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Global weak solutions to the continuous Smoluchowski coagulation equation (SCE)
are constructed for coagulation kernels featuring an algebraic singularity for small
volumes and growing linearly for large volumes, thereby extending previous results
obtained in Norris (1999) and Cueto Camejo & Warnecke (2015). In particular,
linear growth at infinity of the coagulation kernel is included and the initial
condition may have an infinite second moment. Furthermore, all weak solutions (in a
suitable sense) including the ones constructed herein are shown to be
mass-conserving, a property which was proved in Norris (1999) under stronger
assumptions. The existence proof relies on a weak compactness method in L1 and a
by-product of the analysis is that both conservative and non-conservative
approximations to the SCE lead to weak solutions which are then mass-conserving.
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1. Introduction

The kinetic process in which particles undergo changes in their physical properties
is called a particulate process. The study of particulate processes is a well-known
subject in various branches of engineering, astrophysics, physics, chemistry and in
many other related areas. During the particulate process, particles merge to form
larger particles or break up into smaller particles. Due to this process, particles
change their size, shape and volume, to name but a few. There are various types of
particulate processes such as coagulation, fragmentation, nucleation and growth for
instance. In particular, this paper mainly deals with the coagulation process which
is governed by the Smoluchowski coagulation equation (SCE). In this process, two
particles coalesce to form a larger particle at a particular instant.
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The SCE is a nonlinear integral equation which describes the dynamics of evo-
lution of the concentration g(ζ, t) of particles of volume ζ > 0 at time t � 0 [23].
The evolution of g is given by

∂g(ζ, t)
∂t

= Bc(g)(ζ, t) −Dc(g)(ζ, t), (ζ, t) ∈ (0,∞)2, (1.1)

with initial condition

g(ζ, 0) = gin(ζ) � 0, ζ ∈ (0,∞), (1.2)

where the operator Bc and Dc are expressed as

Bc(g)(ζ, t) :=
1
2

∫ ζ

0

Ψ(ζ − η, η)g(ζ − η, t)g(η, t) dη (1.3)

and

Dc(g)(ζ, t) :=
∫ ∞

0

Ψ(ζ, η)g(ζ, t)g(η, t) dη. (1.4)

Here (∂g(ζ, t))/∂t represents the time partial derivative of the concentration of
particles of volume ζ at time t. In addition, the non-negative quantity Ψ(ζ, η)
denotes the interaction rate at which particles of volume ζ and particles of volume
η coalesce to form larger particles. This rate is also known as the coagulation kernel
or coagulation coefficient. The first and last terms Bc(g) and Dc(g) on the right-
hand side to (1.1) represent the formation and disappearance of particles of volume
ζ due to coagulation events, respectively.

Let us define the total mass (volume) of the system at time t � 0 as:

M1(g)(t) :=
∫ ∞

0

ζg(ζ, t) dζ. (1.5)

According to the conservation of matter, it is well known that the total mass (vol-
ume) of particles is neither created nor destroyed. Therefore, it is expected that the
total mass (volume) of the system remains conserved throughout the time evolution
prescribed by (1.1)–(1.2), that is, M1(g)(t) = M1(gin) for all t � 0. However, it is
worth to mention that, for the multiplicative coagulation kernel Ψ(ζ, η) = ζη, the
total mass conservation fails for the SCE at finite time t = 1, see [21]. The physi-
cal interpretation is that the lost mass corresponds to ‘particles of infinite volume’
created by a runaway growth in the system due to the very high rate of coalescence
of very large particles. These particles also referred to as ‘giant particles’ [1] are
interpreted in the physics literature as a different macroscopic phase called a gel,
and its occurrence is called the sol-gel transition or gelation transition. The earliest
time Tg � 0 after which mass conservation no longer holds is called the gelling time
or gelation time.

Since the works by Ball & Carr [2] and Stewart [24], several articles have been
devoted to the existence and uniqueness of solutions to the SCE for coagulation
kernels which are bounded for small volumes and unbounded for large volumes, as
well as to the mass conservation and gelation phenomenon, see [9,11,12,16,19,
22,25], see also the survey papers [1,18,20] and the references therein. However, to
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the best of our knowledge, there are fewer articles in which existence and uniqueness
of solutions to the SCE with singular coagulation rates have been studied, see [5,
6,10,13,22]. In [22], Norris investigates the existence and uniqueness of solutions
to the SCE locally in time when the coagulation kernel satisfies

Ψ(ζ, η) � φ(ζ)φ(η), (ζ, η) ∈ (0,∞)2, (1.6)

for some sublinear function φ : (0,∞) → [0,∞), that is, φ enjoys the property
φ(aζ) � aφ(ζ) for all ζ ∈ (0,∞) and a � 1, and the initial condition gin belongs to
L1((0,∞);φ(ζ)2 dζ). Mass-conservation is also shown as soon as there is ε > 0 such
that φ(ζ) � εζ for all ζ ∈ (0,∞). In [10,13], global existence, uniqueness, and mass-
conservation are established for coagulation rates of the form Ψ(ζ, η) = ζμ1ημ2 +
ζμ2ημ1 with −1 � μ1 � μ2 � 1, μ1 + μ2 ∈ [0, 2], and (μ1, μ2) �= (0, 1). Recently,
global existence of weak solutions to the SCE for coagulation kernels satisfying

Ψ(ζ, η) � k∗(1 + ζ + η)λ(ζη)−σ, (ζ, η) ∈ (0,∞)2,

with σ ∈ [0, 1/2], λ − σ ∈ [0, 1), and k∗ > 0, is obtained in [6] and further extended
in [5] to the broader class of coagulation kernels

Ψ(ζ, η) � k∗(1 + ζ)λ(1 + η)λ(ζη)−σ, (ζ, η) ∈ (0,∞)2, (1.7)

with σ � 0, λ − σ ∈ [0, 1), and k∗ > 0. In [5], multiple fragmentation is also included
and uniqueness is shown for the following restricted class of coagulation kernels

Ψ2(ζ, η) � k∗(ζ−σ + ζλ−σ)(η−σ + ηλ−σ), (ζ, η) ∈ (0,∞)2,

where σ � 0 and λ − σ ∈ [0, 1/2].
The main aim of this paper is to extend and complete the previous results in two

directions. We actually consider coagulation kernels satisfying the growth condition
(1.6) for the non-negative function

