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Abstract
Objective: This paper reviews the progress in the rapidly expanding scientific discipline of tissue engineering, which
may have an integral role in the future of otorhinolaryngology. This article seeks to inform on the current concepts
and principles of tissue engineering, and describe the state of the art research and developments in this exciting field
as applied to ENT and head and neck surgery.

Method: In order to carry out a comprehensive review of the literature spanning the past 30 years, a search of
relevant publications was performed using the Web of Knowledge, Medline and PubMed databases.

Results: This search identified 85 scholarly articles, which were utilised as the basis of this review.
Conclusion: Given the current rate of development of tissue engineering research, it is likely that tissue-

engineered implants will be widely used in surgical practice, including ENT and head and neck surgery.
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Introduction
Tissue engineering is a rapidly developing field, which
combines the disciplines of materials science and bio-
technology to develop tissue constructs that can be
implanted into the human body. Surgeons frequently
have to remove damaged and diseased tissue. The
advent of bioengineered tissues heralds a new era of
restorative surgery, allowing the surgeon to implant a
tissue construct that aims to replicate the proper form
and function of the diseased tissue.
The use of engineered tissue constructs can provide

numerous benefits for the patient. These include the
reduction of donor site morbidity compared with auto-
genous grafting techniques, and the absence of immune
rejection which can occur when using allografts.
The purpose of this review is to provide an insight

into the latest techniques currently being used in
tissue engineering, and to describe the many potential
applications of tissue engineering in ENT and head
and neck surgery.

Fundamental concepts in tissue engineering
Tissue engineering is defined as ‘an interdisciplinary
field that applies the principles of engineering and the
life sciences toward the development of biological
tissues that restore, maintain, or improve tissue

function’.1 The primary approach to tissue engineering
can be summarised as ‘the regeneration of biological
tissue through the use of cells, with the aid of support-
ing structures/biomolecules’.2

The many techniques used in tissue engineering
have emerged from the advent of mammalian cell
culture in vitro.3 The replication of form and function
of animal tissues is termed biomimetic design. By com-
bining cells with an appropriate scaffold, an engineered
tissue construct with a biomimetic design can be
achieved. The goal of biomimetic design is to replicate
the in vivo interactions of regulatory factors in space
and time, thus allowing cells to differentiate at the
right time, in the right place and into the right pheno-
type. This requires three main components: cells, a
tissue scaffold and cell signalling factors. It is important
to note that one does not have to artificially engineer all
three components. For example, producing a tissue con-
struct in a suitable local environment in vivo will
expose it to native signalling factors.

Cells used in tissue engineering

It is critical that the most appropriate cell type for scaf-
fold seeding is selected. The most obvious choice
would be the differentiated cell type appropriate to
the tissues being replicated by the construct. These
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autogenous primary cells can be harvested by way of
biopsy and expanded in vitro using standard cell
culture techniques4 before being used to seed the
scaffold.
Another potential cell source that has elicited great

interest are stem cells. Stem cells are characterised
by their ability to self-renew and to differentiate
into a variety of other cellular phenotypes.5 There
are two main sources of stem cells: embryonic6 and
adult.7

Embryonic stem cells, which are derived from the
inner cell mass of blastocysts, are truly pluripotent
and can differentiate into cell types derived from all
three germ cell layers.8,9

Non-embryonic stem cells, which are found in con-
centrations called niches in adults and children, are
mainly thought to be multipotent10 (i.e. differentiation
of cell type is limited according to the organ for which
the cells originate), but some have been shown to be
pluripotent.11,12 The main source of non-embryonic
stem cells has been from bone marrow, but recent
work has revealed their presence in more readily acces-
sible locations such as adipose tissue, dental pulp, cir-
culating blood and amniotic fluid (the latter is
considered to be an ethically sound source as extraction
does not harm the embryo).13–17

The advantage of using stem cells lies in their
potential for differentiation into any tissue type. This
would be particularly useful in situations where a
biopsy of differentiated autogenous cells might not
yield sufficient cells, as in end-stage organ failure,
or when an organ has been extensively affected by
pathology.

