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Abstract
We develop an asset pricing model with stochastic transaction costs and investors with
heterogeneous horizons. Depending on their horizon, investors hold different sets of as-
sets in equilibrium. This generates segmentation and spillover effects for expected returns,
where the liquidity (risk) premium of illiquid assets is determined by investor horizons and
the correlation between liquid and illiquid asset returns. We estimate our model for the
cross-section of U.S. stock returns and find that it generates a good fit, mainly due to a
combination of a substantial expected liquidity premium and segmentation effects, while
the liquidity risk premium is small.

I. Introduction
The investment horizon, and the associated demand for liquidity, is a key di-

mension on which investors differ, with high-frequency traders and pension funds
being at opposite ends of the spectrum. Much of the literature that explores the im-
pact of horizon on portfolio choice and asset pricing derives from Merton (1971),
who focuses on the intertemporal hedging demands of long-term investors. The
interaction of investment horizon and liquidity has received much less atten-
tion. This is surprising because the impact of transaction costs and other trading
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frictions on portfolio performance depends heavily on the level of trading activity,
which has a close relation with the investor’s horizon.

We derive a new liquidity-based asset pricing model featuring risk-averse
investors with heterogeneous investment horizons and stochastic transaction costs.
Investors with longer investment horizons are less concerned about trading costs
because they do not necessarily trade in every period. Our model generates a
number of new implications for the pricing of liquidity that we test empirically
on the cross section of U.S. stock returns.

Previous theories of liquidity and asset pricing have largely ignored hetero-
geneity in investor horizons, with the exception of the seminal article of Amihud
and Mendelson (1986), who study a setting where risk-neutral investors have het-
erogeneous horizons. Their model generates clientele effects: Short-term investors
hold the liquid assets, and long-term investors hold the illiquid assets, which leads
to a concave relation between transaction costs and expected returns.1 Besides
risk neutrality, Amihud and Mendelson assume that transaction costs are con-
stant. However, there is much empirical evidence that liquidity is time varying.
Assuming stochastic transaction costs, Acharya and Pedersen (2005) set out one
of the most influential asset pricing models with liquidity risk, where various liq-
uidity risk premiums are generated. The model includes homogeneous investors
with a 1-period horizon and thus implies a linear (as opposed to concave) relation
between expected transaction costs and expected returns. Our article bridges these
two studies. It combines heterogeneous horizons, as in Amihud and Mendelson,
with stochastic illiquidity and risk aversion, as in Acharya and Pedersen. This
leads to a number of novel and important implications for the impact of both ex-
pected liquidity and liquidity risk on asset prices.

Our model setup is easily described. We have multiple assets with indepen-
dent and identically distributed (IID) dividends and stochastic transaction costs,
as well as many investor types with mean-variance utility over terminal wealth
but different investment horizons. We obtain a unique stationary equilibrium in
an overlapping-generations setting, and we solve for expected returns in closed
form, where expected returns reflect a liquidity premium component and a risk
premium component.

We show that depending on the input parameters, investors with different
horizons may choose to invest in different sets of assets in equilibrium (“endoge-
nous segmentation”). For example, short-term investors may optimally choose
not to invest in the most illiquid assets because their expected returns are not suf-
ficient to cover expected transaction costs. In contrast, long-term investors trade
less frequently and can afford to invest in illiquid assets. This clientele partition is
more general than that in Amihud and Mendelson (1986): Because our investors
are risk averse, they also consider the risk–return and diversification aspects of
an asset when choosing their investments. We show that depending on the input
parameters, either all investors hold all assets in equilibrium (“integration”), some
investors hold only a subset of assets (“partial segmentation”), or investors with
different horizons hold nonoverlapping portfolios (“full segmentation”).

1Hopenhayn and Werner (1996) propose a similar setup featuring risk-neutral investors with het-
erogeneity in impatience and endogenously determined liquidity effects.
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Using various examples, we show the implications of our equilibrium model
for expected returns. For integrated assets, which are held by all investors, ex-
pected returns contain the familiar compensation for expected transaction costs
and a mixture of a liquidity risk premium and standard capital asset pricing model
(CAPM) risk premium. Because long-term investors care less about liquidity risk,
the size of the liquidity risk premium depends on the risk-bearing capacity of long-
term versus short-term investors. Furthermore, the effect of expected liquidity is
also smaller, given that long-horizon investors do not trade every period.

The expected returns of segmented assets, which are not held by all investors,
contain additional terms. More specifically, there are segmentation and spillover
effects. The segmentation risk premium is positive and is caused by imperfect risk
sharing because not all investors hold these assets. The spillover risk premium can
be positive or negative, depending on the correlation between segmented and in-
tegrated asset returns. For example, if a segmented asset is highly correlated with
integrated assets, the spillover effect is negative and neutralizes the segmentation
risk premium because in this case, the segmented asset can be replicated (almost
exactly) by a portfolio of integrated assets.

The expected liquidity term also contains a segmentation effect, in that the
expected liquidity premium reflects the horizon of the investors that hold these
assets. Along the same lines as the risk premium, it also contains a spillover term,
with a sign that is a function of the correlation between integrated and segmented
asset returns.

In summary, our model demonstrates that incorporating heterogeneous in-
vestment horizons has a considerable impact on the way liquidity affects asset
prices. It changes the relative size of liquidity and market risk premiums, leads
to cross-sectional differences in liquidity effects, and generates segmentation and
spillover effects. Although our model is not designed to realistically match ob-
served moments of the holding periods of investors, it can provide a better intu-
ition about the effects of heterogeneous investment horizons on expected returns.

Armed with this array of novel theoretical predictions, we take the model to
the data to test its empirical relevance. Specifically, we analyze the cross-section
of U.S. stocks over the period 1964–2009 and use the illiquidity measure of
Amihud (2002) to proxy for liquidity costs, as in Acharya and Pedersen (2005).
We estimate our asset pricing model using the generalized method of moments
(GMM) and find that a version with two horizons (1 month and 10 years) gen-
erates a good cross-sectional fit of expected stock returns. Specifically, for 25
liquidity-sorted portfolios, the heterogeneous-horizon model generates a cross-
sectional R2 of 72.6% compared with 26.6% for the nonnested Acharya–Pedersen
model. The improvement in R2 is thus substantial, and a model-comparison test
shows that this improvement is marginally statistically significant. We thus con-
clude, with moderate confidence, that our structural model generates a fit that is
better than the Acharya–Pedersen model while imposing more economic structure
on the composition of the risk premium and the expected liquidity premium. As
an upshot of our richer model, the empirical estimates can also be used to make
inferences about the risk-bearing capacity of investors in each horizon class.

