The term in the right-hand side of Eq. (28) is the quantum
recoil of electron acquired due to the photons absorption–ra-
diation in the induced Compton process, which is responsible
for strongly quantum regime of Bragg diffraction. At the ne-
glect of the latter (because of smallness) we have the classical
condition of coherency of the induced Compton process cor-
responding to electron diffraction on bichromatic counterpro-
pagating waves:

ω1 1− v0
c
cos ϑ

( )
= ω2 1+ v0

c
cos ϑ

( )
, (29)

which is the condition of resonance between the Doppler-
shifted counterpropagating waves of different frequencies
ω1 and ω2 in the intrinsic frame of reference of relativistic
electron, due to which the resulting from interference
slowed EM wave turns to a standing wave-lattice with respect
to the electron and diffraction like to Kapitza–Dirac effect (in
the own –“R” frame of electron) on this phase-grating occurs.
However, because of moving character of the grating diffrac-
tion effect in the laboratory – “L” frame is inelastic.
From the possible vacuum coherent processes in electric

and magnetic undulators we will separate the magnetic undu-
lator/wiggler as an important system with rather long coher-
ent length (see below). The effective refraction index n, as it
is seen from Eq. (46), is

nu = 1+ λ/l> 1, (30)

where l is the space period (step) of magnetic undulator/wig-
gler, λ= 2πc/ω – wavelength of a laser radiation. The exact
quantum condition of coherency Eq. (24) in the induced un-
dulator process with Eq. (30) turns to the following relation
between the undulator step l and laser wavelength λ:

1− l+ λ

l

( )
v0
c
cos ϑ = s

πch−
E0

2l+ λ

l2

( )
, (31)

at which the strongly quantum regime of Bragg diffraction in
a magnetic undulator/wiggler is established. Electron
inelastic diffraction in the magnetic undulator/wiggler
takes place on the slowed wave [see Eq. (36)] at the satisfac-
tion of classical condition of coherency that corresponds to

the neglect of quantum recoil – the term in the right-hand
side of Eq. (31):

v0
c
cos ϑ = l

l+ λ
. (32)

Coherent scattering of electron on the moving phase-lattice at
the fulfillment of Eq. (32) leads to multiphoton inelastic dif-
fraction effect.
So, s-photons diffraction maxima/minima at the electron

inelastic scattering on a slowed traveling EM wave corre-
sponds to s-photons absorption/radiation by a free electron
in corresponding coherent process, the multiphoton probabil-
ity of which is the probability of s-photons diffraction (inelas-
tic) of electron. So, the problem of description of electron
inelastic diffraction effect on the moving phase-gratings
eventually reduces to determination of the multiphoton prob-
abilities of aforementioned coherent processes.

3.1. Electron effective interaction with slowed traveling
wave formed in the field of bichromatic
counterpropagating waves

Now let us consider the quantum dynamics of electron coher-
ent interaction with the bichromatic counterpropagating
waves (laser beams) in vacuum that is induced Compton pro-
cess. Within the above justification concerning the electron
spin interaction with optical fields in these processes we
will start again from the relativistic quantum Eq. (1) (Dirac
equation in quadratic form with neglect quantitatively the
spin interaction because of its smallness does not mean to
neglect the electron spin and for scalar particle use the
Klein–Gordon equation). For actual quasimonochromatic
laser beams with the vector potentials

A1 = 0,
cE1(t − x/c)

ω1
cosω1 t − x/c

( )
, 0

{ }
, (33)

A2 = 0,
cE2(t + x/c)

ω2
cosω2 t + x/c

( )
, 0

{ }
, (34)

E1 (t− x/c), E2 (t+ x/c) are slowly varying amplitudes of
electric field strengths of quasimonochromatic laser beams
with carrier frequencies ω1 and ω2 propagating along and op-
posite to the OX-axis, respectively) we look for wave func-
tion in the form Eq. (3) and for the function Ψ(x, t) from
Eq. (1) in the fields (33) and (34): A=A1+A2 we obtain
the following equation (for simplicity hereafter the argu-
ments of slowly varying amplitudes of electric fields E1

and E2 will be omitted):