Cell signalling factors

The ability of cells to perceive and respond to changes
in their microenvironment in a co-ordinated and organ-
ised manner is vital to tissue repair in vivo. Cell signal-
ling factors are bioactive substances that alter the
behaviour of cells. These signalling factors can be
used to manipulate the behaviour of cells when deliv-
ered appropriately.18 Examples of signalling factors
include vascular endothelial growth factor,19 trans-
forming growth factor beta,20 epidermal growth
factor,21 mixed metalloproteinases22 and bone morpho-
genetic protein 2.23

A key challenge in the field of tissue engineering is
the effective delivery of cell signalling factors. This has
become a much studied area that has resulted in the
development of systems for the delivery of these sub-
stances. Examples include gelatine microspheres,24

chitosan microparticles25 and polylactic acid nanoparti-
cles.26 These delivery systems enable the localised
control of a given microenvironment.
By understanding how the cells respond to these cell

factors, scaffolds can be engineered to accommodate
and incorporate these cell factors and thus influence
and direct cell growth.

Tissue engineering scaffolds

Tissue scaffolds are three-dimensional structures used
in tissue engineering to provide mechanical support,
physical protection and conduits for cells and signal-
ling factors. These scaffolds have been found to play
an important role in the three-dimensional growth of
tissues in vitro.27 Two key considerations when engin-
eering a scaffold are the choice of material and the pro-
cessing technique used.
A variety of natural materials have been used for the

construction of these matrices. These include col-
lagen,28 fibrin29 and chitosan.30 Novel biomaterials
such as polylactic acid31 and polyglycolic acid32 have
also been developed for this purpose. These porous
structures can be manufactured using a range of tech-
niques such as the electrospinning of nanofibres.
One key feature of these scaffolds is their porosity.

The porous nature of scaffolds allows good cell pen-
etration into the scaffold and results in uniform tissue
distribution in the construct.33 Porosity can be achieved
using a variety of techniques, which dictate the ease of
processing and final structure of the scaffold. For
instance, the electrospinning of polymers results in
fibrous meshes with fibre diameters on the scale of
nanometres.34 Gas foaming and solvent casting can
produce porous structures with interconnected pores,
which improve cell penetration and total surface area
for cell adhesion; however, these techniques offer
little control over the pore dimensions and location.
The variation in processing has a direct effect on the
spatial organisation of the matrices, which may
conform to a porous sponge structure, a semisolid
hydrogel or a finely spun mesh.
The concept of a mesh scaffold can be used to illus-

trate the way scaffold morphology can affect cell be-
haviour and growth. Randomly aligned fibres will
result in the random attachment and spread of cells,
whereas fibres aligned in one direction will prompt
the cells to attach and spread in the same direction,
which is invaluable when attempting to mimic tissues
such as tendons. A mesh scaffold is composed of
fibres and voids; manipulation of void volume,
fibre diameter and directionality can dictate cell
behaviour. The two most promising techniques
developed for fibre deposition are three-dimensional
fibre deposition and electrospinning. Three-dimen-
sional deposition allows for more closely regulated
extrusion to conform to the size of the defect being
addressed, enabling the maximisation of contact
between the scaffold–cell composite and the margins
of the defect.
Hydrogels are networks that have been engorged

with water. They are an alternative method for the
delivery of cells and signalling factors. A key advan-
tage conferred by hydrogels is that they are semi-
solid, thus enabling them to be injected into the
required site using minimally invasive techniques.
They support the transport of nutrients and waste to
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and from the cells. Furthermore, they are capable of
supporting limited mechanical loading, thus allowing
mechanical stress fields to drive the differentiation of
individual cells. This feature replicates physiological
conditions that stimulate cellular differentiation.
These unique abilities have led to the use of hydrogels
as support frameworks, particularly for cartilage
engineering.