This estimated equilibrium exhibits a substantial degree of segmentation.
In equilibrium, short-term investors hold only the more liquid stock portfolios,
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whereas long-term investors hold less liquid stocks. Stocks with intermediate liq-
uidity levels are held by both investors. This leads to sizable segmentation effects
on expected returns. In addition, despite the small overlap between the portfo-
lios of short- and long-term investors, there are substantial spillover effects in the
liquidity and risk premiums because the portfolio returns are highly correlated.

A key implication of our estimated model is that expected liquidity is much
more important, and liquidity risk is much less important, than in previous studies.
Taking account of the heterogeneity of investor horizons, we find an expected
liquidity premium, averaged across all 25 liquidity sorted portfolios, of 4.58% per
year. This compares with a figure of 0.73% in the homogeneous-horizon model
of Acharya and Pedersen (2005). Although much of the literature that assumes
investor homogeneity has found substantial liquidity risk premiums (Pástor and
Stambaugh (2003), Acharya and Pedersen (2005), Sadka (2006)), our estimates
imply a liquidity risk premium of only 0.02% per annum. We also find that the fit
of the model is barely changed if we ignore liquidity risk altogether. Hence, once
we allow for heterogeneous horizons and endogenous segmentation, a liquidity
risk premium is not needed to fit the U.S. cross-section of stock returns.

In the final part of the article, we develop an extended version of the theoret-
ical model that generates time variation in the liquidity premium by allowing for
regime switches in transaction costs. In this extended model, the degree of seg-
mentation can also vary across regimes. Using some approximations, we again
obtain analytically tractable asset pricing equations, in this case for the expected
returns in each regime. We first estimate the regime-switching model for trans-
action costs and then estimate the regime-dependent model for expected returns.
We again find a large expected liquidity component in this model, which is higher
in the illiquid regime. We also find that short-term investors exhibit a flight-to-
liquidity effect; that is, they endogenously choose to invest in only the most liquid
assets in the illiquid regime while investing in a wider set of assets in the liquid
regime.

The remainder of the article is organized as follows: Section II reviews the
relevant literature. Section III presents the liquidity asset pricing model. We set
out our estimation methodology and describe the data in Section IV. Section V
presents our empirical findings. In Section VI, we extend the model to a setting
with persistent transaction costs and estimate this extended model. We conclude
with a summary of our results in Section VII.

II. Related Literature
Our article contributes to the existing literature on liquidity and asset pricing

along several dimensions. First, our model is related to theoretical work on port-
folio choice and illiquidity (see, Amihud, Mendelson, and Pedersen (2006), for an
overview). Starting with the work by Constantinides (1986), several researchers
have examined multiperiod portfolio choice in the presence of transaction costs. In
contrast to these articles, we focus on a general equilibrium setting with heteroge-
neous investment horizons in the presence of liquidity risk. We obtain a tractable
asset pricing model by simplifying the analysis in other dimensions. In particular,
we assume no intermediate rebalancing for long-term investors.
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Second, our empirical results contribute to a rich literature that has empiri-
cally studied the asset pricing implications of liquidity and liquidity risk. Amihud
(2002) finds that stock returns are increasing in illiquidity both in the cross sec-
tion and in the time series. Pástor and Stambaugh (2003) show that the sensitivity
of stock returns to aggregate liquidity is priced. Acharya and Pedersen (2005)
integrate these effects into a liquidity-adjusted CAPM that performs better em-
pirically than the standard CAPM. In the liquidity-adjusted CAPM, the expected
return on a security increases with the level of illiquidity and is influenced by three
different liquidity risk covariances. Several articles build on these seminal articles
and document the pricing of liquidity and liquidity risk in various asset classes.2

However, none of these articles studies the liquidity effects with heterogeneous
investment horizons.

Third, our article is also related to empirical research showing the relation be-
tween liquidity and investors’ holding periods. For example, Chalmers and Kadlec
(1998) find evidence that it is not the spread, but the amortized spread that is more
relevant as a measure of transaction costs because it takes into account the length
of investors’ holding periods. Cremers and Pareek (2009) study how the invest-
ment horizons of institutional investors affect market efficiency. Cella, Ellul, and
Giannetti (2013) demonstrate that investors’ short horizons amplify the effects of
market-wide negative shocks. All of these articles use turnover data for stocks
and investors to capture investment horizons. In contrast, we estimate the degree
of heterogeneity in investment horizons by fitting our asset pricing model to the
cross-section of U.S. stock returns.

In their study of investors on the Oslo Stock Exchange over the period 1992–
2003, Næs and Ødegaard (2009) show that holding periods do vary widely by both
investor type (classified as financial, corporate, private, state, or foreign) and stock
liquidity (as measured by the bid–ask spread). Yan and Zhang (2009) compare the
investment strategies of institutional investors on the New York Stock Exchange
(NYSE), American Stock Exchange (AMEX), and National Association of Se-
curities Dealers Automated Quotations (NASDAQ) over the period 1979–2003.
They classify institutions as long term or short term by looking at their trading
turnover over the past 4 quarters. They find that although both short- and long-
term institutions prefer stocks with a higher turnover, short-term institutions have
a much stronger preference for high-turnover stocks. They interpret this as ev-
idence that short-term institutions care more about liquidity than do long-term
institutions.

A more specific result is obtained by Brogaard, Hendershott, and Riordan
(2014), who show that for a sample of NASDAQ and NYSE stocks, some 42%
of dollar volume in large stocks is due to high-frequency traders (HFTs), whereas
only 11% of dollar volume in small stocks is due to HFTs. This also indicates
a short-term investor preference for large, liquid stocks. Chen, Huang, Sun, Yao,
and Yu (2020) focus on the holdings of insurance companies in the corporate

2For example, Bekaert, Harvey, and Lundblad (2007) focus on emerging markets; Sadka (2010)
studies hedge funds; Franzoni, Nowak, and Phalippou (2012) focus on private equity; Bao, Pan, and
Wang (2011) study corporate bonds; and Bongaerts, Jong, and Driessen (2011) focus on credit default
swaps.
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bond market and also provide evidence for segmentation based on horizon and
liquidity. They find that insurers with longer effective horizons tend to hold less
liquid bonds. In addition, they find that the liquidity premium on corporate bonds
is higher when bonds are held by investors with a stronger preference for liquidity
(investors with a shorter horizon).

Fourth, our modeling approach is related to recent theories in which some
investors do not trade every period, although in these theories, there is no ex-
plicit role for transaction costs and illiquidity. For example, Duffie (2010) stud-
ies an equilibrium pricing model in a setting where some “inattentive” investors
do not trade every period. He uses this setup to study how supply shocks affect
price dynamics in a single-asset model. In contrast, besides incorporating transac-
tion costs, our focus is mostly on the cross section of expected returns. Similarly,
Brennan and Zhang (2018) develop an asset pricing model where a representative
agent has a stochastic horizon.3 However, liquidity effects are not incorporated,
and investors are homogeneous, in that they hold the same assets and liquidate
those assets simultaneously. In their model, horizon is important because it in-
teracts with securities’ risk characteristics. A security’s market beta is allowed to
depend on the horizon over which the returns are measured. The model is fitted
to the distribution of returns over different horizons. The information in the term
structure of beta plays a vital role in fitting the model. In our model, the horizon
of the investor is important only insofar as it interacts with transaction costs, and
there are no horizon effects in betas.

