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A solution that describes the inviscid reflection of internal waves off a sloping bottom
in time is derived under conditions of linearity and uniform stratification. The solution
is well behaved even under critical conditions. In the region ky <Nt , where k is the
along-slope wavenumber of the incoming wave, y is the slope-normal direction, N is
the Brünt–Väisälä frequency and t is time, an approximation can be written in terms
of Lommel’s function of two variables. The analysis can easily be extended to the
case of a beam of finite width. In the non-critical case, the streamfunction relaxes
to the classical Phillips steady-state solution in the region y < cgt , where cg is the
slope-normal component of the group velocity for waves at the forcing frequency.
However, it is found that the region where the along-boundary component of the
velocity relaxes to the Phillips solution is also bounded from below, leaving a region
very close to the wall where the classical solution misses important elements of the
reflection process. This leads to interesting properties near the boundary, especially
relatively to the formation of shear-driven unstable conditions.

Key words: internal waves, stratified flows

1. Introduction
Due to their peculiar dispersion relationship, the reflection of internal waves off a

sloping boundary increases the local energy density and can lead to wave breaking and
enhanced mixing (Staquet & Sommeria 2002). Field measurements have documented
increased turbulent mixing two to three orders of magnitude above interior values
over slopes (Moum et al. 2002; Nash et al. 2004) that can be traced to internal tide
processes. In addition, the boundary mixing caused by internal tides and waves can
generate mixed layers that diffuse away from oceanic slopes into the ocean interior,
leading to density layering and seaward transport of particulate matter (Cacchione
& Drake 1986; McPhee-Shaw & Kunze 2002; McPhee-Shaw 2006). Large turbulent
shear in the bottom boundary layer can also have significant effects on the seabed.
Cacchione, Pratson & Ogston (2002) proposed that increased bottom turbulence
associated with critical semi-diurnal internal tides controls the shape and gradients
of most continental slopes around the world’s ocean basins. The enhanced turbulent
shears essentially inhibit settlement of fine particles onto the bottom, thus controlling
the long-term rates and loci of sediment accumulation on continental slopes. When
the bed shear stresses owing to this process are high, resuspension and dispersion of
suspended sediment away from the bottom boundary layer can occur as nepheloid
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layers (Dickson & McCave 2002; McPhee-Shaw & Kunze 2002). There also have been
studies that link internal wave-induced bottom mixing to increased local biological
productivity (MacIntyre 1998). Enhanced mixing caused by breaking and overturns
in the bottom boundary layer for near-critical and critical internal waves has been
observed in the laboratory (Cacchione & Wunsch 1974; Ivey & Nokes 1989; McPhee-
Shaw & Kunze 2002; Gostiaux et al. 2006) and in numerical experiments (Slinn &
Riley 1998; Legg & Adcroft 2003; Venayagamoorthy & Fringer 2006).

It should not be surprising then that great importance is attached to a
theoretical understanding of the reflection process. The problem has been traditionally
approached in the frequency domain (see e.g. Phillips 1966; Wunsch 1968; Thorpe
1987; Tabaei, Akylas & Lamb 2005), and for simplicity, in what follows, we will
consider only two-dimensional waves in a non-rotating environment. For a given
(real) frequency ω, the streamfunction of the waves is written as eiωtψ(ω, x, y).
However, due to the nature of the equation which the streamfunction satisfies, this
approach fails whenever the slope γ of the boundary coincides with the angle α

that the group velocity of the incoming waves makes with the horizontal, the latter
satisfying

sinα =
ω

N
, (1.1)

where N is the Brünt–Väisälä (assumed uniform). This failure is due the hyperbolic
nature of the equation which ψ(ω, x, y) satisfies (Sobolev 1954; Wunsch 1969; Arnold
& Khesin 1998). Along a critical slope the domain coincides with the characteristic
lines of the equation, and the problem becomes ill-posed. The result is a divergent
behaviour of the physical quantities described by the solution as the angle of
the boundary approaches the critical value. This is at odd with experimental and
observational evidence which show that at or near criticality, before turbulence sets it,
the flow is well behaved (Cacchione & Wunsch 1974; De Silva, Imberger & Ivey 1997;
Cacchione et al. 2002; Gostiaux et al. 2006), suggesting the existence of a mechanism
that prevents the singularity from developing. The ‘usual suspects’ are viscosity
and nonlinearity. The former was in fact used by Wunsch (1969) and Kistovich &
Chashechkin (1995), while the latter was used more recently by Dauxois & Young
(1999). Crucially, the latter authors, here referred to as DY, approached the problem
in the time domain, as an initial/boundary value problem, rather than a boundary
value problem for a steady state at a given frequency. The present paper follows the
same approach, as we develop a theory for the reflection of inviscid and linear internal
waves in the time domain. Unlike DY, we only assume linearity a priori and derive
a solution for the linear reflection of a plane wave off a slope of an arbitrary angle.
Note that both DY and Tabaei & Akylas (2003) show that to leading order dispersive
effects dominate over nonlinear terms in the equation that controls the evolution of
the streamfunction at the forcing frequency. Hence, working within a linear framework
in the time domain is not as severe a constraint as it may appear, though it avoids
the singularities that plague the approach in the frequency domain at criticality. We
identify a similarity variable δ that measures, in an appropriate sense, proximity to
the boundary, and we derive the non-trivial limit δ → 0 of the streamfunction in
terms of functions well known in classical optics. The limit describes the evolution of
the reflected wave in the near-wall region δ � 1, free of singularities, indeed with an
analytic dependence on the parameter measuring departure from criticality. Several
interesting, and sometime counterintuitive properties of the reflection process in the
linear and inviscid case emerge from this analysis. For example, in the critical case,
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Figure 1. Sketch of the domain employed. The boundary, which extends to infinity in both
directions, slopes upward at an angle γ . The group velocity cg of the incoming wave makes
an angle α with the horizontal. Angles are measured counterclockwise from the horizontal.
Hence, for a downward propagating wave, α < 0.

we show that if the incoming wave is a beam of finite width, the velocities within
the domain are bounded in time, except at the boundary, where they grow linearly.
Thus, deprived of the most egregious singularities, the present theory can be used as
a basis to include the effects of nonlinear wave–wave interaction, identifying regions
of instability and overturning, etc.

The rest of the paper is organized as follows: in § 2 we formulate the problem as an
initial value/boundary value problem, solved with the aid of the Laplace transform;
in § 3 we provide a non-trivial asymptotic expression for the inverse Laplace transform
that provides the solution within the near-wall region, followed by a section in which
we explore analytically the relationship between the evolving solution derived earlier
with the classical solution derived by Phillips (1966); we then show how, using the
superposition principle, it is possible analytically to localize the solution as a beam
of finite width, which is how internal waves usually appear in experiments and in the
field. With this solution, we explore the development of potentially unstable regions,
either due large shear or statically unstable local stratification. A discussion and
summary concludes the paper. Technical elements of the analysis are presented in
appendices.

2. Analysis
2.1. Mathematical formulation

We consider a two-dimensional internal wave beam of the type studied by Tabaei &
Akylas (2003), propagating in an inviscid fluid with constant Brunt–Väisälä frequency
N under the Bousinnesq approximation. The beam approaches and reflects off a
smooth surface making an angle γ (positive upward) to the horizontal. Even though
in the ocean γ is typically small, we will not make a priori assumptions on its
magnitude.