φβ(ζ) := max
{
ζ−β , ζ

}
, ζ ∈ (0,∞),

and prove the existence of a global mass-conserving solution of the SCE (1.1)–(1.2)
with initial conditions in L1((0,∞); (ζ−2β + ζ) dζ), thereby removing the finiteness
of the second moment required to apply the existence result of [22] and relaxing the
assumption λ < σ + 1 used in [5] for coagulation kernels satisfying (1.7). Besides
this, we show that any weak solution in the sense of definition 2.2 below is mass-
conserving, a feature which was enjoyed by the solution constructed in [22] but
not investigated in [5,6]. An important consequence of this property is that it
gives some flexibility in the choice of the method to construct a weak solution
to the SCE (1.1)–(1.2) since it will be mass-conserving whatever the approach.
Recall that there are two different approximations of the SCE (1.1) by truncation
have been employed in recent years, the so-called conservative and non-conservative
approximations, see (4.5) below. While it is expected and actually verified in several
papers that the conservative approximation leads to a mass-conserving solution
to the SCE, a similar conclusion is not awaited when using the non-conservative
approximation which has rather been designed to study the gelation phenomenon,
in particular from a numerical point of view [4,15]. Still, it is by now known that,
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for the SCE with locally bounded coagulation kernels growing at most linearly
at infinity, the non-conservative approximation also allows one to construct mass-
conserving solutions [3,14]. The last outcome of our analysis is that, in our case, the
conservative and non-conservative approximations can be handled simultaneously
and both lead to a weak solution to the SCE which might not be the same due to
the lack of a general uniqueness result but is mass-conserving.

We now outline the results of the paper: in the next section, we state precisely
our hypotheses on coagulation kernel and on the initial data together with the
definition of solutions and the main result. In § 3, all weak solutions are shown to
be mass-conserving. Finally, in the last section, the existence of a weak solution to
the SCE (1.1)–(1.2) is obtained by using a weak L1 compactness method applied
to either the non-conservative or the conservative approximations of the SCE.

2. Main result

We assume that the coagulation kernel Ψ satisfies the following hypotheses.

Hypotheses 2.1. (H1) Ψ is a non-negative measurable function on (0,∞) ×
(0,∞),
(H2) There are β > 0 and k > 0 such that

0 � Ψ(ζ, η) = Ψ(η, ζ) � k(ζη)−β , (ζ, η) ∈ (0, 1)2,

0 � Ψ(ζ, η) = Ψ(η, ζ) � kηζ−β , (ζ, η) ∈ (0, 1) × (1,∞),

0 � Ψ(ζ, η) = Ψ(η, ζ) � k(ζ + η), (ζ, η) ∈ (1,∞)2.

Observe that (H2) implies that

Ψ(ζ, η) � k max
{
ζ−β , ζ

}
max

{
η−β , η

}
, (ζ, η) ∈ (0,∞)2.

Let us now mention the following interesting singular coagulation kernels
satisfying hypotheses 2.1.

(a) Smoluchowski’s coagulation kernel [23] (with β = 1/3)

Ψ(ζ, η) =
(
ζ1/3 + η1/3

)(
ζ−1/3 + η−1/3

)
, (ζ, η) ∈ (0,∞)2.

(b) Granulation kernel [17]

Ψ(ζ, η) =
(ζ + η)θ1

(ζη)θ2
, where θ1 � 1 and θ2 � 0.

(c) Stochastic stirred froths [8]

Ψ(ζ, η) = (ζη)−β , where β > 0.

Before providing the statement of theorem 2.3, we recall the following definition of
weak solutions to the SCE (1.1)–(1.2). We set L1

−2β,1(0,∞) := L1((0,∞); (ζ−2β +
ζ) dζ).
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Definition 2.2. Consider a coagulation kernel Ψ satisfying hypotheses (H1)–
(H2), T ∈ (0,∞], and gin ∈ L1

−2β,1(0,∞), gin � 0 a.e. in (0,∞). A non-negative
real valued function g = g(ζ, t) is a weak solution to equations (1.1)–(1.2) on [0, T )
if g ∈ C([0, T );L1(0,∞))

⋂
L∞(0, T ;L1

−2β,1(0,∞)) and satisfies

∫ ∞

0

[g(ζ, t) − gin(ζ)]ω(ζ) dζ

=
1
2

∫ t

0

∫ ∞

0

∫ ∞

0

ω̃(ζ, η)Ψ(ζ, η)g(ζ, s)g(η, s) dη dζ ds, (2.1)

for every t ∈ (0, T ) and ω ∈ L∞(0,∞), where

ω̃(ζ, η) := ω(ζ + η) − ω(ζ) − ω(η), (ζ, η) ∈ (0,∞)2.

Now, we are in a position to state the main theorem of this paper.

Theorem 2.3. Assume that the coagulation kernel satisfies hypotheses (H1)–
(H2) and consider a non-negative initial condition gin ∈ L1

−2β,1(0,∞). There exists
at least one mass-conserving weak solution g to the SCE (1.1)–(1.2) on [0,∞),
that is, g is a weak solution to (1.1)–(1.2) in the sense of definition 2.2 satisfying
M1(g)(t) = M1(gin) for all t � 0, the total mass M1(g) being defined in (1.5).

3. Weak solutions are mass-conserving

In this section, we establish that any weak solution g to (1.1)–(1.2) on [0, T ), T ∈
(0,∞], in the sense of definition 2.2 is mass-conserving, that is, satisfies

M1(g)(t) = M1(gin), t � 0. (3.1)

To this end, we adapt an argument designed in [2, § 3] to investigate the same issue
for the discrete coagulation-fragmentation equations and show that the behaviour
of g for small volumes required in definition 2.2 allows us to control the possible
singularity of Ψ.

Theorem 3.1. Suppose that (H1)–(H2) hold. Let g be a weak solution to (1.1)–
(1.2) on [0, T ) for some T ∈ (0,∞]. Then g satisfies the mass-conserving property
(3.1) for all t ∈ (0, T ).

In order to prove theorem 3.1, we need the following sequence of lemmas.