[
−h− 2 ∂2

∂t2
+ h− 2c2

∂2

∂x2
− c2p2⊥ − m2c4 −WC x, t( )]

ψ(x, t) = 0,

(35)
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where

WC x, t( ) = 1
2

eE1c

ω1

( )2

+ 1
2

eE2c

ω2

( )2

+ e2E1E2c2

ω1ω2
cos(ω1 − ω2)

t − ω1 + ω2

ω1 − ω2

x

c

( )
+ e2E1E2c2

ω1ω2
cos(ω1 + ω2)

t − ω1 − ω2

ω1 + ω2

x

c

( )
+ 1

2
eE1c

ω1

( )2

cos 2ω1 t − x

c

( )
+ 1

2
eE2c

ω2

( )2

cos 2ω2 t + x

c

( )
+ ecpy

E1c

ω1
cosω1 t − x

c

( )
+ E2c

ω2
cosω2 t + x

c

( )[ ]
.

(36)

As is seen from Eq. (36), at the interaction with the counter-
propagating waves of different frequencies two interference
waves are formed – third and fourth terms on the right-hand
side – which propagate with the phase velocities

vph = c
ω1 + ω2

ω1 − ω2| |> c (37)

and

vph = c
ω1 − ω2| |
ω1 + ω2

< c, (38)

respectively. It is clear that the interaction of the electron with
the wave propagating with the phase velocity vph> c, as well
as with the separate waves propagating in the vacuum with
the phase velocity c cannot be coherent. These terms corre-
spond to non-coherent scattering of the particle in the sepa-
rate wave fields, which vanish after the interaction (in
accordance with the violation of mentioned above conserva-
tion law of energy–momentum for real radiation–absorption
of photons by free electron). Coherent interaction in this pro-
cess occurs with the slowed interference wave. The first two
terms can be cast into the mass term and for the coherent in-
teraction process we obtain the following equation:

−h− 2 ∂2

∂t2
+ h− 2c2

∂2

∂x2
− c2p2⊥ − m2

∗c
4

⎡⎣
− e2c2E1E2

ω1ω2
cos(ω1 − ω2) t − ω1 + ω2

ω1 − ω2

x

c

( )]
ψ(x, t) = 0, (39)

where

m∗ =
�����������������������
m2 + e2

2c2
E2
1

ω2
1

+ E2
2

ω2
2

( )√
(40)

is the effective mass of electron in the bichromatic counter-
propagating waves.

3.2. Electron effective interaction with slowed traveling
wave formed in undulators

Electron inelastic diffraction effect is also possible on a plane
EM wave propagating in electric or magnetic undulator/wig-
gler Avetissian et al. (1981a, b). In such space–time periodic
structures like the considered induced Compton process a
slowed interference wave is formed on which diffraction scat-
tering of electron occurs by the described scheme, at the in-
tensities below the corresponding critical values of electrons
“reflection” or capture by a traveling wave in the electric and
magnetic undulators [see Avetissian et al. (1978)]. As far as
descriptions of electron inelastic diffraction scattering on a
plane monochromatic wave in the electric and magnetic un-
dulators are coincide in many features, here we will consider
more important case of magnetic undulator/wiggler, which
is currently the most perspective coherent tool with extreme-
ly large length of coherency, specifically due to which the
x-ray free electron laser has been realized in the wiggler.