We perform the analysis in coordinates rotated so that x̂ is parallel and ŷ is normal
to the boundary (figure 1). Under these assumptions, from the linearized Euler
equations, it is easy to derive the following equation for the reflected streamfunction
Ψ (Phillips 1966; Thorpe 1987):

∂2

∂t̂2
∇2Ψ = −N2

(
cos γ

∂

∂x̂
− sin γ

∂

∂ŷ

)2

Ψ, (2.1)
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with the following initial conditions:

Ψ (x̂, ŷ, t̂ = 0) = 0,
∂

∂t̂
Ψ (x̂, ŷ, t̂ = 0) = 0, (2.2)

while at the boundaries

Ψ (x̂, ŷ → ∞, t̂) = 0, Ψ (x̂, ŷ = 0, t̂) = A(t̂)S(x̂) eiNt̂ sinα. (2.3)

The boundary condition at the wall assumes that the incoming wave is monochromatic
in time with frequency N sin α and 0 � A(t̂) � 1 is a ramp-up/ramp-down function
which accounts for dispersive effects at the leading edge of the incoming beam. To
represent a internal wave beam of width 2L, we assume that

S(x̂) = A
eik̂x̂

1 +

(
x̂

L̂

)2
, (2.4)

In view of the linearity of the problem, we will first seek the solution in the limit
L → ∞ and then use the superposition principle to generate the solution in the L < ∞
case.

2.2. Solution strategy

For an infinite beam, we seek a solution having the form Ψ =eik̂x̂ψ(ŷ, t̂). The Laplace
transform of ψ ,

ψ(ŷ, p̂) = L[ψ] ≡
∫ ∞

0

ψ(ŷ, t̂) e−p̂t̂ dp̂, (2.5)

satisfies the boundary value problem[
−k̂2(p̂2 + N2 cos2 γ ) + (p̂2 + N2 sin2 γ )

∂2

∂ŷ2
− 2îkN2 cos γ sin γ

∂

∂ŷ

]
ψ = 0, (2.6)

with boundary conditions given by

ψ(ŷ = 0, p̂) = L[A(t̂) exp(iNt̂ sin α)] ≡ ψ0(p̂), lim
ŷ→∞

ψ = 0. (2.7)

The solution to the above problem must be found on the strip Rep >M with M > 0
chosen such that ψ(p̂, ŷ) is holomorphic on it. In view of the linearity of the problem,
the solution is given by

ψ(p̂, ŷ) = ψ0(p̂) eλ(p̂)k̂ŷ , (2.8)

where λ(p̂) is the root of the characteristic equations associated with (2.6) which
satisfies Re k̂λ(p̂) < 0 for Re p̂ sufficiently large (the possibility of both roots having
Re k̂λ(p̂) > 0 when Re p̂ � N is ruled out by a trivial application of the fundamental
theorem of algebra).

We assume that k̂ > 0, consistent with incoming waves with downward group
velocity, and use the along-slope wavenumber k̂ of the incoming wave and N to non-
dimensionalize the problem by introducing the following non-dimensional variables
y ≡ k̂ŷ, p ≡ p̂/N and t ≡ Nt̂ . Thus, this selects the root λ with negative real part.

Applying the inverse Laplace transform gives the solution in physical coordinates

ψ(y, t) =
1

2πi

∫ c+i∞

c−i∞
ψ(p, y) ept dp =

1

2πi

∫ c+i∞

c−i∞
ψ0(p) eφ(p,y,t) dp, (2.9)
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468 A. Scotti

where

φ(p, y, t) = λ(p)y + pt. (2.10)

The constant c in the integration contour is arbitrary, provided the integrand is
holomorphic in the region Rep >c. In practice, it is extremely convenient to extend
φ, that is λ(p), to the entire complex plane minus an appropriately chosen branch
cut. There is a certain freedom in how to perform such extension, which can be used
to simplify the analysis in different regions of the (y, t) plane. A detailed discussion
of the extensions is presented in Appendix A.

2.3. Initial set-up

The ramp-up function A(t) depends on the details of the generation process of the
incoming wavetrain, as well as on the dispersion of the wavefront over the travel
time. To simplify the classification of the behaviour, we consider two possibilities:
a hard ramp-up, whereby A(t) raises in a vanishingly small time from zero to 1 at
t = 0, and a soft ramp-up, in which the ramp-up occurs linearly over a finite time τ .
In practice, the hard ramp-up will be appropriate for a wave whose switch-on time
scale τ is of the order of a buoyancy period, whilst the soft ramp-up will be more
appropriate for waves such that 1 � τ � 1/ sinα. In the former case

ψh
0 (p) =

1

p − i sinα
, (2.11)

whereas in the latter

ψs
0 (p) =

1 − exp[−(p − i sinα)τ ]

τ (p − i sin α)2
. (2.12)

Notice however that if ψh(y, t) is the solution under the hard ramp-up condition, the
solution under the soft ramp-up condition is

ψs(y, t) =
1

iτ

(
∂ψh(y, t)

∂ sinα
− ∂ψh(y, t − τ )

∂ sinα
eiτ sinαH (t − τ )

)
, (2.13)

where H (t) is the Heaviside step function, and thus the soft ramp-up case can easily
be obtained once the solution under hard ramp-up is known. For this reason, we
focus on the hard ramp-up case and drop the superscript ‘h’ in what follows.

3. The streamfunction in the near field
It is easy to show (see Appendix B) that when y > t the streamfunction decays

exponentially in y, which is to be expected on physical grounds. In this section we
will focus on the dynamically interesting near-field region y < t , with the goal of
constructing a non-trivial approximation to (2.9) that captures the formation of the
reflected wave.

3.1. The near-field region, y < t

To find a useful approximation for the streamfunction in the near-wall region, we
set in (2.10) λ≡ λnf (p) with λnf (p) defined in (A 3). We then deform the integration
contour to coincide with the one shown in figure 2, along which the only non-zero
contributions come from the contours along each side of the branch cuts (I1 to I4),
and from the circular path centred on the origin C, whose radius is such to include
the singularities at −i sin γ and i sinα (the contribution from the outer arches tends
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–i sinγ

–i

i

i sinα

I2 I1

I3
I4

C

Figure 2. The integration contour for the near-field case. The branch cut stretches from i to
+i∞ and from −i∞ to −i. The contribution along the external arches vanishes as 1/R, where
R is the radius of the circle. Likewise, the contributions from the opposing paths across the
real negative axis cancel each other as the distance between the paths is set to zero. Only
the internal circle C and the four integrals I1 to I4 hugging the branch cuts give a non-zero
contribution, of which the one along C is dominant in the near-wall region.

to zero as R−1, with R being the radius of the arch), i.e.

ψ = ψC +

4∑
n=1

ψIn
. (3.1)

It is on

ψC =
1

2πi

∫
C

eφ(p,y,t)

p − i sinα
dp (3.2)

that we focus our attention here, since, as will be shown presently, it determines the
response of the solution at the forcing frequency. The goal is to obtain a manageable
non-trivial approximation to the streamfunction that captures the development of
the reflected wave. The derivation below emphasizes the physical aspects. A formal
derivation, starting from an exact representation of the integral along C as a series
of Lommel’s function is presented in Appendix C.