Fifth, our model extension with regime switches for transaction costs is re-
lated to work by Watanabe and Watanabe (2008) and Acharya, Amihud, and
Bharath (2013). Watanabe and Watanabe find evidence for regime switches in liq-
uidity risk exposure for stocks, with higher liquidity risk in bad times. They also
show that the liquidity risk premium is much higher in this bad state of the world.
Acharya et al. show, for corporate bonds and stocks, that exposure to liquidity
risk varies across regimes: In a stress regime, junk bonds and high book-to-market
stocks have higher liquidity risk.

Finally, our work relates to the literature on segmentation in international
equity markets (see Karolyi and Stulz (2003) for a survey). For example, Errunza
and Losq (1985) derive an asset pricing model where some investors have access
to only a subset of all financial assets, which is what we refer to as partial seg-
mentation. We extend their model by endogenizing the degree of segmentation
and, most importantly, by introducing illiquidity into the model.

III. The Model

A. Model Setup and Assumptions
Our liquidity asset pricing model features both stochastic liquidity and het-

erogeneous investment horizons in a multiple-asset setting. We develop a theoret-
ical framework that is also suitable for empirical estimation. Our model is built
on the following assumptions, which we partially relax in a later extension:

3Using a similar motivation, Kamara, Korajczyk, Lou, and Sadka (2016) empirically study how
the horizon that is used to calculate returns matters for the pricing of various risk factors.
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• Assumption 1: There are K assets, with asset i paying a dividend Di ,t each
period, which is added to the risk-free deposit. Selling the asset costs Ci ,t .
Transaction costs and dividends are IID to obtain a stationary equilibrium
and are allowed to be correlated. There is a fixed supply of each asset, equal
to Si shares, and a risk-free asset with exogenous and constant return R f .
Short selling of assets is not allowed.

• Assumption 2: We have N classes of investors with horizon h j , where
j=1, . . . , N . To simplify expressions, we focus on two classes of investors
in the main text, short- and long-term investors with horizons h1 and h2,
respectively. Appendix I.A of the Supplementary Material solves the model
for any N .

• Assumption 3: Investors have mean-variance utility over terminal wealth
with risk aversion A j for investor type j .

• Assumption 4: We have an overlapping-generations (OLG) setup. Each pe-
riod, a fixed quantity Q j >0 of type j investors enters the market and in-
vests in some or all of the K assets.

• Assumption 5: Investors with horizon h j only trade when they enter the mar-
ket and at their terminal date; hence, they do not rebalance their portfolios
at intermediate dates.

Most assumptions follow from Acharya and Pedersen (2005).4 In particu-
lar, the means, variances, and covariances of dividends and transaction costs are
assumed to be exogenously given. The key extension is that we allow for hetero-
geneous horizons, whereas Acharya and Pedersen feature only 1-period investors.
We make two simplifying assumptions to obtain tractable solutions. First, we as-
sume IID dividends and transaction costs to obtain a stationary equilibrium. In
Section VI, we relax this assumption and derive an equilibrium with persistent
transaction costs. The second simplifying assumption is that investors do not re-
balance at intermediate dates. This assumption is important mainly for long-term
investors. Note that the incentive for long-term investors to rebalance their portfo-
lios frequently is limited by the presence of transaction costs. This is especially the
case when, as in our benchmark model, returns are IID (see, e.g., Constantinides
(1986)). Time-varying expected returns and volatility would probably generate a
stronger preference for intermediate trading.

With IID dividends and costs, given a fixed asset supply and a wealth-
independent optimal mean-variance demand, and with the same type of investors
entering the market each period, we obtain a unique stationary equilibrium where
the price of each asset Pi ,t is constant over time. We now discuss this equilibrium
in more detail.

B. Equilibrium Expected Returns
At time t , Q j investors with horizon h j enter the market and solve a maxi-

mization problem where they choose the quantity of stocks purchased y j ,t (a vector

4Acharya and Pedersen (2005) start with investors with exponential utility and normally distributed
dividends and costs, which corresponds to our assumption of mean-variance preferences.
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with one element for each asset) to maximize utility over their holding-period re-
turn, taking into account the incurred transaction costs and short-sale constraints:

max
y j ,t

Et

[
W j ,t+h j

]
−

1
2

A j vart

(
W j ,t+h j

)
, such that y j ,t ≥ 0,(1)

W j ,t+h j =

(
Pt+h j +

h j∑
k=1

Rh j−k
f Dt+k −Ct+h j

)′
y j ,t + Rh j

f

(
e j − P ′t y j ,t

)
,

where R f is the gross risk-free rate, W j ,t+h j is the wealth of the h j investors at
time t+h j , Pt is the K ×1 vector of prices, and e j is the endowment of the h j

investors. Due to the presence of transaction costs, the optimal portfolio choice
of some investors may reflect what we call endogenous segmentation. This is the
possibility that some classes of investors choose not to hold some assets in equi-
librium, for example, because the associated trading costs are too high relative to
the equilibrium expected return over the investment horizon.5

In the remainder of the text of the article, we set R f =1 to simplify the ex-
position. Appendix I.A of the Supplementary Material derives the model for any
value of R f , which leads to very similar expressions. In the empirical analysis, we
set R f equal to the historical average of the risk-free rate.

Given the demands in equation (1), at any point in time, the market clears
with new investors buying the supply of stocks minus the amount still held by the
investors that entered the market at an earlier point in time,

(2) Q1 y1,t + Q2 y2,t = S−
h1−1∑
k=1

Q1 y1,t−k −

h2−1∑
k=1

Q2 y2,t−k ,

where S is the vector with the supply of assets (in number of shares of each of the
assets).

Given the IID setting, mean-variance preferences, and constant supply, we
look for a stationary equilibrium in which prices and demands are constant over
time and returns are IID. We can thus rewrite equation (2) as h1 Q1 y1+h2 Q2 y2=

S, where h j Q j is the total number of type j investors present at any point in
time. An equilibrium is given by a set of prices (or, equivalently, expected returns)
such that the optimal demand of all investors given these prices (equation (1))
satisfies the market-clearing condition in equation (2). In Appendix I.A of the
Supplementary Material, we provide the proof for the following proposition:

Proposition 1. Given Assumptions 1–5, a unique stationary equilibrium exists.
The optimal demands y1 and y2 can be obtained by solving the following

5In some cases, it could happen that some investors would want to short sell liquid assets if the
costs of short selling are not too high. For simplicity, we assume short selling is not possible. Bongaerts
et al. (2011) derive a liquidity asset pricing model that incorporates short selling. In Appendix I.B of
the Supplementary Material, we discuss in more detail how to arrive at an extension that does allow
for short selling.
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quadratic-programming problem:

max
y1, y2

Q1 y ′1

(
E
[
Z1,t+h1

]
−

1
2

A1var(Z1,t+h1 )y1

)
(3)

+Q2 y ′2

(
E
[
Z2,t+h2

]
−

1
2

A2var(Z2,t+h2 )y2

)
such that h1 Q1 y1+ h2 Q2 y2 = S, y1 ≥ 0, y2 ≥ 0,

with

(4) Z j ,t+h j =

h j∑
k=1

Dt+k −Ct+h j .