At the propagation of a plane quasimonochromatic wave
of carrier frequency ω and slowly varying amplitude of elec-
tric field strength E(t− x/c) (let of linear polarization) in the
linear undulator with the magnetic field

Hz(x) = H cos
2π
l
x (41)

the vector potential will be described by the equation

A2y(x) = lH

2π
sin

2π
l
x, (42)

and correspondingly the EM wave will be assumed linearly
polarized along the axis OY

A1y(t − x/c) = cE(t − x/c)
ω

sinω(t − x/c). (43)

We look for wave function in the form Eq. (3) and for the
function Ψ(x, t) from (1) in the fields (42) and (43): Ay=
A1y+ A2y we obtain the following equation (hereafter the ar-
gument of slowly varying amplitude of the wave electric field
E(t− x/c) will be omitted):

−h− 2 ∂2

∂t2
+ h− 2c2

∂2

∂x2
− c2p2⊥ − m2c4 −WU x, t( )

⎡⎣ ⎤⎦ψ(x, t) = 0,

(44)

where

WU x, t( ) = e2E2c2

2ω2
+ e2l2H2

8π2
+ e2lHEc

2πω
cosω t − 1+ λ

l

( )
x

c

( )
− e2lHEc

2πω
cosω t − 1− λ

l

( )
x

c

( )
− e2E2c2

2ω2
cos 2ω t − x

c

( )
− e2l2H2

8π2
cos

4π
l
x

+ ecpy
Ec

ω
sinω t − x

c

( )
+ lH

2π
sin

2π
l
x

[ ]
.

(45)
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As is seen from Eq. (45), under the induced interaction in the
undulator the traveling waves propagating with the phase ve-
locities vph= c/(1+ λ/l ) <c and vph= c/(1 -λ/l ) >c arise.
We will not repeat here the analogous interpretation of the
terms in Eq. (36) which correspond to interaction of the
particle with the waves propagating with the phase velocities
vph⋝ c that has been done for the above-considered induced
Compton process. Note only that coherent interaction in this
process occurs with the slowed interference wave propagat-
ing with the phase velocity

vph = c

1+ λ/l
< c (46)

and for the coherent interaction process we obtain the follow-
ing equation:

−h− 2 ∂2

∂t2
+ h− 2c2

∂2

∂x2
− c2p2⊥ − m2

∗c
4

⎡⎣
− e2lHEc

2πω
cosω t − 1+ λ

l

( )
x

c

( )]
ψ(x, t) = 0, (47)

where

m∗ =
������������������������
m2 + e2E2

2ω2c2
+ e2l2H2

8π2c4

√
(48)

is the effective mass of electron in the plane EM wave prop-
agating in the magnetic undulator/wiggler.

4. QUANTUM DYNAMICS OF ELECTRON IN THE
SLOWED TRAVELING WAVE

In this section, we will derive the theory for effective descrip-
tion of electron multiphoton coherent scattering in the in-
duced Cherenkov, Compton, and undulator processes on
the base of relativistic quantum equations of motion for uni-
fied consideration of diffraction and Bragg regimes on di-
verse type moving phase-gratings. As is seen from the
previous section, electron inelastic diffraction effect on a
slowed traveling wave in all three induced coherent processes
can be described in the scope of relativistic quantum-
mechanical consideration with the help of solution of the fol-
lowing wave equation:

[
− h− 2 ∂2

∂t2
+ h− 2c2

∂2

∂x2
− c2p2⊥ − m2

∗c
4

−Weff cos k x− vpht
( )]

ψ(x, t) = 0, (49)

where k= |k| is the wavevector of the slowed traveling EM
wave.
Here for an each concrete process one should specify the

main interaction parameters, which is brought in Table 1 in
accordance with the results of the previous sections.

The exact investigation of the classical dynamics of con-
sidered induced coherent processes Avetissian (2006, 2016)
reveals the existence of a critical value for effective interfer-
ence wave field Weff :

W(cr)
eff = E2(vx − vph)2

c2 − v2ph
(50)

that crucially affects on the particle dynamics in the induced
Cherenkov, Compton, and undulator processes. If the ampli-
tude of a slowed interference wave Weff exceeds this critical
value Eq. (50):Weff >W(cr)

eff , a nonlinear threshold phenom-
enon of particle “reflection” or capture by the slowed travel-
ing wave occurs at which the periodic wave-field in the
intrinsic frame of reference of the slowed interference wave
becomes a potential barrier for a particle, instead of a stand-
ing phase lattice, and reflecting from this barrier electron
abandons the wave. Therefore, the considering effect of elec-
tron diffraction on a traveling wave propagating with the
phase velocity vph< c can occur only if Weff is smaller
than the corresponding critical value (50).
Now let us proceed to the solution of Eq. (49). According

to Floquet’s theorem the solution of Eq. (49) may be sought
in the form

ψ(x, t) =
∑
s

Cs t( )ei/h� ( px+sh� k)xe−i/h� (E+sh� kvph)t. (51)