φ(p, y, t) has a simple pole at −i sin γ (see (A 5)); hence we write

φ(p, y, t) =

(
− cos γ

p + i sin γ
+

i

2
tan γ

)
y + pt + λreg (p)y, (3.3)

with λreg (p) admitting a regular Taylor expansion around −i sin γ , such that
λreg (−i sin γ ) = 0 and convergent on C. (Technically, this requires that sinα < 1−sin γ ,
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470 A. Scotti

which we assume to be true here. This condition simplifies the discussion, though the
results derived below hold even if this condition is not verified. In fact, it is possible
to modify C to encircle separately the singularities at −i sin γ and i sinα. Around the
latter, the result is given by Cauchy’s theorem, whereas around the former we have a
calculation similar to the one presented above but involving Lommel’s V functions.
Identities linking Lommel’s U and V functions show that the result is identical.)

λreg (p − i sin γ )y = y

∞∑
n=1

αn(γ )pn. (3.4)

Let 
ω = sin α + sin γ be the difference between the frequency of the approaching
wave and the critical frequency. Then

ψC =
exp
[
−i
(
t sin γ − y

2
tan γ

)]
2πi

∫
C̃

exp

(
p − cos γ

p
ty

)
p − i
ωt

exp[λreg (p/t − i sin γ )y] dp,

(3.5)

where C̃ is the image of C under the shift p → (p − i sin γ ) followed by the rescaling
p → p/t . Furthermore, we have

λreg (p/t − i sin γ )y =
y

t

∞∑
n=1

αn(γ )
pn

tn−1
, (3.6)

uniformly convergent on C̃.
From (3.5) and (3.6) we postulate that ψC depends on two similarity variables,

ξ being the strength of the essential singularity expressed as ξ 2 ≡ yt cos γ and
δ2 ≡ y cos γ /t (the factor cos γ is introduced for convenience) measuring the departure
from unity of eyλreg (p) and if near criticality (i.e. 
ω � 1, the case of obvious interest
here) a slow time 
ωt . We define the near-wall region as the region in the (y, t) plane
corresponding to the region δ � 1 in the (ξ, δ) plane. For the time being, we assume
complete similarity (Barenblatt 1996) in the variable δ in the near-wall region just
defined (the existence of complete similarity will be established in Appendix C). Thus,
within the near-wall region we have

ψC � lim
δ→0

ψC. (3.7)

Normalized with the normal component of the wavenumber of the incoming wave
µ+, the near-field region just defined corresponds to the region

µ+y �
(

cos 2γ

cos γ sin 2γ
+ O(
ω)

)
t. (3.8)

Over a few buoyancy periods, this region grows to several wavelengths. Indeed, for
oceanic (i.e. small) values of γ , this usually encompasses the entire water column.
However, even for larger values of γ , which are typically employed in laboratory
experiments, the growth is so rapid that for all practical purposes δ � 1 does not
represent a severe constraint.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

11
00

00
97

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112011000097


Critical reflection 471

Leaving the technical details to Appendix C, we find that

ψC =
exp
[
−i
(
t sin γ − y

2
tan γ

)]
2πi

∫
C̃

exp

[
ξ

(
p

ξ
− ξ

p

)]
p − i
ωt

dp + O(δ2)

= exp(ix̃ − it sin γ )U0(2t
ω, 2ξ ) + O(δ2), x̃ = x +
tan γ

2
y, (3.9)

where

U0(w, z) ≡ U0(w, z) + iU1(w, z) (3.10)

and the U ’s are Lommel’s U function of two variables (See Appendix F and Watson
1995, p. 537). Regarding the four integrals I1 to I4, application of standard techniques
shows that they contribute a ‘ringing’ at the buoyancy frequency which is o(δ2)
(Appendix D), and thus even of less importance in the near field than the terms
neglected in (3.9).

Incidentally, the result in (3.9) could have been obtained directly if a long-wave
assumption ∇2 � ∂2/∂ŷ2 had been made in (2.1). Indeed, in this case it is easy to
verify that λ(p) = − cos γ /(p + i sin γ ) and λreg(p) = −i(tan γ )/2 (this approximation
is equivalent to assuming a hydrostatic dynamics only if it is applied to a set of
coordinates in which gravity is parallel to ŷ. Also, the x-derivative on the right-hand
side of (2.1) cannot be ignored). Conversely, ∂/∂y � 1/δ∂/∂ξ , and the long-wave
approximation ∂2/∂y2 � ∂2/∂x2 holds within the δ � 1 region.

3.2. Buoyancy in the near field

The buoyancy field satisfies the initial value problem

∂b

∂t
= sin γ

∂Ψ

∂y
− cos γ

∂Ψ

∂x
, b(x, y, t = 0) = 0. (3.11)

Substituting the expression for the streamfunction derived above, after some algebra
that uses properties of the U functions discussed in Appendix F, we obtain

b = A exp[i(x̃ − t sin γ )]

{(
2 cos2 γ − sin2 γ

2 sinα cos γ

)
(U0(2t sin γ, 2ξ )

− U0(2
ωt, 2ξ )) + i
sin 2γ

2 sinα

(
U1(2
ωt, 2ξ )


ω
− U1(2t sin γ, 2ξ )

sin γ

)}
+ O(δ2) (3.12)

which, together with

Ψ = A exp[i(x̃ − t sin γ )]U0(2
ωt, 2ξ ) + O(δ2) (3.13)

completes the description of the reflected wave in the near-field region to O(δ2). This
is the form of the solution that will be used in the following sections to (i) understand
how the steady-state Phillips solution is recovered as time goes by in the non-critical
case, (ii) calculate a solution for a localized beam and (iii) investigate where and when
the solution engenders unstable conditions.

4. Approach to steady state near criticality (0 < |
ω| � 1)

The existence of complete similarity in the near-wall region has made possible to
derive a non-trivial compact expression for the streamfunction and buoyancy field
of the reflected wave. It can be easily calculated numerically to provide details of
how the reflected wave evolves in time. However, Lommel’s functions are sufficiently
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ψ u ∂u/∂y

i

(
δ


ω

)
J−1(2ξ ) −i

cos γ


ω
J0(2ξ ) i

( cos γ


ω

)2 J1(2ξ )

2ξ
2
ωt

Table 1. Leading-order terms of the transient for along-slope velocity, shear and buoyancy
in the δ � 
ω region. All terms are multiplied by the common factor A exp[i(x̃ − t sin γ )],
and thus oscillates at the critical frequency, regardless of the criticality of the forcing. Only
O(
ω−1) terms are indicated for clarity. The terms are written to emphasize the role of the
‘slow’ time 
ωt . The transient of the streamfunction decays as (
ωt)−1; the transient of the
along-slope velocity remains constant, while the transient of the shear actually grows as 
ωt .

characterized that it is possible to consider the relationship between our solution and
the steady-state solution in the near-critical case 0< |
ω| � 1 analytically.