Proposition 1 shows how the demand equations of both investors and market
clearing can be rewritten into a single quadratic-programming problem, which is
easily solved using standard optimization procedures. In Section I.A of the Sup-
plementary Material, we also show how to rewrite Proposition 1 into asset returns
and percentage transaction costs, which is useful for the empirical implementation
in Sections IV and V.

Even though, in general, the quadratic program has to be solved numeri-
cally, we are able to characterize the equilibrium expected returns analytically. We
first define Rt+1 as the K ×1 vector of gross asset returns, with Ri ,t+1= (Di ,t+1+

Pi ,t+1)/Pi ,t , and ct+1 the K ×1 vector of percentage costs, with ci ,t=Ci ,t/Pi ,t . We
then use a result of De Roon, Nijman, and Werker (2001), who show that the
solution to a utility-maximization problem with short-sales constraints can be
rewritten as the usual mean-variance solution for the subset of assets for which
the short-sales constraint turns out not to be binding. This implies that given equi-
librium prices and expected returns, the optimal demand derived in Proposition 1
can be written as follows (see Appendix I.A of the Supplementary Material):

y j =
1
A j

diag(P)−1 var

( h j∑
k=1

Rt+k − ct+h j

)−1

y j>0,p

(5)

×
(
h jE [Rt+1− 1]−E [ct+1]

)
,

where, for a generic K ×K matrix M , we introduce the notation My j>0 to in-
dicate the matrix containing only the rows and columns of M corresponding to
the strictly positive elements of y j . We write M−1

y j>0,p for the inverse of My j>0

with 0s inserted at the locations where rows and columns of M were removed.
With this convention, var

(∑h j
k=1 Rt+k−ct+h j

)−1

y j>0,p
corresponds to the K ×K ma-

trix containing the inverse of the covariance matrix of the set of assets that type
j investors hold in equilibrium, with 0s inserted for the rows and columns that
were not included (the assets that investors j does not hold in equilibrium). The
optimal demand vector y j thus contains 0s for those assets in which investor j
does not invest, as it should.6

6Given that returns and percentage costs are IID in equilibrium, there is no need to condition the
expectations and variances on the information set at time t .
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We can then fill in the demand in equation (5) in the market-clearing equation
and solve for the equilibrium expected returns. We define Rm

t = S̃′Rt/S̃′ι and cm
t =

S̃′ct/S̃′ι, where S̃=diag(P)S denotes the dollar supply of assets. Appendix I.A
of the Supplementary Material then shows that under the stated assumptions, we
obtain the following result:

Proposition 2. For the unique stationary equilibrium described in Proposition 1,
the equilibrium expected returns equal

E [Rt+1− 1] = (γ1h1V1+ γ2h2V2)
−1
(γ1V1+ γ2V2)E [ct+1](6)

+ (γ1h1V1+ γ2h2V2)
−1 cov

(
Rt+1− ct+1, Rm

t+1− cm
t+1

)
,

where γ j=Q j/(A j S̃′ι), and

(7) V j = h j var(Rt+1− ct+1)var

( h j∑
k=1

Rt+k − ct+h j

)−1

y j>0,p

.

Proposition 2 shows that the equilibrium expected returns contain two com-
ponents. The first component is a compensation for expected transaction costs.
The second component is a compensation for market risk and liquidity risk. Note
that the loadings on expected costs and return covariances are matrices. This is in
contrast to standard linear asset pricing models, where these loadings are scalars,
which results in all assets having the same exposure to expected costs and the
return covariance.

In the equilibrium equation (6), the parameter γ j is related to the risk-bearing
capacity of the h j investors. As mentioned previously, in every period, the total
number of h j investors in the market is equal to h j Q j , which determines among
how many h j investors the risky assets can be shared. Their risk aversion A j is
also important because it determines the size of the position these investors are
willing to take in the risky assets. Therefore, we can indeed interpret the quantity

(8) h jγ j =
h j Q j

A j

1
S̃′ι

as the risk-bearing capacity of the h j investors scaled by the total market capi-

talization. Finally, we note that var
(∑h j

k=1 Rt+k−ct+h j

)−1

y j>0,p
depends on the op-

timal demands derived in Proposition 1, in particular on which assets the in-
vestor chooses to hold in equilibrium. In practice, we thus first solve the quadratic
program in Proposition 1 and then calculate equilibrium expected returns using
Proposition 2.

C. Segmentation versus Integration
In this section, we expand and draw out the implications of our results, no-

tably Proposition 2, by looking at some simplified versions of the model. In par-
ticular, we contrast integrated assets, which are held by both investors, with seg-
mented assets, which are held by only one investor type. In Section V, where we
take the model to the data, we do, of course, use the fully general model.
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We focus on the case where transaction costs are fixed. In the empirical sec-
tion, we show that liquidity risk does not play an important role in our sample.
We also assume two classes of investors, with h1<h2, and we set the risk-free
rate R f −1 to 0 in these examples.

Proposition 2 simplifies considerably in the case of complete segmentation,
the case where every asset k is held in its entirety by either investor 1 or investor
2 but not by both. Using equation (5) and constant transaction costs, it directly
follows that

(9) yk, j > 0 ⇒ E
[
Rk,t+1− 1

]
=

1
h j

ck +
1
γ j h j

cov
(
Rk,t+1, R j

t+1

)
,

where R j is the return on investor j’s portfolio.7 This has a simple interpretation:
To be held by investor j , the expected return on the asset must be sufficient to
compensate for both its amortized transaction cost and its marginal contribution
to the risk of the investor’s portfolio. For any asset not held by investor j , the
equality becomes an inequality:

(10) yk, j = 0 ⇒ E
[
Rk,t+1− 1

]
≤

1
h j

ck +
1
γ j h j

cov
(
Rk,t+1, R j

t+1

)
.

The expected return on the asset is too low to merit inclusion in investor j’s
portfolio.

Note that equations (9) and (10) only implicitly define the expected returns
in equilibrium because investor j’s portfolio return R j

t+1 depends on the optimal
holdings of this investor in equilibrium. In the next subsection, we work out a full
example of expected returns on segmented assets.