Role of bioprinting

Tissue engineering is not constrained to a solid scaffold
seeded with cells. Manufacturing processes are con-
stantly being adapted and introduced into the field. A
key example of this is the use of bioprinters to
deposit and pattern cells.
Bioprinting uses a variety of devices to deposit bio-

logical materials onto a substrate. The advantage of
these devices is the ability to print two-dimensional
and three-dimensional tissue constructs for implan-
tation. This could potentially include the manufacture
of complete organs.
Two groups of technologies are currently in develop-

ment for this purpose. One is inkjet printing (Figure 1),
which prints individual cells or clusters of cells onto a
surface.35–43 This method has the advantage of being
rapid, versatile and inexpensive. However, its primary
disadvantage lies in the fact that it is difficult to
assure the high cell densities required for the manufac-
ture of solid tissue constructs.
The alternative approach to printing involves the

use of mechanical extruders, which expel pre-con-
structed multicellular particles known as ‘bio-ink’
onto a supportive substrate for the development of
the construct.44,45 These particles then fuse to form
the desired structure. The primary advantage of this
technique is that the bio-ink particles represent
tissue fragments and thus replicate the microenviron-
ment that occurs in vivo. Currently, this method is
time consuming and expensive, making it difficult
to produce clinically useful tissue constructs in large
quantities.

Bioreactors

A bioreactor is a device that uses mechanical means to
induce biochemical reactions under controlled con-
ditions. The conditions that can be controlled include:
pH, temperature, partial pressure of oxygen, nutrient
supply and partial pressure of carbon dioxide. In situ-
ations where cells are grown in several layers, or
where they are seeded onto scaffolds, access to sub-
strate and signalling molecules, growth factors and
nutrients (oxygen, glucose, amino acids and proteins),
and clearance of the end products of metabolism
(carbon dioxide, lactate and urea), are critical to cell
survival.46

Bioreactors also allow the application of mechanical
stimuli to in vitro cultures using a range of techniques,
including ultrasonic stimulation,47 which have been
shown to influence the tissue phenotypes produced.48

These devices are employed to accelerate and
improve tissue culture growth in vitro by optimising
conditions. Bioreactors can be classified as either
open systems, such as basic culture dishes, or closed
systems, which offer a more controlled environment
by using ports and filters.
Examples of bioreactors currently in use include the

perfusion bioreactor system for the production of auto-
genous cartilage grafts,49 a stretching bioreactor for the
production of muscle tissue50 and a rotating wall bio-
reactor used to simulate a microgravity environment;51

the latter of which is advantageous in that it reduces the
effect of gravity on cellular interactions.

Applications of tissue engineering in ENT

Airway surgery

The principles of traditional airway reconstruction have
been recognised and developed since the 1890s.52–54

The current treatment for tracheal stenosis involves
endoscopic treatments such as sequential dilatations,
or open procedures such as anterior or posterior
cricoid split55 with or without cartilage grafting.56

Other treatment options include segmental resection,
tracheal mobilisation and end-to-end anastomosis.57

The advent of tissue engineering has potentially
offered an alternative approach.
This was demonstrated recently by Macchiarini and

colleagues.58 Specifically, they obtained a tracheal car-
tilage 7 cm in length from a deceased transplant donor.
This was decellularised and immunohistochemistry
was performed to confirm the complete absence of
major histocompatibility complex antigen-positive
cells. The team then used the decellularised donor
trachea as a scaffold, onto which they seeded epithelial
cells and mesenchymal stem cell derived chondrocytes
which were obtained from the recipient. The seeded
scaffold was then incubated in a novel bioreactor,
which rotated it at regular intervals, allowing it to be
bathed in culture media for a total of 96 hours.
Following surgical implantation, the recipient was
found to have a functional airway with no anti-donor

FIG. 1

(a) Fluorescence micrograph of printed oral keratinocytes, showing
an array of micro droplets of keratinocytes and cell media printed
onto a thermoresponsive surface. (b) Live/dead stain of harvested
cell sheet of printed keratinocytes (×10). (c) Light micrograph of

cell sheet derived from printed keratinocytes (×10).
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antibodies. More recently, this same team have
reported producing and implanting a neotrachea de
novo using a nanocomposite material seeded with
mesenchymal stem cells.
A different, scaffold free approach was adopted by