Lemma 3.2. Assume that (H1)–(H2) hold. Let g be a weak solution to (1.1)–(1.2)
on [0, T ). Then, for q ∈ (0,∞) and t ∈ (0, T ),

∫ q

0

ζg(ζ, t) dζ −
∫ q

0

ζgin(ζ) dζ = −
∫ t

0

∫ q

0

∫ ∞

q−ζ

ζΨ(ζ, η)g(ζ, s)g(η, s) dη dζ ds.

(3.2)
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Proof. Set ω(ζ) = ζχ(0,q)(ζ) for ζ ∈ (0,∞) and note that

ω̃(ζ, η) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if ζ + η ∈ (0, q),
−(ζ + η), if ζ + η � q, (ζ, η) ∈ (0, q)2,
−ζ, if (ζ, η) ∈ (0, q) × [q,∞),
−η, if (ζ, η) ∈ [q,∞) × (0, q),
0, if (ζ, η) ∈ [q,∞)2.

Inserting the above values of ω̃ into (2.1) and using the symmetry of Ψ, we have
∫ q

0

[g(ζ, t) − gin(ζ)]ζdζ =
1
2

∫ t

0

∫ ∞

0

∫ ∞

0

ω̃(ζ, η)Ψ(ζ, η)g(ζ, s)g(η, s) dη dζ ds

= −1
2

∫ t

0

∫ q

0

∫ q

q−ζ

(ζ + η)Ψ(ζ, η)g(ζ, s)g(η, s) dη dζ ds

− 1
2

∫ t

0

∫ q

0

∫ ∞

q

ζΨ(ζ, η)g(ζ, s)g(η, s) dη dζ ds

− 1
2

∫ t

0

∫ ∞

q

∫ q

0

ηΨ(ζ, η)g(ζ, s)g(η, s) dη dζ ds

= −
∫ t

0

∫ q

0

∫ q

q−ζ

ζΨ(ζ, η)g(ζ, s)g(η, s) dη dζ ds

−
∫ t

0

∫ q

0

∫ ∞

q

ζΨ(ζ, η)g(ζ, s)g(η, s) dη dζ ds,

which completes the proof of lemma 3.2. �

In order to complete the proof of theorem 3.1, it is sufficient to show that the
right-hand side of (3.2) goes to zero as q → ∞. The first step in that direction is
the following result.

Lemma 3.3. Assume that (H1)–(H2) hold. Let g be a solution to (1.1)–(1.2) on
[0, T ) and consider t ∈ (0, T ). Then

(i)
∫ ∞

q

[g(ζ, t) − gin(ζ)] dζ = −1
2

∫ t

0

∫ ∞

q

∫ ∞

q

Ψ(ζ, η)g(ζ, s)g(η, s) dη dζ ds

+
1
2

∫ t

0

∫ q

0

∫ q

q−ζ

Ψ(ζ, η)g(ζ, s)g(η, s) dη dζ ds,

(ii) lim
q→∞

∫ t

0

q

[ ∫ q

0

∫ q

q−ζ

Ψ(ζ, η)g(ζ, s)g(η, s) dη dζ

−
∫ ∞

q

∫ ∞

q

Ψ(ζ, η)g(ζ, s)g(η, s) dη dζ

]
ds = 0.
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Proof. Set ω(ζ) = χ[q,∞)(ζ) for ζ ∈ (0,∞) and the corresponding ω̃ is

ω̃(ζ, η) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if ζ + η ∈ (0, q),
1, if ζ + η ∈ [q,∞), (ζ, η) ∈ (0, q)2,
0, if (ζ, η) ∈ (0, q) × [q,∞),
0, if (ζ, η) ∈ [q,∞) × (0, q),
−1, if (ζ, η) ∈ [q,∞)2.

Inserting the above values of ω̃ into (2.1), we obtain lemma 3.3 (i).

Next, we readily infer from the integrability of ζ �→ ζg(ζ, t) and ζ �→ ζgin(ζ) and
Lebesgue’s dominated convergence theorem that

lim
q→∞

∣∣∣∣q
∫ ∞

q

[g(ζ, t) − gin(ζ)] dζ

∣∣∣∣ � lim
q→∞

∫ ∞

q

ζ[g(ζ, t) + gin(ζ)] dζ = 0.

Multiplying the identity stated in lemma 3.3 (i) by q, we deduce from the previous
statement that the left-hand side of the thus obtained identity converges to zero as
q → ∞. Then so does its right-hand side, which proves lemma 3.3 (ii). �

Lemma 3.4. Assume that (H1)–(H2) hold. Let g be a weak solution to (1.1)–(1.2)
on [0, T ). Then, for t ∈ (0, T ),

(i) lim
q→∞

∫ t

0

∫ q

0

∫ ∞

q

ζΨ(ζ, η)g(ζ, s)g(η, s) dη dζ ds = 0,

and

(ii) lim
q→∞ q

∫ t

0

∫ ∞

q

∫ ∞

q

Ψ(ζ, η)g(ζ, s)g(η, s) dη dζ ds = 0.

Proof. Let q > 1, t ∈ (0, T ), and s ∈ (0, t). To prove the first part of lemma 3.4, we
split the integral as follows

∫ q

0

∫ ∞

q

ζΨ(ζ, η)g(ζ, s)g(η, s) dη dζ = J1(q, s) + J2(q, s),

with

J1(q, s) :=
∫ 1

0

∫ ∞

q

ζΨ(ζ, η)g(ζ, s)g(η, s) dη dζ,

J2(q, s) :=
∫ q

1

∫ ∞

q

ζΨ(ζ, η)g(ζ, s)g(η, s) dη dζ.
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On the one hand, it follows from (H2) and Young’s inequality that

J1(q, s) � k

∫ 1

0

∫ ∞

q

ζ1−βηg(ζ, s)g(η, s) dη dζ

� k

(∫ ∞

0

ζ1/2−βg(ζ, s) dζ

)(∫ ∞

q

ηg(η, s) dη

)

� k‖g(s)‖L1
−2β,1(0,∞)

∫ ∞

q

ηg(η, s) dη

and the integrability properties of g from definition 2.2 and Lebesgue’s dominated
convergence theorem entail that

lim
q→∞

∫ t

0

J1(q, s) ds = 0. (3.3)

On the other hand, we infer from (H2) that

J2(q, s) � k

∫ q

1

∫ ∞

q

ζ(ζ + η)g(ζ, s)g(η, s) dη dζ

� 2k

∫ q

1

∫ ∞

q

ζηg(ζ, s)g(η, s) dη dζ

� 2kM1(g)(s)
∫ ∞

q

ηg(η, s) dη,

and we argue as above to conclude that

lim
q→∞

∫ t

0

J2(q, s) ds = 0.