The textbook solution for the reflected wave when 
ω 	= 0 (see e.g. Phillips 1966) is

Ψ T = A exp[i(x + t sinα + µ−y)], µ− =
1

2

sin 2γ − sin 2α

sin2 γ − sin2 α
=

cos γ


ω
+

tan γ

2
+ O(
ω),

(4.1)

and

bT = A
µ− sin γ − cos γ

sinα
exp[i(x + t sinα + µ−y)], (4.2)

where we have used for µ− an expression consistent with the long-wave approximation.
To establish the asymptotic behaviour of our solution at large time, we note that
when w � z (see Appendix F),

Un(w, z) = i−n exp{i[w/2 + z2/(2w)]} + i
( z

w

)1−n

Jn−1(z) + · · · . (4.3)

Thus, when ξ < |
ω|t , corresponding to δ < |
ω|,

Ψ = A

{
exp[i(x + µ−y + t sinα)] + i exp[i(x̃ − t sin γ )]

δ


ω
J−1(2ξ )

}
+ O

(
δ2


ω2

)
.

(4.4)

The first term is the Phillips streamfunction, while the second term dominates the
transient response in the region δ < |
ω|. Note that the latter oscillates at the critical
frequency, regardless of the frequency of the incoming beam. Since |J−1(z)| � 1 , the
Phillips streamfunction approximates the solution in the region δ � |
ω|. Physically,
this is consistent with the fact that the group velocity −dp/dλ|p=i sinα =
ω2/ cos γ .
Hence, the line δ = |
ω| in the (y, t) plane marks the trajectory of an observer
that, travelling at the group velocity, at t =0 leaves the reflecting wall. However,
a straightforward calculation (see table 1) shows that the velocity and buoyancy
described by the Phillips solution approximate the solution in the smaller region
ξ � 1 and δ � |
ω| (figure 3). That is, in the immediate proximity of the boundary the
Phillips solution alone does not describe the along-slope velocity. Finally, and perhaps
even more surprisingly, the Phillips solution never provides a good approximation for
the shear and buoyancy gradient as they grow in time, linearly along lines of constant
ξ , or as t1/4 at y fixed. Table 1 summarizes the behaviour of the transient terms.

It would be tempting to ascribe the rather surprising behaviour of the unsteady
solution as a consequence of operating under hard ramp-up conditions. In fact, as
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µy

t sin γ t sin γ

δ = �ω
δ = �ω

(a)
µy

(b)

sin γ/�ω

ξ = 1

Figure 3. Sketch of the region in the (y, t) plane where the Phillips solution for a plane
wave reflecting off a sloping boundary agrees to leading order in δ with the evolving solution
(3.13). The shaded area in (a) shows the region of agreement for the streamfunction, while
in (b) it shows the corresponding region for the along-boundary velocity u = ∂Ψ/∂y. Shear
and buoyancy are never found in agreement. We assume near criticality (|
ω| � 1) and that a
range |
ω| � δ � 1 exists.

shown in Appendix E, this is not the case. Even when not at criticality, there is a
transient (but long-lived!) response at the critical frequency that prevents the uniform
convergence of velocity and shear within the δ � |
ω| region. This behaviour can be
readily understood if we return for a moment to the dynamics as described by the
Euler equations, which at the wall assume the particularly simple form

∂b

∂t
− sin γ u = 0 (4.5)

∂u

∂t
+ sin γ b = −∂P

∂x
, (4.6)

that can be combined to form the equation for a forced harmonic oscillator

∂2u

∂t2
+ sin2 γ u = − ∂2P

∂x∂t
. (4.7)

For a forcing pressure field oscillating at a given (non-critical frequency) sin α, a
particular solution can be found, up ∼ exp(i sinα), corresponding to the Phillips
solution. However, in general, a forced harmonic oscillator starting from rest responds
both at the forcing frequency and at its natural frequency. This is exactly what happens
here, where near the wall the solution has components oscillating at both frequencies.
Precisely at the wall the ringing at the natural frequency never goes away, whereas
off the wall dispersive effects (mediated by the wall normal velocity) eventually
cause the ringing to fade. Likewise, the wall shear (which in the long wavelength
limit ∂2/∂y2 � ∂2/∂x2 coincides with vorticity) obeys a similar harmonic oscillator
dynamics. Driven by u and b, which force the shear at both critical and non-critical
frequencies, it responds as a harmonic oscillator forced at criticality, albeit the growth
occurs on a time scale that expressed in critical frequency periods is O(sin γ /|
ω|),
and thus potentially long.

5. Reflection of a beam
The unbounded (in the along-slope direction) waves discussed in the sections above,

while highlighting some interesting aspects of the inviscid reflection process, are of
little practical value. Much more interesting is the reflection of a beam of finite
width, which can be realized experimentally (Mercier et al. 2010) while maintaining
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the property of being a solution to both the linearized and fully nonlinear Euler
equations (Tabaei & Akylas 2003). We assume a dominant non-dimensional along-
slope wavelength equal to 1 and use a Witch of Agnesi of width 2L to localize
the beam in the direction perpendicular to the group velocity of the beam (sharper
localizing functions can be considered as well, provided that they have a finite number
of simple poles when extended to the complex plane). The Fourier transform of S(x)
(see (2.4)), the beam projection along the boundary, is

S(k) =
L

2
e−|(k−1)|L. (5.1)

We assume L � π, so that the beam width contains at least one wavelength. The
small amount of upward-propagating wavelengths contained in S(k) (i.e. the fraction
with k < 0) is not of concern here, since they contribute a term O(e−L) to the
streamfunction, and thus negligible. The contribution from the positive wavenumbers
is

Ψ =
AL

2

exp(i(x̃ − t sin γ ))

2πi

∫
C̃

exp

(
pt − cos γ

p
y

)
p − i
ω⎡

⎢⎢⎣ 1

L − i

(
x̃ + i

cos γ

p
y

) +

1 − exp

(
−L − ix̃ +

cos γ

p
y

)

L + i

(
x̃ + i

cos γ

p
y

)
⎤
⎥⎥⎦ dp, (5.2)

(we retain the O(e−L) term within the square brackets to cancel an exponential
divergence) and from here onward we dispense from indicating the O(δ2) remainder.
The contour integral can be easily calculated to give

Ψ = A

⎧⎪⎨
⎪⎩

U0(2
ωt, 2ξ )

1 +
(x + µ−y)2

L2

+ i
L

2

y cos γ


ω

[
U0(2iξ 2/(L − ix̃), 2ξ )

(L − ix̃)(i(x + µ−y) − L)

+
V2(−2iξ 2/(L + ix̃), 2ξ )

(L + ix̃)(i(x + µ−y) + L)

]⎫⎪⎬
⎪⎭ exp i(x̃ − t sin γ ). (5.3)

(See Appendix F for a definition of V. The recurrence relationship for U and V is
used to write the solution in terms of U0.) The first term in the square brackets is the
outgoing wave beam, which is nothing but the localized version of the streamfunction
obtained earlier. As we have seen, at large times this term contributes the freely
propagating Phillips solution, within the wedge δ � |
ω|, ξ � 1, as well as transients
both near the leading edge and near the reflecting boundary. The terms within the
square brackets add a near-wall transient which is absent in the unlocalized case. The
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latter can be rewritten as

Ψtr =
AL

2
iξ 2

⎡
⎢⎢⎣

exp

(
− ξ 2

L − ix̃
+ L − ix̃

)
− iU1(−2i(L − ix̃), 2ξ )

(L − ix̃)(iξ 2 + t
ω(ix̃ − L))

− iU1(2i(L + ix̃), 2ξ )

(L + ix̃)(iξ 2 + t
ω(ix̃ + L))

⎤
⎥⎥⎦ exp i(x̃ − t sin γ ). (5.4)

5.1. Critical case: unlocalized versus beam

It is instructive, at this point, to consider how, in the critical case 
ω = 0, localization
affects the reflection process. In the unlocalized limit, the streamfunction assumes the
particularly simple form

Ψ = A exp[i(x̃ − t sin γ )]J0(2ξ ). (5.5)

Aside from the factor eiy tan γ /2, this coincides with the solution that DY obtained. The
largest growth rate for the along-slope velocity u = ∂Ψ/∂y and shear S = ∂2Ψ/∂y2 are
found at the boundary, where they increase as t and t2 respectively. However, both
quantities diverge, albeit at the slower rate of t1/4 and t3/4 respectively, even away
from the boundary. As remarked by earlier, at the wall the behaviour is essentially
similar to an oscillator forced at its resonant frequency.