Wiedenbacher et al.,59 who created a neotrachea in an
animal model. In this experiment, the auricular carti-
lage of rabbits was used as a source of chondrocytes,
and these were grown to produce confluent cell
sheets. A skin graft from the rabbit was then wrapped
around a silicone tube, which in turn was wrapped in
the engineered cartilage sheets. The entire construct
was then implanted in the anterior abdominal wall of
the rabbits, using the muscle belly of the external
oblique as a source of vascularisation. After 10
weeks, the neotrachea was harvested and found to be
comparable to the native trachea of the rabbit. In this
example, the animal itself was used as a bioreactor.

Plastic and reconstructive surgery
Reconstructive surgery of the nose and ear often require
autologous cartilage.60 This cartilage is harvested from
the nasal septum, auricle and ribs.61,62 However, there
are significant risks associated with donor site morbid-
ity.63 Significant research efforts have been dedicated
to cartilage tissue engineering.
The globally publicised and pioneering work by Cao

et al.64 (Figure 2) resulted in the production of neocar-
tilage using a polyglycolic acid scaffold, which was
seeded with chondrocytes and implanted into athymic
mice.
More recently, Yanaga et al.65 developed a two-stage

implantation technique for the reconstruction of conge-
nital microtia. In this technique, they harvested

auricular cartilage chondrocytes, expanded their
number in vitro and allowed the cultured chondrocytes
to form an extracellular matrix of immature cartilage.
This was used as the scaffold to which fibroblast
growth factor was added. The matrix was then
implanted by injection into a subcutaneous pocket on
the fascia of the lower anterior abdominal wall. The
implant was then allowed to mature for six months, pro-
ducing a construct of mature cartilage, before being
removed. The cartilage was then sculpted to the
required shape and implanted into the temporal area
to reconstruct the missing ear. This procedure was per-
formed on a total of four patients, with a follow up
ranging from two to five years. None of the recon-
structed ears demonstrated cartilage re-absorption,
and all of them supported subsequent split-thickness
skin grafts after ear elevation.
A further tissue construct has been produced by a

team in Shanghai,66 who developed a polylactic acid
and polyglycolic acid scaffold moulded by computer-
aided design which was based on a computed tomogra-
phy scan of an actual human ear. This scaffold was then
seeded with mature porcine chondrocytes and cultured
for 12 weeks. This resulted in the formation of an ear
shaped construct, which demonstrated a tissue structure
with abundant cartilage extracellular matrices. The
final construct also demonstrated excellent elasticity
and good mechanical strength.
Nasal reconstructive surgery and augmentation rhi-

noplasty utilise a wide range of materials. These
include synthetic substances such as silicone,67 polyte-
trafluoroethylene68 and high density porous polyethy-
lene (Medpor). Although widely used, these artificial
materials have been shown to have an increased risk
of graft extrusion and infection compared with autoge-
nous cartilage. The most frequently used autogenous
cartilage materials have been autologous costal carti-
lage,69 auricular cartilage70 and nasal septal cartilage.71

In addition to donor-site morbidity, there is the
additional drawback of limited availability of materials,
particularly in revision surgery.
An adaptation of the above-mentioned method

reported by Yanaga et al., using cultured autologous
chondrocytes from the auricular cartilage, has been
used to culture a matrix of immature cartilage, which
was subsequently injected into a subcutaneous pocket
on the nasal dorsum of the patient.72 This construct
was harvested after three weeks and aesthetically
carved, before being used for surgical augmentation
rhinoplasty. The authors of this paper have reported
their 6-year experience with 75 cases, which showed
promising results.
Dobratz et al.73 recently reported an interesting,

alternative method of producing shaped autologous
tissue constructs. In that experiment, human nasal
chondrocytes were harvested and suspended in an
alginate hydrogel scaffold. The gel was then injec-
tion-moulded into a circular shape and implanted
subcutaneously into nude mice (which have inhibited

FIG. 2

Photographs of an athymic mouse implanted with a polyglycolic
acid scaffold seeded with chondrocytes. Reproduced with

permission.64
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immune systems). When harvested after 38 weeks, the
chondrocytes had retained their overall size and shape
and showed a hydroxyproline content, which did not
differ significantly from the control of native septal
cartilage.

