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Matters for Debate

Why avoid induction?

JOHN BAYLIS

1.  Introduction
T. Koshy [1] has recently given an interpretation of the Fibonacci

numbers using a simple graph, the powers of its adjacency matrix, and the
eigenvalues of that matrix.  Using these, he gave combinatorial proofs
(avoiding induction as far as possible) of several of the rather striking
identities satisfied by the Fibonacci numbers and the closely related Lucas
numbers.  The main combinatorial, induction-avoiding idea used was that of
double counting: if you employ a counting technique to derive a formula
for the size of a certain set , then devise a different technique leading to an
alternative formula  for the size of the same set, you will have established
an identity, .
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Two questions arise from these introductory remarks: first, the
Fibonacci numbers arise from models far more elementary than the graph-
theoretic one, so will these models yield a similar range of identities?
Second, what is the virtue of avoiding induction?

Of the elementary models the best known is Fibonacci's rabbits: at the
start of month 1 a new born male/female pair of rabbits starts the population.
They produce no offspring for two months, but at the start of month 3, and
the start of every subsequent month, they produce another male/female pair
who behave in exactly the same way.  The  term of the sequence  is
the number of pairs in the population at the start of month . Even if you are
willing to accept the strange biology of Fibonacci's rabbits (each pair stays
together for life, they only produce offspring in male/female pairs, and they
are immortal), there is still some work to do in order to establish the basic
recurrence.

n th (Fn)
n

Fn = Fn − 1 + Fn − 2 for  n ≥ 3. (1)
Slightly more realistic, but still requiring a distortion and over-

simplification of the biology,  can be regarded as the number of ancestors
of a single drone bee (generation 1),  generations prior to this (see
[2]).  In this model equation (1) can also be demonstrated, but in neither
model is this recurrence and other identities obvious.

Fn
n − 1

Now to address the second of our questions, it must surely be
acknowledged that induction is one of the most powerful and versatile
methods of proof.  Its range is immense: most branches of algebra, some
parts of geometry, graph theory, number theory, set theory, logic, even
analysis.  It is quite a challenge to find any branch of mathematics devoid of
an inductive proof.  But induction is also deeply unsatisfying.  After
following an inductive proof one usually has a very firm conviction that the
result is indeed true, but a feeling for why it is true is often elusive.  This is
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especially the case when the result is particularly neat or surprising, and if
the inductive proof is the only one available, dissatisfaction increases.

To put the issue into a context, consider the binomial identity,

.  Using only the formula for  it is easy but

messy to prove this identity either directly or by induction on . But the

proof by ‘combinatorial reasoning’ straight from the definition of  as the

number of size  subsets in an -element set is so much more satisfying; it

shows the result emerging from the meaning of  rather than as if by

magic after playing around with algebraic fractions and factorials.
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2.  The staircase climbing model (see [3])
In this model the Fibonacci recurrence relation is as close to obvious as

things get in mathematics: you are standing at level 1 of a staircase and wish
to climb to level .  At each stride you have the option of climbing
1 or 2 steps.  In how many ways can you arrive at level ?  We'll call this
number . You can do it either by landing on level  on your
penultimate stride and then climb one more step to complete the job, or by
landing on level  and then finishing with a 2-step stride.  These two
options are clearly mutually exclusive and they cover all possibilities, so

.

n (n > 1)
n

Fn n − 1

n − 2

Fn = Fn − 1 + Fn − 2

The only slightly artificial feature (if we want the convenience of
) is that ‘do nothing’ has to be the single option allowed to achieve

level 1, but this can't be allowed at any stage in climbing to level  for
.  This is probably more satisfying as a teaching strategy than ‘  is

conventionally defined to be 1’.

F1 = 1
n

n > 1 F1

3.  A sample of combinatorial proofs using the staircase model 
The following results, routinely proved by induction, are chosen to

illustrate the greater transparency achieved by combinatorial reasoning.

Result 1: F1 + F2 + F3 +  …  + Fn = Fn + 2 − 1.

Proof:  There is only one way of reaching level  entirely with single
step strides, so the right-hand side of this identity is the number of ways of
reaching this level with at least one 2-step stride.

n + 2

The number of ways in which the steps from  to  is the last 2-
step is  because from level  the subsequent sequence of step lengths is
fixed as 2,1,1,1,1,…,1.  This last 2-step can be 1 to 3, 2 to 4, 3 to 5, …, or
to , so by summing from  to  the result follows.

k k + 2
Fk k

n
n + 2 k = 1 k = n
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Result 2: F1 + F3 + F5 +  …  + F2n − 1 = F2n.

Proof:  A similar approach works here.  The right hand side is the number of
ways of reaching level . The starting level is 1, so classify the methods
according to the last odd level visited.  If level  is the last there is no further
choice for the sequence of subsequent strides; it must be 1,2,2,2,…,2, so
is the number of routes in which  is the last odd level visited, and the result
follows by summing over the odd  from 1 to .

2n
k

Fk
k
k 2n − 1

Result 3: 1 + F2 + F4 + F6 +  …  + F2n = F2n + 1.