Now equations (9) and (10) must hold for any equilibrium, not just for a
segmented equilibrium; they are simply the first-order conditions for the indi-
vidual investor’s optimization problem. That means that for any asset k held by
both long- and short-horizon investors, we can take a weighted average of equa-
tion (9) for j=1 and 2. Investors collectively hold the market, so γ1h1

(
R1

t+1−1
)
+

γ2h2

(
R2

t+1−1
)
=(γ1h1+γ2h2)

(
Rm

t+1−1
)
, and we get

(11) yk,1, yk,2 > 0 ⇒ E
[
Rk,t+1− 1

]
=

γ1+ γ2

γ1h1+ γ2h2

ck +
1

γ1h1+ γ2h2

cov
(
Rk,t+1, Rm

t+1

)
.

For assets held by both classes of investors, the expected return is the sum of
amortized transaction costs and compensation for market risk. The amortization
rate is a weighted average of that of the two classes of investors.

In sum, we see that for segmented assets, prices are based on the preferences
and horizon of the investor holding these assets (equation (9)), under the condition
that the other investor is not interested in holding these assets (equation (10)). For
integrated assets, the preferences and horizons of both investors directly influence
the pricing equation (11).

7More formally, let Ỹ j be the dollar position in assets held by investor j in equilibrium (so Ỹ j =

diag(Pt )h j Q j y j ); then R j
t =1+ Ỹ ′j (Rt−1)/S̃′ι is the component of the market return attributable to

investor j .
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To illustrate further when we obtain segmentation or integration, we simplify
the setting even more. In the empirical section, our assets are liquidity-sorted port-
folios of stocks; we find that they are highly correlated with each other. So con-
sider the case where all assets are perfectly correlated with the same return vari-
ance and differ only in the level of transaction costs. It directly follows, then, that
the more liquid securities (ck< some critical level c∗) are held by short-term in-
vestors, whereas the less liquid securities (ck>c∗) are held by long-term investors;
there is complete segmentation (except possibly the asset with c=c∗, which may
be held by both types of investors). Expected returns are concave in transaction
costs:

(12) E
[
Rk,t+1− 1

]
=

{
δ− (c∗− ck)/h1 if ck ≤ c∗;
δ+ (ck − c∗)/h2 if ck > c∗,

where δ and c∗ depend on the variance of returns, the supply of assets, transaction-
cost levels, and the risk-bearing capacity of investors. This complete segmentation
is similar to what is obtained in the Amihud and Mendelson (1986) model.

Now consider the introduction into this market of an asset that has a beta
of 1 against the other assets but also has some idiosyncratic risk. Suppose it has
c>c∗; if it is in infinitely small supply, it will be held by the long-term investor
alone and have an expected return of (c−c∗)/h2+δ. The short-term investor will
not want to hold it. The short-term investor requires a higher rate of return of
(c−c∗)/h1+δ. As the supply of the asset increases (with a corresponding decline
in the supply of other illiquid securities), the amount of the asset’s idiosyncratic
risk borne by the long-term investor rises. The long-term investor’s required rate
of return rises. The short-term investor’s required rate of return does not change
because he or she is not bearing any of the idiosyncratic risk. If the supply of the
asset is large enough, the rate of return will rise to a level such that the short-
term investor wants to hold it as well. The market for the asset is then integrated.
Similarly, if the supply of a liquid asset with idiosyncratic risk is high enough,
the premium required by the short-term investor for bearing the risk will be suffi-
ciently high that the long-term investor will also want to hold the asset. Hence, in
this case, we end up with an equilibrium where some assets are integrated while
others are segmented. This is what we find when we take the model to the data.

D. A Full Example of Partial Segmentation
In the previous section, we argued that depending on the parameters, a mix

of segmented and integrated assets can arise in equilibrium. We now provide a
full example of such an equilibrium with both integrated and segmented assets.
To obtain tractable expressions, we continue to take constant transaction costs
(var(ct+1)=0), but we do not restrict asset returns to be perfectly correlated. Of
course, our benchmark empirical estimation focuses on the unrestricted equilib-
rium in equation (6).

We then focus on the case where the input parameters in Proposition 1 are
such that short-term investors choose to invest in a subset of assets only in equi-
librium, whereas the long-term investors optimally hold all assets. Given the
constant transaction costs, this implies that V2= I . Without loss of generality,
we also set h1=1 to simplify notation. This specific case is similar to that of
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Errunza and Losq (1985), and the asset pricing expressions that follow thus ex-
tend the work of Errunza and Losq to a setting with transaction costs.

The returns on the assets that are held by short-term investors are denoted
Rliq

t , and the returns on the assets that are not held by short-term investors are
denoted by Rilliq

t . We also use this notation for the costs. Appendix I.C of the
Supplementary Material proves the following proposition:

Proposition 3. If N=2, h1=1, var(ct+1)=0, R f =1, long-term investors opti-
mally hold all assets, and short-term investors optimally hold only a subset of
“liquid” assets, then for these “liquid” assets, the expected returns are

(13) E
[
Rliq

t+1− 1
]
=

γ1+ γ2

γ1h1+ γ2h2
E
[
cliq

t+1

]
+

1
γ1h1+ γ2h2

cov
(
Rliq

t+1, Rm
t+1

)
.

The expected returns on “illiquid” assets held only by long-term investors are

E
[
Rilliq

t+1 − 1
]
=

1
h2

E
[
cilliq

t+1

]
+

h2− h1

h2

γ1

γ1h1+ γ2h2
βE

[
cliq

t+1

]
(14)

+
1

γ1h1+ γ2h2
cov

(
Rilliq

t+1, Rm
t+1

)
+

(
1
γ2h2
−

1
γ1h1+ γ2h2

)
cov

(
Rilliq

t+1, Rm
t+1

)
−

(
1
γ2h2
−

1
γ1h1+ γ2h2

)
βcov

(
Rliq

t+1, Rm
t+1

)
,

where the matrix β denotes the liquidity spillover beta, defined as

(15) β = cov
(
Rilliq

t+1, Rliq
t+1

)
var
(
Rliq

t+1

)−1
.

First, we note that the equilibrium expected returns for liquid assets are iden-
tical to the expression given in equation (11), where assets are held by both short-
and long-term investors. For the “illiquid” assets, the pricing is more complex.
In what follows, we discuss separately the different components that make up
expected excess returns for illiquid assets.

We start by analyzing the expected liquidity effect that we can decompose
into three parts:

γ1+ γ2

γ1h1+ γ2h2
E
[
cilliq

t+1

]
+

(
1
h2
−

γ1+ γ2

γ1h1+ γ2h2

)
E
[
cilliq

t+1

]
(16)

+
h2− h1

h2

γ1

γ1h1+ γ2h2
βE

[
cliq

t+1

]
.