Recalling (3.3), we have proved lemma 3.4 (i).

Similarly, by (H2),

q

∫ ∞

q

∫ ∞

q

Ψ(ζ, η)g(ζ, s)g(η, s) dη dζ � k

∫ ∞

q

∫ ∞

q

(qζ + qη)g(ζ, s)g(η, s) dη dζ

� 2k

∫ ∞

q

∫ ∞

q

ζηg(ζ, s)g(η, s) dη dζ

� 2kM1(g)(s)
∫ ∞

q

ηg(η, s) dη,

and we use once more the previous argument to obtain lemma 3.4 (ii). �

Now, we are in a position to prove theorem 3.1.
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Proof of theorem 3.1. Let t ∈ (0, T ). From lemma 3.4 (i), we obtain

lim
q→∞

∫ t

0

∫ q

0

∫ ∞

q

ζΨ(ζ, η)g(ζ, s)g(η, s) dη dζ ds = 0, (3.4)

while lemma 3.3 (ii) and lemma 3.4 (ii) imply that

lim
q→∞ q

∫ t

0

∫ q

0

∫ q

q−ζ

Ψ(ζ, η)g(ζ, s)g(η, s) dη dζ ds = 0. (3.5)

Since ∫ t

0

∫ q

0

∫ ∞

q−ζ

ζΨ(ζ, η)g(ζ, s)g(η, s) dη dζ ds

� q

∫ t

0

∫ q

0

∫ q

q−ζ

Ψ(ζ, η)g(ζ, s)g(η, s) dη dζ ds

+
∫ t

0

∫ q

0

∫ ∞

q

ζΨ(ζ, η)g(ζ, s)g(η, s) dη dζ ds,

it readily follows from (3.4) and (3.5) that the right-hand side of (3.2) converges to
zero as q → ∞. Consequently,

M1(g)(t) = lim
q→∞

∫ q

0

ζg(ζ, s) dζ = lim
q→∞

∫ q

0

ζgin(ζ) dζ = M1(gin).

This completes the proof of theorem 3.1. �

4. Existence of weak solutions

This section is devoted to the construction of weak solutions to the SCE (1.1)–
(1.2) with a non-negative initial condition gin ∈ L1

−2β,1(0,∞). It is achieved by a
classical compactness technique, the appropriate functional setting being here the
space L1(0,∞) endowed with its weak topology first used in the seminal work [24]
and subsequently further developed in [3,5,6,12,14,16,19].

Given a non-negative initial condition gin ∈ L1
−2β,1(0,∞), the starting point of

this approach is the choice of an approximation of the SCE (1.1)–(1.2), which we
set here to be

∂gn(ζ, t)
∂t

= Bθ
c,n(gn)(ζ, t) −Dθ

c,n(gn)(ζ, t), (ζ, t) ∈ (0, n) × (0,∞), (4.1)

with truncated initial condition

gn(ζ, 0) = gin
n (ζ) := gin(ζ)χ(0,n)(ζ), ζ ∈ (0, n), (4.2)

where n � 1 is a positive integer, θ ∈ {0, 1},

Ψθ
n(ζ, η) := Ψ(ζ, η)χ(1/n,n)(ζ)χ(1/n,n)(η)

[
1 − θ + θχ(0,n)(ζ + η)

]
(4.3)
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for (ζ, η) ∈ (0,∞)2 and

Bθ
c,n(g)(ζ, t) :=

1
2

∫ ζ

0

Ψθ
n(ζ − η, η)g(ζ − η, t)g(η, t) dη, ζ ∈ (0, n), (4.4)

Dθ
c,n(g)(ζ, t) :=

∫ n−θζ

0

Ψθ
n(ζ, η)g(ζ, t)g(η, t) dη, ζ ∈ (0, n), (4.5)

The introduction of the additional parameter θ ∈ {0, 1} allows us to handle simul-
taneously the so-called conservative approximation (θ = 1) and non-conservative
approximation (θ = 0) and thereby prove that both approximations allow us to
construct weak solutions to the SCE (1.1)–(1.2), a feature which is of interest when
no general uniqueness result is available. Note that we also truncate the coagulation
for small volumes to guarantee the boundedness of Ψθ

n which is a straightforward
consequence of (H2) and (4.3). Thanks to this property, we may argue as in [24,
theorem 3.1] (θ = 1) and [14] (θ = 0) to show the well-posedness of (4.1)–(4.2).

Proposition 4.1. Let n � 1 and θ ∈ {0, 1}. There is a unique non-negative solu-
tion gn ∈ C1([0,∞);L1(0, n)) to (4.1)–(4.2) (we do not indicate the dependence upon
θ for notational simplicity) which satisfies∫ n

0

ζgn(ζ, t) dζ =
∫ n

0

ζgin
n (ζ) dζ

− (1 − θ)
∫ t

0

∫ n

0

∫ n

n−ζ

ζΨθ
n(ζ, η)gn(ζ, s)gn(η, s) dη dζ ds (4.6)

for t � 0.