Proof:  Classify the routes to level  by the last even level reached.
(The 1 on the left-hand side is from the single route which visits no even
level.)  The details are left as an exercise.

2n + 1

Corollary of Results 2 and 3
By considering the difference between results 2 and 3 an alternating

sum is obtained: 

F1 − F2 + F3 − F4 +  …  + (−1)n + 1 Fn = 1 + (−1)n + 1 Fn − 1.

Result 4: FnFn + 1 = F2
1 + F2

2 + F2
3 +  …  + F2

n .

Proof:  To apply combinatorial thinking to this one, consider two climbers
and .  stops at level  and  at level  both having started at level 1.
They can reach their respective summits in  and  ways, so  is
the number of ways in which  and  can jointly achieve these final levels.  

A
B A n B n + 1

Fn Fn + 1 FnFn + 1
A B

For example, if  climbs to level 20 and  to 21, A's path could be via
levels 1, 3, 5, 6, 8, 9, 10, 11, 12, 14, 16, 18, 20 while B's could be via 1, 3, 4,
5, 7, 9, 11, 13, 15, 17, 19, 21. Level 11 is the highest visited by both
climbers.  Now classify these pairs of routes according to their highest
common level (hcl).  Their routes beyond the hcl are uniquely determined:
one will consist entirely of 2-steps and the other will have an initial 1-step
followed by 2-steps.  If this is not immediately obvious think about the
possibilities beyond level 11, and explore a couple more examples.

A B

So in general the number of joint routes with hcl  is , and since the
hcl can be anything from 1 to  the result follows by summing over this
range of values.

k F2
k

n

Result 5: Fn = FkFn − k + 1 + Fk − 1Fn − k.
(In our model this makes sense for , but ‘a conventional

’ extends the validity to .)
n > k ≥ 2

F0 = 0 n ≥ k ≥ 1

Proof:  The number of routes to level  is the sum of the number of routes
visiting  and those which bypass .

n
k k

A route via  consists of a route from 1 to  followed by one from  tok k k
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, and the latter is equivalent (in terms of the number of ways of achieving
it) to a route from 1 to .  A route bypassing  consists of one from
1 to , followed by a 2-step, followed by one from  to , and the
last of these is equivalent to a route from 1 to .

n
n − k + 1 k

k − 1 k + 1 n
n − k

Hence the result

Fn = FkFn − k + 1 + Fk − 1Fn − k.

A connection with binomial coefficients
Since each step is either 1 or 2, and the height climbed in going from

level 1 to level  is ,  is equal to the number of series with sum
 each term of which is 1 or 2. Such a series with  2's will have

 1's, so  terms in all.  The 2's can be placed in any  of

the  positions, and  is the maximum number of 2's.  Hence 

n n − 1 Fn
n − 1 k
n − 1 − 2k n − 1 − k k

n − 1 − k ⎢⎢⎣
n − 1

2
⎥⎥⎦

Fn = ∑
⎣1

2(n − 1)⎦

k = 0
( ) .n − 1 − k

k

In terms of Pascal's triangle this is the sum of the circled ’diagonal' entries
shown in Figure 1.

FIGURE 1

Result 6: .Fn < (n − 1)! for n ≥ 4
This is a rather crude upper bound for . It is trivial, but is included here
because a combinatoric proof is just as easy as the inductive proof given in [4].

Fn

Proof: We make use of the fact that  is the number of permutations
of  objects; any route to level  can be specified by the list of levels
visited, in order, followed by the list of levels stepped over, again in
increasing order.  (We omit level 1 since this is the starting point of all
routes.)  For example, a route to level 10 which goes

(n − 1)!
n − 1 n

1 → 2 → 4 → 5 → 7 → 8 → 9 → 10

would be associated with the permutation of {2, 3, 4, 5, 6, 7, 8, 9, 10} 2, 4,
5, 7, 8, 9, 10, 3, 6.

In general this sets up a bijection between all routes from level 1 to level
 and a subset of the permutations of . Also, since ,

the subset is a strict one because no permutation representing a legal route
can begin with 4.

n {2,  3,  4, … , n} n ≥ 4
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A theorem of Cayley
This result, proved in 1876 and referred to in [5], is about certain types

of partition, now called compositions.  They are expressions of the natural
number  ( ) as a sum of natural numbers in which sums having the same
parts but in different orders are counted as different.  For example, the
compositions of 4 are 4, 3+1, 1+3, 2+2, 2+1+1, 1+2+1, 1+1+2 and 1+1+1+1.

n n ≥ 1

Cayley's theorem says that the number of compositions of  in which
there are no 1's is .  We'll call such compositions ‘specials’
and use  for their number.  Clearly , , so the proof is
completed by showing that  for all .

n
Fn − 1 (n ≥ 2)

Sn S1 = 0 S2 = S3 = 1
Sn + 2 = Sn + 1 + Sn n ≥ 1

Think about a special for .  Its last part is either 2 or a number
greater than 2. Those in the first set can be thought of as a special for  with
an extra +2 tagged on at the end.  Those in the second are obtained by
increasing the last part of a special for  by 1.

n + 2
n

n + 1
This construction has set up a bijection between the union of these two

disjoint sets and the set of specials for , from which the result follows.n + 2
Martin Griffiths [6] has used a similar approach in his note on

compositions, and in [7] on coin-tossing sequences.