The behaviour for a localized beam is different. While at the boundary u and
S diverge as in the unlocalized case, away from the boundary both quantities,
after an initial period of growth, decay in time. Indeed, according to (5.4) when
y � (L2 + (x + y tan γ /2)2)/t cos γ ,

u = −AL2 exp(i(x̃ − t sin γ ))
J3(2ξ )

ξ 3
t cos γ + · · · (5.6)

and

S = AL2 exp(i(x̃ − t sin γ ))
J4(2ξ )

ξ 4
(t cos γ )2 + · · · . (5.7)

Figure 4 shows the transient-induced along-slope velocity at the centre of the beam
at k0ŷ = 0.1. In the critical case, the time scale of the transient coincides with the
buoyancy time scale. The shallower the angle of the slope, the wider the gulf between
the buoyancy time scale and the period of the waves. Hence, the decay occurs sooner
for shallow slopes than for steeper slopes.

6. Shear and overturning
The most obvious experimental effect of near-critical reflection is the generation

of strong mixing near the boundary in localized regions near the boundary. A
comprehensive stability analysis even of our simplified solution is beyond the scope
of the present paper. Rather, following Thorpe (1987) and DY, we will use established
criteria to explore which of the possible routes to instability, shear or overturning, our
solution is likely to take within the near-field region. As a definition of overturning
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t sin γ

u/U0

Figure 4. Along-slope velocity at t sin γ = 1, 2, . . . measured at the centre of the beam at
k0ŷ = 0.1. The slope of the boundary is 3◦ for the solid line and 15◦ for the dashed line. In
both cases the velocity is normalized with the maximum along-slope velocity in the incoming

beam and k0L̂ = π

we take the occurrence of the region of the negative local Brunt–Väisälä frequency

N2 = 1 − ∂

∂ζ
(binc + b) < 0, (6.1)

while for shear instabilities we assume a simple test based on the local Richardson
number

J =
N2

S2
<

1

4
, S = −Re

∂

∂ζ
(Ψinc + Ψ ). (6.2)

In general, where and when the stratification overturns or is overcome by shear will
depend now on the amplitude of the incoming wave A, departure from criticality 
ω

and slope angle γ .
As was shown by Thorpe (1987), as the amplitude of a freely propagating wave

approaches a finite value Ac, the maximum slope of the isopycnals locally approaches
infinity, and the wave experiences localized overturning. The fact that the wave
always reaches overturning with J > 1/4 is due to the fact that the regions where
the wave buoyancy field is most effective at weakening the background stratification
coincide with the regions of zero shear. Expressed differently, the condition is that
shear and buoyancy are π/2 out of phase, that is, they are in quadrature. However,
once transient effects are taken into consideration, quadrature between shear and
buoyancy gradient is established at best only asymptotically in time; hence, regions
of waning stratification do not necessarily coincide with regions of low shear before
the asymptotic phase difference sets in. Thus, we can have the possibility that initially,
and within the region affected by the transient, regions where shear instability is
possible may occur. Contrast this to DY’s solution, whose buoyancy gradient is
always in quadrature with the along-slope shear, and in this respect resembles a freely
propagating waves. Hence, DY find that in their solution, waves always overturn first
(like free waves).
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6.1. Small amplitude waves

The maximum isopycnals slope of a reflected Phillips wave is

aref
max = ainc

max

(
sin(α − γ )

sin(α + γ )

)2

. (6.3)

When aref
max < 1, overturning, if present, is due to interactions between the incoming

and outgoing waves in the overlapping region and/or transient effects. A necessary
condition for the former to occur is aref

max + ainc
max > 1, and since close to criticality

aref
max � ainc

max , the latter condition is met only if the reflected wave itself is close to
overturning. The contribution from the transient, in contrast, can generate small
statically unstable regions even for very weak waves. For the along-slope velocity
(5.4) shows that close to the boundary a beat develops between the outgoing beam,
which contributes a term oscillating at the frequency of the incoming beam

ubeam � L2

L2 + x2

cos γ


ω
exp(i(x − t sinα)) (6.4)

and the contribution from the transients which adds a term

utrans � L2

L2 + x2

cos γ


ω

(
x

L2 + x2
− i

)
exp(i(x − t sin γ )), (6.5)

oscillating at the critical frequency. The first term is an effect of the localization of the
beam, whereas the second term is due to the inherently tendency of (2.1) to generate
shear discussed earlier. For very wide beams, the contribution from the localization
in the latter expression vanishes, and one recovers the non-localized form of the
transient. However, for localized beams, this causes the largest along-slope velocities
to preferentially occur near the shoulders of the beam (figure 5). A similar argument
applies to shear and buoyancy. This results in a modulation of J over a time scale
O(2π/
ω). To summarize, even very weak waves can generate unstable conditions,
due entirely to transient effects, though nonlinearly generated harmonics, which are
completely neglected in our solution, could modify the outcome. This could happen
if, for example, higher harmonics of the type considered by Tabaei et al. (2005) sap
energy from the base flow.

6.2. Intermediate waves

When the reflected waves are close to overturning, transients can induce localized
overturning in a sizable region off the wall. This is an interesting case, because the
incoming wave is still too weak to give any significant contribution. As for weak
waves, this is due entirely by the non-Phillips terms in the solution. However, in this
case we observe the formation of isolated regions of overturned fluid which develop
off the boundary and are advected by the phase velocity towards the wall, where they
eventually merge with the unstable regions at the wall (figure 6). Near the wall, the
unstable regions first appear as regions where 0 <J < 1/4, though they quickly evolve
a core of statically unstable fluid (N2 < 0), as opposed to the off-wall unstable regions
which always start as statically unstable, and appear sooner, usually within the end
of the first wave cycle.

6.3. Large waves

The unstable regions which appear during the reflection process of weak waves are
confined to a limited region near the boundary. It is therefore reasonable to assume
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Figure 5. (Colour online) Along-slope velocity (normalized with the maximum along-slope
velocity of the reflected Phillips wave) and instable regions in a weak wave at t sin γ /2π = 25.5.
The white lines enclose the unstable region, which is comprised of a overturning core
surrounded by a ring where the local Richardson number is below critical. The slope is γ = 15◦,

ω/ sin γ = −.1 and L = π. The maximum slope of the reflected Phillips wave isopycnals is
0.2.

that the analytic solution should hold outside these regions, possibly with minor
modifications.