Head and neck surgery

Salivary glands

Xerostomia has a significant impact on an individual’s
quality of life, predisposing them to dental infections,
dysphagia and oral mucosal infections. The loss of sali-
vary gland function can result from surgical resection,
radiotherapy74 and autoimmune diseases,75 or it may
be a side effect of pharmacological treatment. Current
treatment strategies rely on symptomatic relief using
supplements.
Salivary glands are exocrine glands and as such

present a unique set of challenges to tissue engineers.
It is the ability of these glands to secrete fluid,
modify its content and propel it in a unidirectional
manner that increases the level of complexity beyond
that of producing constructs analogous to other tissues.
Of the cell sources investigated so far, human ductal

epithelial salivary gland cells were initially thought to
be the most promising. They were found to demonstrate
growth in monolayers on a poly-L-lactic acid scaffold76

and to be able to generate an osmotic gradient necess-
ary for the production of saliva.77 However, this cell
line is unable to produce unidirectional fluid flow.78

More recently, subsets of autologous stem cell popu-
lations have been utilised, which have revealed promis-
ing findings.79

Approaches that involve the use of scaffolds are
centred on the construction of a permeable, bio-absorb-
able material in a blind-ended tube-like conformation
with branching side ducts.80 The materials investigated
for these scaffolds have included polyglycolic acid
coated with poly-L-lactic acid,77 chitosan81 and col-
lagen with Matrigel.82

In a recent promising study, Joraku et al.82 used
primary human salivary gland cells obtained from the
parotid and submandibular glands and seeded them
onto a polyglycolic acid scaffold. This construct was
then implanted subcutaneously into athymic mice; the
retrieved samples were shown to contain human
alpha-amylase.

Mandibular reconstruction

Mandibular defects may arise from trauma, osteoradio-
necrosis, or benign or malignant disease. The recon-
struction of mandibular defects presents a challenging
problem for head and neck surgeons. Current treatment
strategies have focused on free flaps with microvascular
re-anastomosis. Sources of these flaps include the
fibula and the radius.83

In addition to the usual features of a tissue construct,
the ideal engineered mandibular tissue construct should
be capable of surviving in an environment with a

compromised vascular bed such as those found in
sites exposed to adjuvant radiotherapy or previous
infection.
An alternative to the in vitro culture of mandibular

defect constructs has been to use cell-signalling
factors to stimulate new bone growth de novo. This
technique has been successfully demonstrated by
recent research using bone morphogenetic protein 2.84

Another study used stem cells in an animal model to
show the growth of tooth-like structures on tooth bud
stem cell seeded scaffolds,85 which revealed promising
prospects for the development of functionally special-
ised tissue composites such as that required of engin-
eered mandibular tissue constructs.

Conclusion
Considerable progress has been made in the field of
tissue engineering over the past few years, most
notably in the use and application of stem cells and
the design and delivery of cell signalling factors. The
advent of bioprinting techniques has opened up the
possibility of microscale, patterned deposition of cells
onto scaffolds and intelligent culture surfaces.
However, significant challenges in the development

of viable autogenous cartilage construction remain.
One of the main hurdles is the issue of construct vascu-
larisation, although there have been promising results
in the search for a solution, most notably with the
development of nanoscale scaffolds.
Future directions of tissue engineering are likely to

involve further investigation into the fate of stem
cells, which entails a better understanding of the signal-
ling cues that govern their differentiation.
Given the current rate of development in tissue

engineering research, it seems likely that tissue-engin-
eered implants will be used widely in surgical practice,
including ENT and head and neck surgery.
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