The odd-numbered Fibonacci terms
Rajesh and Leversha [8] have given some identities concerning the odd-

numbered terms of the Fibonacci sequence, starting from their lemma,
which when expressed in our notation is . They
prove this by repeated use of the basic recurrence for .  An alternative is
just one use of the recurrence combined with a combinatorial argument.

F2k + 3 = 3F2k + 1 − F2k − 1
Fi

Any route to  falls into just one of the following types,2k + 3

⎫

⎭
⎬
⎪
⎪

 2k + 1
… , 2k + 1, 2k + 2, 2k + 3,
… , 2k + 1, 2k + 3

those routes which visit

 2k + 1.… , 2k, 2k + 2, 2k + 3 those routes which step over

There are  of each of the first two types, and  of the third.  Hence
 and then replacing  by  gives the

lemma.

F2k + 1 F2k
F2k + 3 = 2F2k + 1 + F2k F2k F2k + 1 − F2k − 1

They use induction to prove, as a consequence of this lemma, that
.F2

2k − 1 + F2
2k + 1 + 1 = 3F2k − 1F2k + 1

With a view to finding a combinatorial proof of this, the following
rearrangement seems more promising:

F2
2k − 1 + F2

2k + 1 − 2F2k − 1F2k + 1 = F2k − 1F2k + 1 − 1

i.e. , which can then be rewritten by
the basic recurrence as

(F2k + 1 − F2k − 1)2 = F2k − 1F2k + 1 − 1

F2
2k = F2k − 1F2k + 1 − 1.
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Now let  be the set of all sequences of levels visited in paths from level 1
to level . A typical member of  is a sequence  in which the jump
from each term to the next is 1 or 2.

Si
i Si 1, … , i

By the trick used in the proof of Result 4,  and
 so the proof will be achieved if we can find

a bijection between  with one member missing and .

F2
2k = |S2k × S2k|

F2k − 1F2k + 1 = |S2k − 1 × S2k + 1|
S2k − 1 × S2k + 1 S2k × S2k

Here is one method which I have to admit came to me after several
ideas which turned out not to work!  We change the model slightly and think
of a member of  as a pair of towers consisting of bricks each of
height 1 or 2 units, and manipulate this pair of towers into a pair
corresponding to a member of .  Figure 2 shows a member of

 and its transformation to a member of .

S2k × S2k

S2k − 1 × S2k + 1
S10 × S10 S9 × S11
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FIGURE 2

Scan the twin towers from the bottom to locate the first level  at which
the left tower is one unit higher than a level of the right hand one.  In Figure
2 this is .  Then interchange the bricks up to level  on the left with
those up to level  on the right (bricks X, Y, Z with bricks A, B, C in
Figure 2).  The result is the twin towers shown on the right of Figure 2,
which in general will be a member of .

f

f = 7 f
f − 1

S2k − 1 × S2k + 1

What remains is to show that this map is an injection, and exactly one
member of  is not the image of any member of .S2k − 1 × S2k + 1 S2k × S2k

First, since the towers of  rise from level 1 to an even level
neither of them can consist entirely of height 2 bricks.

S2k × S2k

Figure 3 shows the two types of  and their images in
.

S2k × S2k
S2k − 1 × S2k + 1
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FIGURE 3

In type 1 both towers of  have only 2-bricks in block T, then
the left tower has a 1-brick.  In type 2 the left tower has only 2-bricks up to
level , whereas the right has 2-bricks up to level  then a 1-brick.  In
both cases block T could be empty.

S2k × S2k

f f − 2

In both types at least one of the towers of  must contain a
1-brick, so that the all 2-brick member of  is left out.  

S2k − 1 × S2k + 1
S2k − 1 × S2k + 1

Since the two types of  shown in Figure 3 cover all
possibilities except the all 2-brick case, and the maps shown are reversible,
then the all 2-brick is indeed the only twin tower which is not an image, and
the proof is complete.

S2k − 1 × S2k + 1

Remark
The result just proved is half of a more general property:

,  sometimes known as Cassini's identity, and the
case for odd  is left to the reader, with the comment that the analogous
mapping will leave out a member of the equal height twin towers.

F2
n = Fn − 1Fn + 1 + (−1)n + 1

n
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4.  Conclusion
It now has to be admitted that the combinatorial proofs are getting

harder than those employing induction as the main tool.  However, I still
maintain that the former are worth seeking for the gain in insight.  There is a
tendency for an automatic ‘induction reflex’ to take over when faced with
any result involving natural numbers as parameters.  Succumbing to this
reflex may be the only reasonable strategy in very abstract areas such as
general ring theory, but in areas with a visual or intuitive content
alternatives are worth a try.

To end on a personal note, I recall many years ago coping with
consequences of relativity by simply letting the formal mathematics do the
work for me, but how I envied those relativists and geometers who were led
to their results by an ability to visualise 4-dimensional Minkowski space, or
even the strange curved space-times of general relativity.

Any comments?
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