Here E = ��������������
c2p2 + m2∗c4

√
and we will assume that Cs(t) are

slowly varying functions:

∂Cs

∂t

∣∣∣∣ ∣∣∣∣≪ E
h− Cs| |,

and E ≫ s| |h− kvph (this condition is always satisfied for opti-
cal photons). From Eqs (49) and (51) for the coefficients
Cs(t) we obtain the set of equation

i
∂Cs(t)
∂t

+ ΓsCs t( ) = Weff

4h− E Cs−1 t( ) + Cs+1 t( )( )
, (52)

where

Γs =
2Esh− k(vph − vx) + (v2ph − c2)(sh− k)2

2h− E (53)

is the resonance width. The wave function (51) at the initial
condition

Cs 0( ) = δs,0 (54)

describes inelastic scattering of the electron on the slowed
traveling wave. The energy and momentum of the electron
after the scattering are:

E′ =E + sh− kvph, p′x = px + sh− k,

p⊥ =const; s = 0,±1, . . . . (55)
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The probabilities of these s-photon absorption–radiation pro-
cesses are:

Ws = Cs| |2. (56)

We will present the solution of equations Eq. (52) in the two
interaction regimes: diffraction and Bragg resonance (see
Fig. 1).

4.1. Diffraction regime

For the finite interaction time the interaction energy is uncer-
tain by the quantity δE ≃h− /tint. The diffraction regime corre-
sponds to the short interaction times and intense wave fields
[when the quantum recoil received by electron is neglected in
the condition of coherency, see (26), (29), (32)]. Thus, at the
fulfillment of the conditions

δE ≫h− Γs| |;Weff

4h− E ≫ Γs| |, (57)

one can neglect the term ∼ Γs Cs (t) in Eq. (52) and the elec-
tron dynamics will be described by the following equation:

i
∂Cs(t)
∂t

= Weff

4h− E Cs−1 t( ) + Cs+1 t( )( )
. (58)

For the initial condition (54) taking into account recurrent re-
lation of Bessel functions Js(x):

2
dJs(x)
dx

= Js−1 x( ) − Js+1 x( ), (59)

one can obtain the following solution:

Cs t( ) = Js
1

2h− E
∫t
0
Weffdt

′
( )

e−is(π/2). (60)

Hence, the probability of this process is given by the formula:

Ws = J2s
1

2h− E
∫t
0
Weffdt

′
[ ]

. (61)

In the case of a monochromatic wave from Eq. (61), we have

Ws = J2s
Weff tint
2h− E

( )
, (62)

where tint is the time duration of the particle motion in the
wave. As is seen from Eq. (62), in the diffraction regime
the symmetric diffraction picture (J2s = J2−s) into many mo-
mentum states is possible (see Fig. 1). The process dynamics
is defined by the argument of the Bessel function α = Weff

tint/(2h− E). For α∼≺1 only few diffraction maxima are possible,
which is shown in Figure 2. For the values α> 1, the process

Table 1. Main parameters of particle-slowed wave interaction in various coherent processes

Coherent process Slowed-wave amplitude – Weff Wave number – k Phase velocity – vph Effective mass – m∗

Induced Cherenkov 2ec2E0p sin θ
ω

ω

c
n

c

n

m

Induced Compton e2c2E1E2

ω1ω2

ω1 + ω2

c
c
ω1 − ω2

ω1 + ω2

�����������������������
m2 + e2

2c2
E2
1

ω2
1

+ E2
2

ω2
2

( )√
Induced undulator

e2lcHE0

2πω

ω

c
(1+ λ/l) c

1+ λ/l

������������������������
m2 + e2E2

2ω2c2
+ e2l2H2

8π2c4

√

Fig. 1 Slowed wave–electron interaction is shown schematically in the
frame of reference of the rest of the wave (frame moving with velocity
V= vph). On the left, diffraction regime of interaction is shown. Here we
have many symmetric diffraction maxima. On the right, Bragg scattering
with two maxima is shown.