For sufficiently large incoming waves, such that

ainc
max �

(
sin(α + γ )

sin(α − γ )

)2

, (6.6)

the reflected Phillips wave itself is statically unstable; thus, we expect that the

analytic solution should provide at best an indication of where, when and what type
of instabilities should occur first. When the incoming waves themselves are not close
to overturning (i.e. ainc

max � 1) we find that the unstable regions appear first close to
the boundary, where generally J < 1/4, since the time tc that lapses before the onset
is O(
ω−1) over a wide range of slope angles and thus, unstable regions develop
before the local phase difference between buoyancy and shear approaches π/2 (i.e.
they are not yet in quadrature). For a given slope γ , the dependence of the time tc
required for unstable regions to develop near criticality is in qualitative agreement
with the experiments of De Silva et al. (1997). Quantitatively, our solution seems to
go unstable sooner. This could be due, most likely, to lacking viscous effects, both
near the wall and in the interior of the fluid, suppressing (or at least retarding) the
onset of measurable instabilities. Often, the region where at first J < 1/4 is observed
becomes very rapidly an overturning regions. However, we find examples in which
the shear-unstable region expands before any overturning is observed. In all cases, the
region is localized. When the unstable region is primarily static (i.e. J < 1/4 becomes
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Figure 6. (Colour online at http://journals.cambridge.org/flm) Along-slope velocity
(normalized with the maximum along-slope velocity of the reflected Phillips wave) and unstable
regions in an intermediate wave at t sin γ /2π =3. The white lines enclose the unstable region,
which is comprised of a overturning core surrounded by a ring where the local Richardson
number is below critical. In addition to the unstable region near the wall, we now have isolated
regions of statically unstable fluid forming off the wall. Note also the difference in the vertical
scale. The slope γ = 15◦, 
ω/ sin γ = −0.5 and the maximum slope of the reflected Phillips
wave is 0.84.

rapidly J < 0) the statically unstable region at the wall coincides with the region
of diverging flow, whereas primarily 0<J < 1/4 regions occur near the regions of
maximum along-slope velocity. If we calculate the solution past the onset of unstable
regions at the wall, we can observe isolated regions of overturning which first appear
away from the wall, and move closer to the wall in the subsequent evolution, often
merging with unstable regions coming from the wall. Whereas for the unstable regions
close to the wall it is the intense shear generated by the reflected wave that drives
the region unstable, in the latter case it is the buoyancy anomaly of the reflected field
that causes overturning. The more supercritical the wave is, these off-wall, detached
overturned regions develop the sooner, in accordance with the observations of De
Silva et al. (1997), and are absent in subcritical waves. This and the longer time (in
critical frequency units) for instabilities to develop are the major differences between
supercritical and subcritical reflection. This isolated overturning regions are sometime
found above the the region of the field described by the Phillips solution, especially
when γ is small. When the amplitude of the incoming waves is close to overturning
unstable regions can occur initially away from the wall, as regions where 0 <J < 1/4,
as a wave–wave interaction of the edge transient with the incoming wave.

7. Discussion and summary
In this paper, we have shown that the linearized reflection of internal waves

from a sloping boundary can be described in the time domain by a solution that
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is well behaved even when the slope of the reflector is critical, in fact analytic in

ω = sinα + sin γ . Within the near-wall region y � t (figure 3) the solution can be
approximated in a closed form in terms of Lommel’s functions of two variables. The
textbook Phillips solution is achieved in the subregion 
ω2t/ cos γ > y > 1/t cos γ .
The upper bound reflects the finite group velocity 
ω2/ cos γ at which the waves
propagate. Below this region, the flow is affected by a transient at the critical frequency
sin γ , which combines with the steady solution on frequency sin α to create regions of
enhanced shear. Within the latter transient region, shear-unstable regions can develop
even under very weak incoming waves, when the superposition of the incoming and
outgoing Phillips waves is expected to be stable. The solution can be easily localized
to a physically realizable beam, with similar properties. Finally, the streamfunction in
the closed form recovers the leading-order solution obtained by matched asymptotic
by DY, even though we did not include nonlinear effects. The equivalence does not
extend to the buoyancy field, which in DY is always in quadrature with the velocity
field. So, while in the DY solution the unstable regions are always convective (local
N2 < 0), in our solution we observe both shear and convective unstable regions.
Nonetheless, the connection is significant, because it shows that nonlinearity, at least
in the weak form considered by DY, is not going to alter the basic tendency of the
reflection process to create fine scale shear.

In our analysis, we have neglected entirely the effects of viscosity and diffusivity
on the momentum and buoyancy field. As shown by DY, a thin viscous boundary
layer near the reflector can be introduced to accommodate the no-slip condition at
the wall. However, here we have shown that the generation of fine scale shear is a
basic property of the reflection dynamics. Even within the inviscid, outer solution,
in a finite time shear will reach scales at which it becomes necessary to consider the
viscosity of the fluid. It is reasonable to expect that at oceanic scales instabilities will
develop earlier, but in the laboratory this may not always be the case, and further
work is needed to elucidate the effects of viscosity outside the viscous wall sublayer.

Comparison of the analytic solution with fully nonlinear simulations is the focus
of an ongoing effort. In particular, it will be interesting to see if and how instabilities
will change the properties of the outgoing beam, especially under weak incoming
waves, for which a stable outgoing Phillips solution is expected.

I wish to dedicate this work to the memory of Professor O. M. Phillips (1931–2010),
who introduced me to the world of stratified flows. I would like to thank S. Sarkar
and E. Santilli for engaging discussions on the subject. This work was supported by
NSF grant OCE-0825997.

Appendix A. Complex plane extensions of λ(p)

Zeros of complex-coefficient second-order polynomial equations typically contain
square roots of algebraic expressions of the coefficients. In general, this implies that
if λ(p) is a root of the polynomial associated with (2.6) on a given open set U of �,
by analytic continuation we can obtain multiple extensions of the same root. In this
appendix, we derive the two extensions of the same root, which are used in the paper.

Let z = x + iy be a complex number. We define the square root of z as
√

z = |z|1/2 exp(iArg(z)/2), (A 1)

where |z| = x2 + y2 and −π < Arg(z) < π. With this choice of the branch cut (the
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negative real axis), Re
√

z � 0, and the real part is continuous across the cut.
Furthermore, if z and w are complex numbers with positive real part, then√

zw =
√

z
√

w. It then follows that if Re p > 0, then p
√

1 + p2 =p2
√

1 + p−2.
Having established these basic properties, it is easy to show that on the open set

U = {p ∈ � : Rep > 0},

λff (p) =
i sin γ cos γ − p2

√
1 + 1

p2

p2 + sin2 γ
, (A 2)

and

λnf (p) =
i sin γ cos γ − p

√
1 + p2

p2 + sin2 γ
, (A 3)

are equivalent expressions of the same zero of the characteristic equation associated
with (2.6) with negative real part, hence A(p) eλ(p)y with λ(p) given by either (A 2) or
(A 3) and A(p) an arbitrary holomorphic function on U , is a solution to (2.6) which
satisfies the boundary condition at y = ∞. Thus, either expression can be used in lieu
of λ(p) in (2.10). λff (p) can be analytically continued to the rest of the complex plane
with a branch cut {p ∈ � : |Imp| � 1, Re p = 0} (it is left to the reader to verify
that 1+ p−2 indeed maps the branch cut into the negative real axis). Extended in this
way, λff (p) admits a Laurent expansion centered at the origin, convergent for |p| > 1,
whose first few terms are