The first component, which we denote full risk-sharing expected liquidity pre-
mium, is the expected liquidity effect that one would obtain if these assets were
held by both short- and long-term investors. The second term (segmentation ex-
pected liquidity premium) reflects the fact that only long-term investors hold
the illiquid assets; this term dampens the effect of expected liquidity because
1/h2− ((γ1+γ2)/(γ1h1+γ2h2))<0. The third component (spillover expected liq-
uidity premium) arises from the exposure (as given by β) of the illiquid assets to
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the liquid assets. If this exposure is positive, this increases the expected liquidity
effect for the illiquid assets because ((h2−h1)/h2)(γ1/(γ1h1+γ2h2))>0. In other
words, if liquid and illiquid assets are positively correlated, the expected liquid-
ity effect on illiquid assets cannot be much lower than the effect for liquid assets
because long-term investors would take advantage by buying the liquid assets in
preference to the illiquid assets.

We now turn to the risk premiums, where we also have a natural interpreta-
tion for each of the various covariance terms in the equilibrium relation for the
illiquid assets. The term

(17)
1

γ1h1+ γ2h2
cov

(
Rilliq

t+1, Rm
t+1

)
gives the full risk-sharing risk premium that would arise if both types of investors
would hold the asset. The second term,

(18)
(

1
γ2h2
−

1
γ1h1+ γ2h2

)
cov

(
Rilliq

t+1, Rm
t+1

)
,

gives the segmentation risk premium, which shows the impact of the lower risk
sharing due to long-term investors only holding the illiquid assets. Because
(1/γ2h2)− (1/(γ1h1+γ2h2))>0, this segmentation premium increases expected
returns in the case of positive return covariance. The third term,

(19) −

(
1
γ2h2
−

1
γ1h1+ γ2h2

)
βcov

(
Rliq

t+1, Rm
t+1

)
,

defines a spillover risk premium. Along the lines of the previous discussion for
the expected liquidity effect, this term concerns the relative pricing of the illiq-
uid versus liquid assets. If the returns on liquid and illiquid assets are positively
correlated, this effect reduces the segmentation effect.8

IV. Empirical Methodology and Data

A. GMM Estimation
We use a GMM methodology to estimate the equilibrium conditions given

by Propositions 1 and 2 but without imposing R f =1. Empirically, we focus on
a model with two horizons, and we fix these horizons h1 and h2 in the empirical
analysis. Then, the parameters that remain to be estimated are γ j=Q j/(A j S̃′ι).

As discussed later, we use a cross section of equity portfolio returns to esti-
mate the model. We define the vector of pricing errors of all portfolios, denoted
by g(ψ ,γ ), as

g(ψ ,γ ) = E [Rt+1− 1]− (γ1h1V1+ γ2h2V2)
−1
(γ1V1+ γ2V2)E [ct+1](20)

− (γ1h1V1+ γ2h2V2)
−1 cov

(
Rt+1− ct+1, Rm

t+1− cm
t+1

)
,

8The presence of a segmentation risk premium is in the spirit of the international asset pricing
literature (e.g., De Jong and De Roon (2005)), where segmentation also leads to additional effects on
expected returns.
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where γ = (γ1,γ2)′ is the vector of parameters, and ψ is a vector containing all
expected returns, expected costs, covariances entering the V j matrices, and the
covariances with the market return.9 Concretely, in a first step, we estimate all el-
ements of ψ by their sample moments. In a second step, we perform a GMM es-
timation of γ , using an identity-weighting matrix across all portfolios. Note that
the matrices V1 and V2 depend on the optimal demands y1 and y2, which in turn
depend on γ. Hence, for a given value of γ , we first determine optimal demands
using Proposition 1. In Section I.A of the Supplementary Material, we discuss in
detail how we implement Proposition 1 empirically. We then calculate equilib-
rium expected returns and compare these with observed average returns. We thus
minimize the GMM goal function J , equal to the sum of squared pricing errors,
over γ ,

(21) min
γ

J = g(ψ̂ ,γ )′g(ψ̂ ,γ ).

In Appendix II.B of the Supplementary Material, we derive the asymptotic
covariance matrix of this GMM estimator, taking into account the estimation error
in all sample moments in ψ , in line with the approach of Shanken (1992). We also
describe how we use a standard bootstrap method to calculate this asymptotic
covariance matrix and obtain standard errors for the relevant parameters.

B. Data
We follow Acharya and Pedersen (2005) in our data selection and construc-

tion. We use daily stock return and volume data from the Center for Research
in Security Prices (CRSP) from 1964 until 2009 for all common shares listed
on NYSE and AMEX. Because our empirical measures of liquidity rely on vol-
ume, we do not include NASDAQ because the volume data include interdealer
trades (and only start in 1982). Overall, we consider a number of stocks ranging
from 1,056 to 3,358, depending on the month. To correct for survivorship bias,
we adjust the returns for stock delisting (see Shumway (1997) and Acharya and
Pedersen (2005)).

There is a debate regarding which illiquidity measure is most appropriate.
Hasbrouck (2009) shows that the Amihud (2002) measure has a substantial cross-
sectional correlation with intraday price-impact measures. Lou and Shu (2017)
show that the cross-sectional relation between equity returns and the Amihud
measure is mainly due to the volume component in the Amihud measure. They
question whether this volume premium is a liquidity premium. At the same time,
it is nontrivial to disentangle liquidity premiums from other potential effects of
volume. As standard models of trading and transaction costs predict, volume and
more advanced liquidity measures are empirically strongly correlated in the cross
section. Because of this, and to make the comparison with Acharya and Pedersen
(2005) as clean as possible, we follow their approach when measuring liquidity
and use the Amihud measure.

9We compute the long-term covariance matrices using the IID assumption. Appendix II.A of the
Supplementary Material provides further details.
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The relative illiquidity cost is thus computed as in Acharya and Pedersen
(2005). The starting point is the Amihud (2002) illiquidity measure, which is de-
fined as

(22) ILLIQi ,t =
1

DAYSi ,t

DAYSi ,t∑
d=1

∣∣Ri ,t ,d

∣∣
VOLi ,t ,d

for stock i in month t , where DAYSi ,t denotes the number of observations avail-
able for stock i in month t , and Ri ,t ,d and VOLi ,t ,d denote the return and trading
volume in millions of dollars for stock i on day d in month t , respectively.

We follow Acharya and Pedersen (2005) and define a normalized measure of
illiquidity that deals with nonstationarity and is a direct measure of trading costs,
consistent with the model specification. The normalized illiquidity measure can
be interpreted as the dollar cost per dollar invested and is defined for asset i by

(23) ci ,t = min
{
0.25%+ 0.30ILLIQi ,t Pm

t−1,30.00%
}

,

where Pm
t−1 is equal to the market capitalization of the market portfolio at the end

of month t−1 divided by the value at the end of July 1962. The product with
Pm

t−1 makes the cost series ci ,t relatively stationary, and the coefficients 0.30 and
0.25 are chosen as in Acharya and Pedersen (2005) to match approximately the
level and variance of ci ,t for the size portfolios to those of the effective half spread
reported by Chalmers and Kadlec (1998). The value of normalized liquidity ci ,t is
capped at 30% to make sure the empirical results are not driven by outliers.