Proof. We provide a sketch of the proof for the sake of completeness. Since

Ψθ
n(ζ, η) � k max

{
ζ−β , ζ

}
χ(1/n,n)(ζ)max

{
η−β , η

}
χ(1/n,n)(η)

� Ln := kn2+2β (4.7)

for (ζ, η) ∈ (0, n)2 by (H2) and (4.3), we infer from the definition of Bθ
c,n and Dθ

c,n

and the symmetry of Ψθ
n that, for h1 ∈ L1(0, n) and h2 ∈ L1(0, n),∥∥Bθ

c,n(h1) − Bθ
c,n(h2)

∥∥
L1(0,n)

� Ln

2
(‖h1‖L1(0,n) + ‖h2‖L1(0,n)

) ‖h1 − h2‖L1(0,n) (4.8)

and ∥∥Dθ
c,n(h1) −Dθ

c,n(h2)
∥∥

L1(0,n)

� Ln

(‖h1‖L1(0,n) + ‖h2‖L1(0,n)

) ‖h1 − h2‖L1(0,n). (4.9)

Consequently, Bθ
c,n and Dθ

c,n are locally Lipschitz continuous and, the positive part
r �→ max{r, 0} being Lipschitz continuous on R as well, the initial value problem in
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the Banach space L1(0, n)

dgn

dt
=
[Bθ

c,n(gn)
]
+
−Dθ

c,n(gn), t > 0, (4.10)

gn(0) = gi
nn, (4.11)

possesses a unique solution gn ∈ C1([0, Tm);L1(0, n)) defined on a maximal time
interval [0, Tm), Tm ∈ (0,∞], and either Tm = ∞ or

Tm < ∞ and lim
t→Tm

‖gn(t)‖L1(0,n) = ∞. (4.12)

On the one hand, we infer from (4.7) and (4.10) that, for t ∈ (0, Tm),

d
dt

‖(−gn)+(t)‖L1(0,n)

= −
∫ n

0

sign+(−gn)(ζ, t)
[Bθ

c,n(gn)(ζ, t)
]
+

dζ

+
∫ n

0

sign+(−gn)(ζ, t)
∫ n−θζ

0

Ψθ
n(ζ, η)gn(η, t)gn(ζ, t) dη dζ

= −
∫ n

0

∫ n−θζ

0

Ψθ
n(ζ, η)gn(η, t)[−gn(ζ, t)]+ dη

� Ln‖gn(t)‖L1(0,n)‖(−gn)+(t)‖L1(0,n).

We then use Gronwall’s lemma to obtain

‖(−gn)+(t)‖L1(0,n) � ‖(−gn)+(0)‖L1(0,n) exp
(

Ln

∫ t

0

‖gn(s)‖1 ds

)

for t ∈ [0, Tm). Now the non-negativity of gn(0) = gin
n guarantees that

‖(−gn)+(0)‖L1(0,n) = 0

which implies, together with the previous inequality, that

‖(−gn)+(t)‖L1(0,n) = 0 for all t ∈ [0, Tm).

That is,

gn(t) � 0 a.e. in (0, n) for all t ∈ [0, Tm), (4.13)

and it readily follows from (4.13) that [Bθ
c,n(gn)]+ = Bθ

c,n(gn) in (0, n) × (0, Tm).
Recalling (4.10)–(4.11), we have shown that gn solves (4.1)–(4.2) on [0, Tm).
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On the other hand, it readily follows from (4.10) and (4.13) that, for ω ∈ L∞(0, n)
and t ∈ [0, Tm),

d
dt

∫ n

0

ω(ζ)gn(ζ, t) dζ

=
1
2

∫ n

1/n

∫ n

1/n

Hθ
ω,n(ζ, η)Ψ(ζ, η)gn(ζ, t)gn(η, t) dη dζ, (4.14)

where

Hθ
ω,n(ζ, η) := ω(ζ + η)χ(0,n)(ζ + η) − [ω(ζ) + ω(η)]

(
1 − θ + θχ(0,n)(ζ + η)

)
for (ζ, η) ∈ (0, n)2. Taking ω ≡ 1 in (4.14) and observing that

Hθ
1,n(ζ, η) = −χ(0,n)(ζ + η) − 2(1 − θ)

[
1 − χ(0,n)(ζ + η)

]
� 0

for (ζ, η) ∈ (0, n)2, we deduce from (4.14) that

d
dt

‖gn(t)‖L1(0,n) � 0, t ∈ [0, Tm).

Consequently, ‖gn(t)‖L1(0,n) � ‖gn(0)‖L1(0,n) for t ∈ [0, Tm), which prevents the
occurrence of (4.12) and entails that Tm = ∞, thereby completing the proof of
proposition 4.1. �

The second term in the right-hand side of (4.6) vanishes for θ = 1 and the total
mass of gn remains constant throughout time evolution, which is the reason for this
approximation to be called conservative. In contrast, when θ = 0, the total mass of
gn decreases as a function of time. In both cases, it readily follows from (4.6) that∫ n

0

ζgn(ζ, t) dζ �
∫ n

0

ζgin
n (ζ) dζ � M1(gin), t � 0. (4.15)

In order to prove theorem 2.3, we shall show the convergence (with respect to
an appropriate topology) of a subsequence of (gn)n�1 towards a weak solution to
(1.1)–(1.2). For that purpose, we now derive several estimates and first recall that,
since gin ∈ L1

−2β,1(0,∞), a refined version of de la Vallée-Poussin theorem, see [7] or
[18, theorem 8], guarantees that there exist two non-negative and convex functions
σ1 and σ2 in C2([0,∞)) such that σ′

1 and σ′
2 are concave,

σi(0) = σ′
i(0) = 0, lim

x→∞
σi(x)

x
= ∞, i = 1, 2, (4.16)

and

I1 :=
∫ ∞

0

σ1(ζ)gin(ζ) dζ < ∞, and I2 :=
∫ ∞

0

σ2

(
ζ−βgin(ζ)

)
dζ < ∞. (4.17)

Let us state the following properties of the above-defined functions σ1 and σ2 which
are required to prove theorem 2.3.
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Lemma 4.2. For (x, y) ∈ (0,∞)2, there holds

(i) σ2(x) � xσ′
2(x) � 2σ2(x),

(ii) xσ′
2(y) � σ2(x) + σ2(y),

and

(iii) 0 � σ1(x + y) − σ1(x) − σ1(y) � 2
xσ1(y) + yσ1(x)

x + y
.

Proof. A proof of the statements (i) and (iii) may be found in [18, proposition 14]
while (ii) can easily be deduced from (i) and the convexity of σ2. �

We recall that throughout this section, the coagulation kernel Ψ is assumed to
satisfy (H1)–(H2) and gin is a non-negative function in L1

−2β,1(0,∞).

4.1. Moment estimates

We begin with a uniform bound in L1
−2β,1(0,∞).

Lemma 4.3. There exists a positive constant B > 0 depending only on gin such that,
for t � 0, ∫ n

0

(
ζ + ζ−2β

)
gn(ζ, t) dζ � B.