λff (p) = −1 − e−2iγ

2p2
+ O(p−4). (A 4)

λnf (p) instead can be continued with a branch cut {p ∈ � : |Imp| � 1, Re p = 0}
(which again is mapped to the negative real axis by the argument of the square root).
The extended λnf (p) has a simple pole at −i sin γ , the critical frequency, and the
corresponding Laurent expansion, convergent on |p + i sin γ | < 1 − sin γ , is

λnf (−i sin γ + p) = −cos γ

p
+

i

2
tan γ − 1

4

1 + cos2 γ

cos3 γ
p + O(p2). (A 5)

This pole becomes an essential singularity of eφ(p,y,t) and will be instrumental in
determining the behaviour of the solution in the near-field solution.

Even though they are obviously not identical functions over � minus the respective
branch cut, either one returns the same streamfunction when used to calculate the
inverse Laplace transform integral in (2.9), since the latter is evaluated on a contour
entirely contained within the open set U where the two extensions coincide. Which
one to choose then becomes a matter of convenience. In practice, the location of the
critical points dφ/dp = 0 determines which one to use. For large values of y/t , the
critical points are located away from the origin, and thus it is expedient to have an
extension with a Laurent series convergent for large values of |p|. Conversely, when
y/t is small, the critical points are to be found near the singularity, and it is very
convenient not having to deal with singularities on a branch cut.

Appendix B. The streamfunction in the far-field region, y > t

We use the method of steepest descend to calculate (2.9). We set in (2.10) λ≡ λff (p)
with λff (p) given by (A 2). When δ ≡ y/t > 1, from (A 4) the critical points where
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i

−i

Pc
+

Pc
–

Figure 7. The integration contour in the far-field case. Note that in this case the branch cut
(thick line) stretches between −i and i. On the right-hand side of the branch cut the path
terminates at the singularity at p = −i sin γ , which is used to switch the phase.

dφ/dp =0 are

p◦
c = −δ1/3(exp(−2iγ /3) + O(δ−1)), p±

c = δ1/3(exp(i(−2γ ± π)/3) + O(δ−1)). (B 1)

It is a matter of simple algebra to show that the steepest descent path at p±
c is locally

given by p±
c + s exp i(−γ ∓ π)/3. To evaluate the integral, we deform it as shown

in figure 7. The path follows the line of the constant phase Im(φ(p−
c )) which starts

from −∞ + iIm(φ(p−
c ))/t , climbs the saddle point at p−

c and then descends on the
opposite side to the singular point located at p = −i sin γ (where Reφ ∼ − cos γ /(p +
i sin γ )), from which it re-emerges along the path of the constant phase Im(φ(p+

c ))
to climb the saddle point at p+

c , descending then to −∞ + iIm(φ(p+
c ))/t (note that

Im(φ(p−
c )) < 0 < Im(φ(p+

c ))). The leading-order contribution of each saddle point is

exp(−tδ(1 − δ−2/3Φ(θc)) − iθc/2)√
6πtρ

, (B 2)

where θc = Arg(pc) and Φ(θc) = 3 eiθc/2. The leading-order contribution does not
depend on the frequency of the incoming wave. The medium acts as a low-pass
filter. The above relationship is uniformly valid with the exclusion of the region
{(y, t) : t < y, t > 1/

√
y} which is entirely included in the t < 1 region, which is

excluded from our analysis. The last relationship thus shows that in the region y > t

the streamfunction vanishes exponentially, as expected on physical grounds.

Appendix C. The contribution of the integration along C to the streamfunction
Here we present a more rigorous derivation of the right-hand side of (3.9). First,

we notice the obvious fact that

f (z) ≡
∫

C

eφ(p,y,t)

p − iz
dp, (C 1)
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as a function of the complex argument z is holomorphic within the region of the
complex plane enclosed by C. Let

exp(yλreg (p − i sin γ )) =

∞∑
n=0

βn(γ, y)pn (C 2)

be the power series expansion of eyλreg (p), which exists and converges uniformly on C.
Then

eφ(p,y,t) = exp

((
− cos γ

p + i sin γ
+

i

2
tan γ

)
y + pt

) ∞∑
n=0

βn(γ, y)(p + i sin γ )n, (C 3)

and

1

2πi

∫
C

eφ(p,y,t)

p − i sinα
dp =

exp
(

−i(t sin γ − y

2
tan γ )

)
2πi

∞∑
n=0

βn(γ, y)

∫
C̃

exp

(
pt − cos γ

p
y

)
p − i
ω

pn dp, (C 4)

where C̃ is the image of the C under the shift p → p − i sin γ . We are allowed to
exchange summation with integration since the series converges uniformly on C̃. Each
integral can be evaluated in terms of U functions (see Appendix F) to give

1

2πi

∫
C

eφ(p,y,t)

p − i sin α
dp = exp(i(x̃ − t sin γ ))

∞∑
n=0

βn(γ, y)(
ω)nU−n(2t
ω, 2ξ ). (C 5)

The right-hand side of ( C 5) inherits the holomorphic character of the left-hand side,
from which it follows that for 
ω within C̃ a unique expansion exists

exp(i(x̃ − t sin γ ))

∞∑
n=0

βn(γ, y)(
ω)nU−n(2t
ω, 2ξ ) =

∞∑
n=0

an(
ω)n. (C 6)

From the definition of the U functions, re-arranging the terms appropriately, we have

an =

(
i

δ

)n ∞∑
m=0

δmβm(γ, y)Jn−m(2ξ ), (C 7)

with ξ and δ defined earlier. It is trivial to show that if |δ| < 1 − sin γ , the series that
appears in the definition of the each coefficient am is uniformly convergent (the region
within which the Taylor expansion of exp(yλreg (p − i sin γ )) converges is independent
of y and Bessel’s functions are bounded). Thus, carrying the first two terms, and
keeping in mind that y = ξδ/ cos γ and βn is an overall O(δ) finite sum of powers
of δ,

an =

(
i

δ

)n

(Jn(2ξ ) + δβ1(γ, y)Jn−1(2ξ ) + O(δ3))

=

(
i

δ

)n(
Jn(2ξ ) − δ2 1

4

1 + cos2 γ

cos4 γ
ξJn−1(2ξ ) + O(δ3)

)
. (C 8)
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Substituting and calculating the remaining series we obtain

1

2πi

∫
C

eφ(p,y,t)

p − i sinα
dp = U0(2
ωt, 2ξ ) + δ2 1

4

1 + cos2 γ

cos4 γ
(t
ω)U−1(2
ωt, 2ξ ) + O(δ3).

(C 9)

We leave to the reader to show that to O(δ3) a more compact expression equivalent
to the one above is

1

2πi

∫
C

eφ(p,y,t)

p − i sinα
dp = U0(2
ω(1 − αδ2), 2ξ

√
1 − αδ2) + O(δ3), α =

1

4

1 + cos2 γ

cos4 γ
.