As in Acharya and Pedersen (2005), we construct 25 illiquidity portfolios.
The portfolios are formed on an annual basis. For these portfolios, we again
require the stock price on the first trading day of the corresponding month to
be between $5 and $1,000. For each portfolio, we require at least 100 observa-
tions of the illiquidity measure in the previous year. We also construct the value-
weighted market portfolio and the value-weighted market-wide transaction costs
on a monthly basis.10

Table 1 and Figure 1 show the estimated average costs and average returns
across the 25 illiquidity portfolios. The values correspond quite closely to those
found in Acharya and Pedersen ((2005), Table 1). Most importantly, we see that
average returns tend to be higher for illiquid assets. Also, Table 1 shows that the
returns on more illiquid portfolios are more volatile. This finding holds for returns
net of costs as well. The returns (net of costs) on more illiquid portfolios tend to
comove more strongly with market returns (also net of costs).

In Table 1, we also provide, for each portfolio, the total market capitalization,
averaged over time, as a fraction of the total market capitalization. This is impor-
tant for the estimation of our model because Proposition 1 uses the supply of each
asset when solving for the equilibrium. Table 1 shows, not surprisingly, that the
market capitalization is lower for less liquid portfolios: The most liquid portfolio

10Acharya and Pedersen (2005) construct a market portfolio by equally weighting the 25 liquidity-
sorted portfolios. Our results are qualitatively similar when we use such an equal-weighted market
portfolio. However, as Hou, Xue and Zhang (2018) show, liquidity effects are strongest for small caps,
and equal weighting puts a relatively high weight on these small stocks. We thus use value-weighted
portfolios and a value-weighted market portfolio in our benchmark analysis.
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FIGURE 1
Average Returns and Transaction Costs

Figure 1 illustrates the average monthly return (left axis) and average transaction costs (right axis) for the 25 U.S. stock
portfolios sorted on illiquidity. Portfolio 1 is the most liquid portfolio, whereas portfolio 25 is the least liquid portfolio.
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TABLE 1
Descriptive Statistics

Table 1 shows descriptive statistics for the data used to estimate the model. The Center for Research in Security Prices
(CRSP) data used are monthly data corresponding to 25 value-weighted U.S. stock portfolios sorted on illiquidity with
the sample period 1964–2009. The average excess return E [Rt+1]−Rf , the standard deviation of returns σ (Rt+1), the
standard deviation of returns net of costs σ (Rt+1−ct+1), the covariance between portfolio- and market-level returns net
of costs cov

(
Rt+1−ct+1,Rm

t+1−c
m
t+1

)
, and the percentage turnover TRN are computed from the time-series observations.

We also report the percentage of the total market capitalization (MCAP) represented by each portfolio.

E [Rt+1]−Rf E [ct+1] σ (Rt+1) σ (ct+1) σ (Rt+1−ct+1) cov(. . . , . . .) TRN MCAP

Portfolio (%) (%) (%) (%) (%) (×100) (%) σ (TRN) (%)

1 0.3264 0.2518 4.2022 0.0017 4.2024 0.1774 5.9158 6.2783 53.50
2 0.3755 0.2568 4.6114 0.0060 4.6123 0.1950 6.9554 6.2195 8.46
3 0.4354 0.2611 4.6451 0.0093 4.6465 0.1957 6.9501 6.0284 5.54
4 0.5600 0.2664 4.7600 0.0133 4.7621 0.1992 7.1681 6.8244 4.24
5 0.5953 0.2732 5.0470 0.0192 5.0506 0.2085 6.8267 6.0381 3.69
6 0.5495 0.2827 4.8503 0.0261 4.8549 0.1997 6.8506 6.4248 2.94
7 0.5571 0.2928 4.7960 0.0329 4.8009 0.1963 6.4540 5.5812 2.38
8 0.5431 0.3083 4.9547 0.0470 4.9637 0.1979 6.2103 5.4767 2.17
9 0.6055 0.3253 4.9567 0.0608 4.9678 0.1996 6.0450 5.0996 1.75

10 0.6309 0.3448 4.8916 0.0699 4.9049 0.1949 5.6554 4.8098 1.77
11 0.6734 0.3725 5.1438 0.0941 5.1611 0.2010 5.4089 4.2691 1.57
12 0.5630 0.4037 4.8935 0.1072 4.9144 0.1913 4.7951 3.7103 1.33
13 0.6529 0.4376 4.8893 0.1240 4.9165 0.1898 4.7662 3.6871 1.25
14 0.7400 0.4758 5.0515 0.1529 5.0836 0.1951 4.4090 3.0553 1.22
15 0.6506 0.5453 5.0894 0.1981 5.1365 0.1933 4.2004 3.0606 1.17
16 0.6331 0.6210 5.0289 0.2298 5.0830 0.1912 4.0327 2.5514 0.95
17 0.8010 0.7238 5.0751 0.3034 5.1522 0.1863 4.2676 4.4986 0.92
18 0.6807 0.8283 5.0265 0.3259 5.1102 0.1848 4.2420 5.3765 0.91
19 0.8664 0.9742 5.1872 0.4031 5.2873 0.1857 3.7374 2.6377 0.67
20 0.6789 1.2769 5.3153 0.5771 5.4804 0.1858 3.4632 2.3135 0.77
21 0.8253 1.5531 5.4042 0.6395 5.5692 0.1894 2.9857 1.7014 0.90
22 0.8381 1.9864 5.3899 0.8188 5.5838 0.1781 3.8557 7.9582 0.59
23 0.8183 2.8059 5.4890 1.2157 5.9041 0.1872 3.1721 2.6555 0.48
24 0.7511 4.4659 5.5545 2.0282 6.3574 0.1816 2.6859 1.9129 0.42
25 0.8712 8.0759 6.0417 4.0085 7.8284 0.1835 2.4010 2.1144 0.41
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represents 53.5% of the total equity market value. Together with Figure 1, this im-
plies that the liquidity premium mostly exists in stock portfolios with low market
capitalization. This is in line with the results of Hou et al. (2018), who show that
the liquidity premium is concentrated in small stocks.

V. Empirical Results
In this section, we take the model to the data. First, we estimate the pa-

rameters of the model for a 2-horizon model and compare it with single-horizon
models (e.g., Acharya and Pedersen (2005)). We also explore the implications of
the estimates for the importance of the different components of expected returns.

A. Benchmark Estimation Results
Our benchmark estimation is based on two classes of investors. The first

class (short horizon) has an investment horizon h1 of 1 month, and the second
class (long horizon) has an investment horizon h2 of 120 months (10 years). The
choice for the length of the long horizon can be compared with the estimate we
obtain using the methodology of Atkins and Dyl (1997) for our sample.11 Over
the 1964–2009 period, we find an equal-weighted average holding period of 4.76
years (see Appendix III.A of the Supplementary Material).