Fig. 2 Diffraction of electron at Weff tint/2h− E = 1 in the rest frame of refer-
ence connected with the wave.
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is essentially multiphoton. The most probable number of ab-
sorbed/emitted Cherenkov photons is

�s≃ α. (63)

The width of the main diffraction maxima: Δ(�s)≃�s1/3h− k,
and since �s≫1 then Δ(�s)≪|p′x − px|. The typical scattering
picture is shown in Figure 3.
For the concreteness let us explicitly write probability for

the Cherenkov diffraction on a slowed wave in a dielectric
medium and electron inelastic Kapitza–Dirac effect on the bi-
chromatic counterpropagating waves. For the Cherenkov dif-
fraction effect on a strong traveling wave from Eq. (62) and
Table 1, we have the formula (14) already presented in Sec-
tion 2:

W (Cherenkov)
s = J2s ξ

mc2

h−
cp sin ϑch

E tint

( )
,

which has been obtained by the author of this article in 1976
(Avetissian, 1976).
For the Kapitza–Dirac effect, which is the particular case

of induced Compton effect on the bichromatic counterpropa-
gating waves at ω1= ω2≡ ω, E1= E2= E0, from Table 1
and Eqs (51) and (62) we can write:

Ψ = e−(i/h�)Ete(i/h�)p⊥r
∑
s

e−is(π/2)Js
e2c2E2

0 tint
2Eh− ω2

( )
× e(i/h�)( px+2sh�(ω/c))x. (64)

Hence, the probability of s-photons Kapitza–Dirac diffrac-
tion effect on the strong standing EM wave is determined
by the formula:

W (Kapitza−Dirac)
s = J2s

e2c2E2
0 tint

2Eh− ω2

( )
. (65)

Note that formula (65) for the nonrelativistic case E ≃mc2

coincides with analogous formula (7) of the paper Batelaan

(2007) up to a factor of 1= 2 [in the paper Batelaan
(2007)] the factor 1/2 has been missed perhaps at the trans-
formation of recurrent relation of Bessel functions Js(x) (59).

4.2. Bragg regime of exact quantum resonance

For the diffraction effect with sufficiently long interaction
time one can fulfill resonance conditions with quantum
recoil in each concrete process Eq. (24), Eq. (28), Eq. (31)
for the concrete s0: Γs0 = 0. The latter can be written as:

vph − vx = c2 − v2ph

( ) s0h− k

2E . (66)

The condition (66) has transparent physical in p′x terpretation
in the intrinsic frame of reference of the slowed wave. In this
frame, due to the conservation of electron energy and trans-
verse momentum the real transitions in this strongly quantum
regime occur from a state to the − p′x one and we reach the
Bragg diffraction effect on a slowed traveling wave at the ful-
fillment of the condition:

2p′x = −s0h− k′ (s0 = ±1;±2 . . .). (67)

The latter expresses the condition of exact resonance between
the electron de Broglie wave and the “wave motionless lat-
tice”. In particular, in this case when the above-mentioned
particle capture regime by the slowed traveling wave (Harou-
tunian & Avetissian, 1972) takes place, we have the quantum
effect of zone structure of particle states like the particle
states in a crystal lattice, and at the condition (66) the diffrac-
tion maxima take place; see Figure 1. For acquaintance in
detail with the different regimes of electron diffraction on a
slowed traveling wave in a dielectric medium we refer the
reader to the works Avetissian et al. (1998a, b, c; Avetissian
& Mkrtchian, 2001) [regarding the Bragg diffraction effect
see, also the paper Freimund and Batelaan (2002)]. Here
we just write the solution for the resonant case Γ1= 0. At
the condition