Proof. Let δ ∈ (0, 1) and take ω(ζ) = (ζ + δ)−2β , ζ ∈ (0, n), in (4.14). With this
choice of ω,

Hθ
ω,n(ζ, η) �

[
(ζ + η + δ)−2β − (ζ + δ)−2β − (η + δ)−2β

]
χ(0,n)(ζ + η) � 0

for all (ζ, η) ∈ (0, n)2, so that (4.14) entails that, for t � 0,
∫ n

0

(ζ + δ)−2βgn(ζ, t) dζ �
∫ n

0

(ζ + δ)−2βgin
n (ζ) dζ �

∫ ∞

0

ζ−2βgin(ζ) dζ.

We then let δ → 0 in the previous inequality and deduce from Fatou’s lemma that∫ n

0

ζ−2βgn(ζ, t) dζ �
∫ ∞

0

ζ−2βgin(ζ) dζ, t � 0.

Combining the previous estimate with (4.15) and setting B := ‖gin‖L1
−2β,1(0,∞) gives

lemma 4.3. �

We next turn to the control of the tail behaviour of gn for large volumes, a
step which is instrumental in the proof of the convergence of each integral on the
right-hand side of (4.1) to their respective limits on the right-hand side of (1.1).

https://doi.org/10.1017/prm.2018.158 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.158


1818 P. K. Barik, A. K. Giri and Ph. Laurençot

Lemma 4.4. For T > 0, there is a positive constant Γ(T ) depending on k, σ1, gin,
and T such that,

(i) sup
t∈[0,T ]

∫ n

0

σ1(ζ)gn(ζ, t) dζ � Γ(T ),

and

(ii) (1 − θ)
∫ T

0

∫ n

1/n

∫ n

1/n

σ1(ζ)χ[n,∞)(ζ + η)Ψ(ζ, η)gn(ζ, s)

× gn(η, s) dη dζ ds � Γ(T ).

Proof. Let T > 0 and t ∈ (0, T ). We set ω(ζ) = σ1(ζ), ζ ∈ (0, n), into (4.14) and
obtain∫ n

0

σ1(ζ)[gn(ζ, t) − gin
n (ζ)] dζ

=
1
2

∫ t

0

∫ n

1/n

∫ n

1/n

σ̃1(ζ, η)χ(0,n)(ζ + η)Ψ(ζ, η)gn(ζ, s)gn(η, s) dη dζ ds

− 1 − θ

2

∫ t

0

∫ n

1/n

∫ n

1/n

[σ1(ζ) + σ1(η)]χ[n,∞)(ζ + η)Ψ(ζ, η)gn(ζ, s)gn(η, s) dη dζ ds,

recalling that σ̃1(ζ, η) = σ1(ζ + η) − σ1(ζ) − σ1(η), hence, using (H2) and
lemma 4.2,

∫ n

0

σ1(ζ)[gn(ζ, t) − gin
n (ζ)] dζ � k

2

4∑
i=1

Ji,n(t) − (1 − θ)Rn(t),

with

J1,n(t) :=
∫ t

0

∫ 1

0

∫ 1

0

σ̃1(ζ, η)(ζη)−βgn(ζ, s)gn(η, s) dη dζ ds,

J2,n(t) :=
∫ t

0

∫ 1

0

∫ n

1

σ̃1(ζ, η)ζ−βηgn(ζ, s)gn(η, s) dη dζ ds,

J3,n(t) :=
∫ t

0

∫ n

1

∫ 1

0

σ̃1(ζ, η)ζη−βgn(ζ, s)gn(η, s) dη dζ ds,

J4,n(t) :=
∫ t

0

∫ n

1

∫ n

1

σ̃1(ζ, η)(ζ + η)gn(ζ, s)gn(η, s) dη dζ ds,

and

Rn(t) :=
∫ t

0

∫ n

1/n

∫ n

1/n

σ1(ζ)χ[n,∞)(ζ + η)Ψ(ζ, η)gn(ζ, s)gn(η, s) dη dζ ds.

Owing to the concavity of σ′
1 and the property σ1(0) = 0, there holds

σ̃1(ζ, η) =
∫ ζ

0

∫ η

0

σ′′
1 (x + y) dy dx � σ′′

1 (0)ζη , (ζ, η) ∈ (0,∞)2. (4.18)
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By (4.18), lemma 4.3, and Young’s inequality,

J1,n(t) � σ′′
1 (0)

∫ t

0

∫ 1

0

∫ 1

0

ζ1−βη−βgn(ζ, s)gn(η, s) dη dζ ds

� σ′′
1 (0)

∫ t

0

[∫ 1

0

(
ζ + ζ−2β

)
gn(ζ, s) dζ

]2
ds � σ′′

1 (0)B2t.

Next, lemma 4.2 (iii), lemma 4.3, and Young’s inequality give

J2,n(t) = J3,n(t) � 2
∫ t

0

∫ 1

0

∫ n

1

ζσ1(η) + ησ1(ζ)
ζ + η

ζ−βηgn(ζ, s)gn(η, s) dη dζ ds

� 2
∫ t

0

∫ 1

0

∫ n

1

[
ζ1−βσ1(η) + σ1(1)ζ−βη

]
gn(ζ, s)gn(η, s) dη dζ ds

� 2
∫ t

0

[∫ 1

0

(
ζ + ζ−2β

)
gn(ζ, s) dζ

] [∫ n

1

σ1(η)gn(η, s) dη

]
ds

+ σ1(1)
∫ t

0

[∫ 1

0

(
ζ + ζ−2β

)
gn(ζ, s) dζ

] [∫ n

1

ηgn(η, s) dη

]
ds

� 2σ1(1)B2t + 2B
∫ t

0

∫ n

0

σ1(η)gn(η, s) dη ds,

and

J4,n(t) � 2
∫ t

0

∫ n

1

∫ n

1

(ησ1(ζ) + ζσ1(η)) gn(ζ, s)gn(η, s) dη dζ ds

� 4B
∫ t

0

∫ n

0

σ1(η)gn(η, s) dη ds.