(C 10)

Appendix D. Contribution from the integrals along the branch cuts
The contribution to the streamfunction along the upper branch cut is

1

2πi

∫
I1+I2

eφ(p,y,t)

p − i sinα
dp =

eit

2πi

∫ ∞

0

eλ+(s)y − eλ−(s)y

(1 + s) − sinα
eist ds ≡ eit

2πi

∫ ∞

0

h(s) eist ds,

(D 1)
where

λ±(s) =
i sin γ cos γ ± (1 + s)

√
s(2 + s)

sin2 γ − (1 + s)2
. (D 2)

Since

dh

ds
= s−1/2 exp(−iy tan γ )y

( √
2

(sinα − 1) cos2 γ
+ O(s)

)
, (D 3)

with the bracketed part being regular, an integration by parts followed by the
application of standard formulae (Erdélyi 1956, p. 48) gives

eit

2πi

∫ ∞

0

h(s) eist ds =
eit

2πt

∫ ∞

0

dh

ds
eist ds =

exp(i(t + π/4 − y tan γ ))√
2π(1 − sinα) cos2 γ

y

t3/2
+ o(t−3/2).

(D 4)

Adding the contribution from the lower branch cut, obtained in a similar way, we
obtain

−exp(−iy tan γ )√
2πcos2 γ

y

t3/2

(
exp(i(t + π/4))

1 − sinα
− exp(−i(t + π/4))

1 + sinα

)
+ o(t−3/2). (D 5)

Note that this contribution is a modulated wave at the buoyancy frequency, whose
modulation is O(δ5/2) and thus negligible.

Appendix E. The streamfunction under soft start-up
Omitting the factor A exp ix̃ for simplicity,

∂ψh

∂ sinα
= exp(−it sin γ )t

[
U−1(2
ωt, 2ξ ) +

(
ξ


ωt

)2

U1(2
ωt, 2ξ )

]

= it exp
(
i
(
t sin α +

cos γ


ω
y
))

+ i exp(−it sin γ )
δ


ω2
J1(2ξ ) + O((δ/
ω)2).

(E 1)
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valid for t
ω � ξ (i.e. δ � 
ω). Restoring all factors, and assuming that t > τ , to
leading order

ψs = A

[
exp(i(x + µ−y + t sinα)) + exp(i(x̃ − t sin γ ))

δ


ω
J1(2ξ )

1 − exp(iτ
ω)

τ
ω

]
,

(E 2)

which has the same converge properties of ψh.

Appendix F. Some useful relations concerning U
Lommel introduced the functions U and V that now bear his name (not to be

confused with the solutions to Lommel’s differential equation) to study the refraction
of light waves off a circular aperture (von Lommel 1884–1886). Here we give a
derivation of U and discuss some useful properties such as integral relationships,
connection to Lommel’s V functions and recursion relationships. The first and so far
probably the only application of these functions to problems of wave propagation
outside optics can be found in Pocklington (1905), who considered a ‘toy’ mechanical
problem with some elements in common to the problem at hand, namely that the
group velocity is anti-parallel to the phase velocity.

F.1. U and Lommel’s functions of two variables

To establish the connection between U and Lommel’s functions, we start with the
well-known expansion (Watson 1995, p. 14)

exp(ξ (p/δ − δ/p)) =

∞∑
n=−∞

Jn(2ξ )pnδ−n, (F 1)

where Jn is the Bessel function of integer order n. It follows that if C is any closed
contour which contains both the origin and is,

1

2πi

∫
C

exp(ξ (p/δ − δ/p))

p − is
pm dp =

∞∑
n=−∞

∞∑
l=0

δ−n(is)lJn(2ξ )
1

2πi

∫
C

pn−l−1+m dp

= sm

∞∑
l=0

(
δ

s

)m−l

ilJl−m(2ξ )

= sm

∞∑
l=0

(
isξδ−1

ξ

)2l−m(
J2l−m(2ξ ) + i

sξδ−1

ξ
J2l+1−m(2ξ )

)

= sm(U−m(2sξδ−1, 2ξ ) + iU−m+1(2sξδ−1, 2ξ )). (F 2)

Note that the rather cavalier attitude displayed above (and below as well) in
exchanging the order of summation and integration is justified by the fact that
power series converge uniformly within any compact subset contained within the
convergence radius. For a detailed description of Lommel’s functions and their
properties the reader is referred to Chapter 16.5 of Watson (1995).

F.2. Sundry relationships concerning Un and Vn

The following relationships for Un(w, z) and Vn(w, z) can be derived easily. A useful
recurrence formula is

Un(w, z) = i

(
w

z

)n−1

Jn−1(z) − i Un−1(w, z), (F 3)
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with its counterpart for V functions

Vn+1(w, z) = iVn +

(
w

z

)1−n

J1−n(z). (F 4)

The following relationship links V and U:

Vn(w, z) = U2−n(w, z) + exp

(
i

(
w

2
+

z2

2w
+ n

π

2

))
. (F 5)

Practically speaking, U is obtained if the contour C in (F 2) includes both the essential
singularity at the origin and the pole at is, whereas one obtains V if C includes only
the essential singularity.

A useful relation links the derivative of the function at order n with the function
at order n + 1 according to

∂

∂z
Un(w, z) = − z

w
Un+1(w, z), (F 6)

useful to calculate the along-slope velocity and shear. Finally, the following
reciprocating formulae hold:

Un(w, z) = exp

(
i

(
w

2
+

z2

2w
− n

π

2

))
− i(−)nU1−n

(
z2

w
, z

)
, (F 7)

V2−n(w, z) = −i(−)nU1−n

(
z2

w
, z

)
. (F 8)

The demonstrations are left to reader.

F.3. An alternative expression for Un

When regarded as a function of complex variables, Un(w, z) is an entire function in
z. If n � 0, it is also entire in w, having a pole of order −n for n< 0. However, if
Im s 	= 0 in (F 2), the series defining Un may converge slowly, and thus be of little
computational use. In this case, it is better to use Borel’s theory of summation to
evaluate Un. For simplicity, we consider the case n= 0. For different values of n, the
calculation can be easily modified, or, for |n| not too large, the recurrence relationship
(F 3) can be used. Let u : Re u > 0 and c be a contour that includes the origin but
not u. Consider the integral

1

2πi

∫
c

ept− y
p

p − u
dp = −

∞∑
m=0

1

2πi

∫
c

pm

um+1
ept− y

p dp

= − 1

2πi

∞∑
m=0

∫ ∞

0

e−zu zm

m!
dz

∂m

∂tm

∫
c

ept− y
p dp

= −
∫ ∞

0

e−zu

∞∑
n=0

zm

m!

∂m

∂tm

[
J−1(2

√
yt)

√
y

t

]
dz

= −
∫ ∞

0

e−zu

(
J−1(2

√
y(t + z))

√
y

t + z

)
dz, (F 9)

where the reader will recognize that the bracketed term in the last line is the Borel
transform of the series in the first line. Because of the rapidly decreasing exponential
factor, the last integral can be evaluated numerically with ease. If instead u : Re u < 0,
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a similar argument can be repeated, but using a contour that includes both u and the
origin, and using derivatives with respect to y to express p−n. This exercise is left to
the reader.
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