δE ≪ h− Γs| |,Weff

4h− E ≪ Γs| |; s ≠ 0, 1 (68)

from the set of equations (52) one can keep only resonant
terms:

i
∂C0(t)
∂t

= Weff

4h− E C1 t( ), (69)

i
∂C1(t)
∂t

= Weff

4h− E C0 t( ), (70)

with the solution

C0 t( ) = cos
1

4h− E
∫t
0
Weffdt

′
( )

,C1 t( ) = −i sin
1

4h− E
∫t
0
Weffdt

′
( )

.

(71)
Fig. 3 Diffraction of electron at Weff tint/2h�E = 50 in the rest frame of ref-
erence connected with the wave.
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For the concreteness let us explicitly write probability for
Kapitza–Dirac effect: ω1= ω2≡ ω, E1= E2= E0, vph= 0,
k= 2ω/c). From Eq. (66) at s0= 1 we obtain resonant initial
momentum px = −h− ω/c and electron wave function can be
written as:

Ψ = e(i/h�)p⊥r−(i/h�)Et C0 t( )e−i(ω/c)x + C1 t( )ei(ω/c)x[ ]
(72)

with the probabilities

W0 = cos2
e2c2E2

0 tint
4Eh− ω2

( )
,

W1 = sin2
e2c2E2

0 tint
4Eh− ω2

( )
. (73)

For the non-relativistic case E ≃mc2 Eq. (73) coincide with
the results in Batelaan (2007). For comparison with Figure 3,
in Figure 4, we illustrate the probabilities of diffraction in the
Bragg regime.

5. CONCLUSION

With the successful implementation by Freimund et al.
(2001) of the Kapitza–Dirac effect on high-intensity counter-
propagating laser beams – standing phase-grating in 2001,
after about 70 years since the prediction of this effect, the in-
terest to this phenomenon has been increased by several im-
portant reasons. Note only two – fundamental and applied
aspects of significance of the Kapitza–Dirac effect: this is a
best example for demonstration of matter wave diffracted
by light, especially, with reversed properties of the matter–
light in quantum mechanics, and important applications
connected with acquirement of coherent electron beams dif-
fracted from laser gratings for construction of new important
tools of diverse species, for example, coherent beam splitters,
new type electron interferometers, which would operate at
rather low electron energies than existing ones in atomic

physics, etc. There was another motivation as well to discuss
the main works regarding the elastic and inelastic diffraction
of electron matter wave on the standing and moving light
gratings because of confusion arisen in literature on this sub-
ject after appearance recently of a paper in New Journal of
Physics (Hayrapetyan et al., 2015) that required to clarify
the state-of-the-art on the considering subject for last four de-
cades in chronological order, to avoid the further confusions
and misunderstandings in scientific literature.

In this review paper, we have represented comprehensive
consideration of elastic and inelastic diffraction effects of
electron on the standing and slowed traveling waves in the
induced Cherenkov, Compton, and undulator/wiggler pro-
cesses with the non-linear peculiarity of threshold nature –

inherent to these coherent processes (a periodic wave above
a certain intensity becomes a potential barrier for electron
from which it is reflected) that may radically affect on the dif-
fraction effect. It has been shown that to remove this negative
factor for diffraction effect one should restrict waves’ inten-
sities by critical values for an each induced process.

We have also considered the strongly quantum regime of
Bragg diffraction – at the exact quantum resonance between
the electron matter wave and light gratings taking also into
account the quantum recoil of electron because of photons
absorption–radiation.

We have specifically considered in detail electron diffrac-
tion effect on a traveling wave in a dielectric medium (“Che-
renkov diffraction”) and have shown that the result of the
paper and claim of the authors in the Abstract (Hayrapetyan
et al., 2015) published in 2015 in New Journal of Physics is a
direct repeat of the original paper Avetissian (1976) pub-
lished in 1976 in “Physics Letters”.
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