Gathering the previous estimates and introducing

Gn(t) :=
∫ n

0

σ1(ζ)gn(ζ, t) dζ + (1 − θ)Rn(t),

we end up with

Gn(t) � Gn(0) + k

(
σ′′

1 (0)
2

+ 2σ1(1)
)
B2t + 4kB

∫ t

0

∫ n

0

σ1(η)gn(η, s) dη ds

� Gn(0) + k

(
σ′′

1 (0)
2

+ 2σ1(1)
)
B2t + 4kB

∫ t

0

Gn(s) ds,

Since Rn(0) = 0, we infer from Gronwall’s lemma and (4.17) that

Gn(t) � e4kBt

∫ n

0

σ1(ζ)gin
n (ζ) dζ +

(
σ′′

1 (0)
8

+
σ1(1)

2

)
Be4kBt

� [I1 + (σ′′
1 (0) + σ1(1))B] e4kBt.

This completes the proof of lemma 4.4. �
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4.2. Uniform integrability

Next, our aim being to apply Dunford-Pettis’ theorem, we have to prevent con-
centration of the sequence (gn)n�1 on sets of arbitrary small measure. For that
purpose, we need to show the following result.

Lemma 4.5. For any T > 0 and λ > 0, there is a positive constant L1(λ, T )
depending only on k, σ2, gin, λ, and T such that

sup
t∈[0,T ]

∫ λ

0

σ2

(
ζ−βgn(ζ, t)

)
dζ � L1(λ, T ).

Proof. For (ζ, t) ∈ (0, n) × (0,∞), we set un(ζ, t) := ζ−βgn(ζ, t). Let λ ∈ (1, n),
T > 0, and t ∈ (0, T ). Using Leibniz’s rule, Fubini’s theorem, and (4.1), we obtain

d
dt

∫ λ

0

σ2(un(ζ, t)) dζ

� 1
2

∫ λ

0

∫ λ−η

0

σ′
2(un(ζ + η, t))(ζ + η)−βΨ(ζ, η)gn(ζ, t)gn(η, t) dζ dη. (4.19)

It also follows from (H2) that

Ψ(ζ, η) � 2kλ1+2β(ζη)−β , (ζ, η) ∈ (0, λ)2. (4.20)

We then infer from (4.19), (4.20), lemma 4.2 (ii) and lemma 4.3 that

d
dt

∫ λ

0

σ2(un(ζ, t)) dζ

� kλ1+2β

∫ λ

0

∫ λ−η

0

σ′
2(un(ζ + η, t))(ζ + η)−βun(ζ, t)un(η, t) dζ dη

� kλ1+2β

∫ λ

0

∫ λ−η

0

η−β [σ2(un(ζ + η, t)) + σ2(un(ζ, t))] un(η, t) dζ dη

� 2kλ1+2β

∫ λ

0

η−2βgn(η, t)
∫ λ

0

σ2(un(ζ, t)) dζ dη

� 2kλ1+2βB
∫ λ

0

σ2(un(ζ, t)) dζ.

Then, using Gronwall’s lemma, (4.2), the monotonicity of σ2, and (4.17), we obtain

∫ λ

0

σ2(ζ−βgn(ζ, t)) dζ � L1(λ, T ),

where L1(λ, T ) := I2e2kλ1+2βBT, and the proof is complete. �
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4.3. Time equicontinuity

The outcome of the previous sections settles the (weak) compactness issue with
respect to the volume variable. We now turn to the time variable.

Lemma 4.6. Let t2 � t1 � 0 and λ ∈ (1, n). There is a positive constant L2(λ)
depending only on k, gin, and λ such that

∫ λ

0

ζ−β |gn(ζ, t2) − gn(ζ, t1)|dζ � L2(λ)(t2 − t1).

Proof. Let t > 0. On the one hand, by Fubini’s theorem, (4.20), and lemma 4.3,

∫ λ

0

ζ−βBθ
c,n(gn)(ζ, t) dζ � 1

2

∫ λ

0

∫ λ−ζ

0

(ζ + η)−βΨ(ζ, η)gn(ζ, t)gn(η, t) dη dζ

� kλ1+2β

∫ λ

0

∫ λ

0

ζ−βη−2βgn(ζ, t)gn(η, t) dη dζ

� kλ1+3β

(∫ λ

0

ζ−2βgn(ζ, t) dζ

)2

� kλ1+3βB2.

On the other hand, since

Ψθ
n(ζ, η) � Ψ(ζ, η) � 2kλβηζ−β , 0 < ζ < λ < η < n,

we infer from (4.20) and lemma 4.3 that

∫ λ

0

ζ−βDθ
c,n(gn)(ζ, t) dζ �

∫ λ

0

∫ n

0

ζ−βΨ(ζ, η)gn(ζ, t)gn(η, t) dη dζ

� 2kλ1+2β

∫ λ

0

∫ λ

0

ζ−2βη−βgn(ζ, t)gn(η, t) dη dζ

+ 2kλβ

∫ λ

0

∫ n

λ

ζ−2βηgn(ζ, t)gn(η, t) dη dζ

� 2kB2(1 + λ1+β)λβ .

Consequently, by (4.1),

∫ λ

0

ζ−β |gn(ζ, t2) − gn(ζ, t1)|dζ �
∫ t2

t1

∫ λ

0

ζ−β

∣∣∣∣∂gn

∂t
(ζ, t)

∣∣∣∣ dζ dt

�
∫ t2

t1

∫ λ

0

ζ−β
[Bθ

c,n(gn)(ζ, t)+Dθ
c,n(gn)(ζ, t)

]
dζ dt

� kB2(2 + 2λ1+β + λ1+2β)λβ(t2 − t1),

which completes the proof with L2(λ) := kB2(2 + 2λ1+β + λ1+2β)λβ . �
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4.4. Convergence

We are now in a position to complete the proof of the existence of a weak solution
to the SCE (1.1)–(1.2).

Proof of theorem 2.3. For T > 0 and λ > 1 we define

Kλ,T :=

{
h ∈ L1(0, λ) :

∫ λ

0

σ2(|h(ζ)|) dζ � L1(λ, T )

}
,

the parameter L1(λ, T ) being defined in lemma 4.5. On the one hand, owing to the
superlinear growth (4.16) of σ2 at infinity, we infer from the Dunford-Pettis and de
la Vallée-Poussin theorems that Kλ,T is a weakly compact subset of L1(0, λ). On
the other hand, setting un(ζ, t) := ζ−βgn(ζ, t) for (ζ, t) ∈ (0, n) × (0,∞), lemma 4.5
implies that (un(t))n�1 lies in Kλ,T for all t ∈ [0, T ]. Moreover, by lemma 4.6,
(un)n�1 is strongly equicontinuous in L1(0, λ) at all t ∈ (0, T ) and thus also
weakly equicontinuous in L1(0, λ) at all t ∈ (0, T ). A variant of Arzelà-Ascoli’s
theorem [26, theorem 1.3.2] then guarantees that (un)n�1 is relatively compact in
Cw([0, T ];L1(0, λ)). This property being valid for all T > 0 and λ > 1, we use a diag-
onal process to obtain a subsequence of (gn)n�1 (not relabelled) and a non-negative
function g such that

gn −→ g in Cw([0, T ];L1((0, λ); ζ−β dζ)) (4.21)

for all T > 0 and λ > 1. We next employ a by-now classical argument to improve
the convergence (4.21), see [12, proposition 3.8] for instance. More precisely, a first
consequence of (4.21) and lemma 4.4 is that, for T > 0, n > λ > 1, and t ∈ [0, T ],

∫ λ

0

σ1(ζ)g(ζ, t) dζ = lim
n→∞

∫ λ

0

σ1(ζ)gn(ζ, t) dζ � Γ(T ).

We then use Fatou’s lemma to let λ → ∞ in the previous inequality and deduce
that

sup
t∈[0,T ]

∫ ∞

0

σ1(ζ)g(ζ, t) dζ � Γ(T ). (4.22)

Consider next φ ∈ L∞(0,∞) and, for T > 0 and n � 1, set

In(T ) := sup
t∈[0,T ]

∣∣∣∣
∫ ∞

0

φ(ζ)(ζ−β + ζ)[gn(ζ, t) − g(ζ, t)] dζ

∣∣∣∣ .
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Let λ > 1. It follows from lemma 4.4 and (4.22) that, for t ∈ [0, T ],∣∣∣∣
∫ ∞

λ

φ(ζ)(ζ−β + ζ)[gn(ζ, t) − g(ζ, t)] dζ

∣∣∣∣
� ‖φ‖L∞(0,∞)

∫ ∞

λ

(ζ−β + ζ)[gn(ζ, t) + g(ζ, t)] dζ

� (1 + λ−1−β)‖φ‖L∞(0,∞)

∫ ∞

λ

ζ[gn(ζ, t) + g(ζ, t)] dζ

� 2‖φ‖L∞(0,∞) sup
η�λ

{
η

σ1(η)

}∫ ∞

λ

σ1(ζ)[gn(ζ, t) + g(ζ, t)] dζ

� 4Γ(T )‖φ‖L∞(0,∞) sup
η�λ

{
η

σ1(η)

}
.

Thanks to the previous estimate, we find

In(T ) � sup
t∈[0,T ]

∣∣∣∣∣
∫ λ

0

φ(ζ)(ζ−β + ζ)[gn(ζ, t) − g(ζ, t)] dζ

∣∣∣∣∣
+ sup

t∈[0,T ]

∣∣∣∣
∫ ∞

λ

φ(ζ)(ζ−β + ζ)[gn(ζ, t) − g(ζ, t)] dζ

∣∣∣∣
� sup

t∈[0,T ]

∣∣∣∣∣
∫ λ

0

φ(ζ)(1 + ζ1+β)[gn(ζ, t) − g(ζ, t)]ζ−β dζ

∣∣∣∣∣
+ 4Γ(T )‖φ‖L∞(0,∞) sup

η�λ

{
η

σ1(η)

}
.

Since ζ �→ χ(0,λ)(ζ)φ(ζ)(1 + ζ1+β) belongs to L∞(0, λ), we deduce from (4.21) that

lim sup
n→∞

In(T ) � 4Γ(T )‖φ‖L∞(0,∞) sup
η�λ

{
η

σ1(η)

}
.

We then take the limit λ → ∞ in the previous inequality and use the superlinear
growth (4.16) of σ1 at infinity to obtain that

lim
n→∞ In(T ) = 0.

We have thus improved the convergence (4.21) to

gn −→ g in Cw([0, T ];L1((0,∞); (ζ−β + ζ) dζ)). (4.23)

To complete the proof of theorem 2.3, it remains to show that g is a weak solution
to the SCE (1.1)–(1.2) on [0,∞) in the sense of definition 2.2. This step is carried
out by the classical approach of [24] with some modifications as in [5,6] and [19]
to handle the convergence of the integrals for small and large volumes, respectively.
In particular, on the one hand, the behaviour for large volumes is controlled by
the estimates of lemma 4.4 with the help of the superlinear growth (4.16) of σ1
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at infinity and the linear growth (H2) of Ψ. On the other hand, the behaviour for
small volumes is handled by (H2), lemma 4.3, and (4.23).

Finally, g being a weak solution to (1.1)–(1.2) on [0,∞) in the sense of
definition 2.2, it is mass-conserving according to theorem 3.1, which completes the
proof of theorem 2.3. �
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20 Ph. Laurençot and S. Mischler. On coalescence equations and related models. In Modeling
and computational methods for kinetic equations. Model. Simul. Sci. Eng. Technol., pp.
321–356 (Boston: Birkhaüser, 2004).
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Lösungen. Zeitschrift f. physik. Chemie 92 (1917), 129–168.

24 I.W. Stewart. A global existence theorem for the general coagulation-fragmentation
equation with unbounded kernels. Math. Methods Appl. Sci. 11 (1989), 627–648.

25 I.W. Stewart. A uniqueness theorem for the coagulation-fragmentation equation. Math.
Proc. Camb. Phil. Soc. 107 (1990), 573–578.

26 I.I. Vrabie. Compactness methods for nonlinear evolutions, 2nd edn Pitman Monogr.
Surveys Pure Appl. Math., vol. 75 (Longman, 1995).

https://doi.org/10.1017/prm.2018.158 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.158

	1 Introduction
	2 Main result
	3 Weak solutions are mass-conserving
	4 Existence of weak solutions
	4.1 Moment estimates
	4.2 Uniform integrability
	4.3 Time equicontinuity
	4.4 Convergence

	References