Having set horizons, we then estimate the model parameters γ j=Q j/(A j S̃′ι)
and, in some cases, a constant term in the expected return equation (α). We de-
note the models with and without a constant term as specifications (2HOR+α)
and (2HOR), respectively. The role of the constant term is to provide a specifica-
tion check because it should equal 0 under the null hypothesis. Table 2 shows the
estimation results. We find that the model provides a very good fit of the cross sec-
tion of the liquidity-sorted portfolio returns, with a cross-sectional R2 of 72.6%
without an intercept and 74.1% with a constant term.12 The root-mean-square er-
ror (RMSE) for the fit of the average returns is approximately 7 basis points (bps)
per month, which confirms the good fit.

The estimates in Table 2 can be used to obtain insight into the relative impor-
tance of long- and short-term investors as measured by their risk-bearing capacity
h jγ j . Without a constant term, the estimates imply that the risk-bearing capac-
ity of short-term investors is approximately 14 times as large as the capacity of
long-term investors, with similar risk-bearing capacities when we add a constant
term. We thus see that both investor types contribute to the risk sharing in the
economy, but short-term investors are much more important. Table 2 also shows
that the γ j parameters are not always estimated with great precision. This is due
to the well-known estimation error in estimates of expected returns and because
we also incorporate estimation errors in all sample estimates, including average
transaction costs and all covariances. Note also that we have fixed the horizons of

11Atkins and Dyl (1997) find that the mean investor holding period for NYSE stocks during the
period 1975–1989 is equal to 4.01 years.

12The R2 is defined as 1 − (residual variance/total variance). Here, the residual variance is the
cross-sectional variance of the model-implied minus observed average returns, and total variance is
the cross-sectional variance of the average portfolio returns.
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TABLE 2
Benchmark Estimation Results: Illiquidity-Sorted Portfolios

Table 2 shows the estimation results for various model specifications. The estimates are based on monthly data corre-
sponding to 25 value-weighted U.S. stock portfolios sorted on illiquidity with the sample period 1964–2009. An equal-
weighted market portfolio is used. The parameters are estimated using the generalized method of moments (GMM). For
each coefficient, the t -value is given in parentheses. The cross-sectional R 2 and root-mean-square error (RMSE) are
also reported, as well as the risk-bearing capacity of investors with a given horizon (γj hj ). The first model is a 2-horizon
model (equation (6), with h1=1, and h2=120, without and with a constant term α (2HOR and 2HOR+α, respectively).
‘‘AP’’ indicates that the specification corresponds to a variant of the Acharya and Pedersen (2005) specification given by
equation (24), where κ is the slope coefficient on expected liquidity. Finally, estimates for a single-horizon model are given
(setting Q2=0 in equation (6)), with the horizon h1 chosen to maximize the R 2, which gives h1=16 without a constant
and h1=21 with a constant.

γ1 γ2 α κ R 2 RMSE γ1h1 γ1h2

(2HOR) 0.70398 0.00045 72.6% 0.075% 0.70398 0.05334
(1.30) (1.31)

(2HOR+α) 0.70941 0.00034 0.004% 74.1% 0.073% 0.70941 0.04065
(4.18) (2.51) (0.00)

(AP) 0.32636 0.05305 26.6% 0.122% 0.32636
(2.62) (2.10)

(AP+α) −0.47145 1.007% 0.04184 32.3% 0.117% −0.47145
(−0.43) (1.06) (1.64)

(1HOR) 0.02091 27.4% 0.122% 0.33457
(2.63)

(1HOR+α) 0.04118 0.359% 29.0% 0.120% 0.87727
(3.12) (0.92)

the investors ex ante. If we were to estimate these horizons, this would affect the
standard errors of all parameters.

Next, we focus on the optimal demands of the short- and long-term investors
in equilibrium, obtained using Proposition 1. In Graph A of Figure 2, we plot
these demands for each portfolio for the case without a constant term. For each
portfolio, the demands add up to the share of this portfolio in the total market port-
folio. For example, the most liquid portfolio 1 contains 53.5% of the total market
portfolio value, whereas the value of portfolio 25 equals 0.4% of the total market
portfolio. We see that the equilibrium generates almost full segmentation. Only
three portfolios are held by both investors: portfolios 1, 14, and 15.13 Portfolios
2–12 are held exclusively by the short-term investors, whereas portfolio 13 and
the 10 least liquid stock portfolios are held only by long-term investors. Graph
B of Figure 2 presents the holdings as a fraction of the total holdings of each in-
vestor. Note that even though the holdings of the two investor types only overlap
for three portfolios, their total investment returns will be substantially correlated
because of the return correlations across portfolios, which may lead to substantial
spillover effects.

We can use the examples in Section III.C to understand these results. As
shown there, if asset returns are highly correlated, an equilibrium with (almost)
full segmentation may prevail because investors have limited interest in diversify-
ing their wealth across assets. In our data, the average pairwise return correlation
of the 25 liquidity-sorted portfolios is equal to 0.84. Hence, by investing in a
few portfolios, most of the diversification benefits have been achieved. The fact

13To be precise, the short-term investor has positions of 52.29%, 0.06%, and 0.03% in portfolios
1, 14, and 15, respectively. The long-term investor holds 1.20%, 1.16%, and 1.13% in these portfolios,
respectively.
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FIGURE 2
Optimal Portfolio Holdings of Investors

Figure 2 gives, for each of the 25 equity portfolios sorted on transaction costs, the optimal holdings of short-term (1-
month) and long-term (120-month) investors for the benchmark 2-horizon model in Table 2 (without a constant term).
These holdings are obtained using Proposition 1 and are presented as a fraction of the total supply of the value-weighted
market portfolio in Graph A and as a fraction of the total holdings of each investor in Graph B.
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that the long-term investor invests in the illiquid portfolios is then natural. That
this investor also holds the most liquid portfolio can be understood as follows:
First, consider the analysis in Section III.C. Here, equations (9) and (10) show
the conditions for including or not including an asset in the optimal portfolio,
both for short- and long-term investors, in the case of constant transaction costs.
Next, consider the most liquid portfolios 1 and 2. As shown in Table 1, these two
portfolios have similar transaction-cost levels, but portfolio 1 has substantially
lower risk, in terms of both standard deviation and covariance with the market.

392 Journal of Financial and Quantitative Analysis

https://doi.org/10.1017/S0022109020000137  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109020000137


Table 2 shows that the risk-bearing capacity of the short-term investors is much
higher than that of the long-term investors. Thus, long-term investors care more
about the higher risk of portfolio 2 than do short-term investors. Given that the
short-term investors will surely hold both portfolios 1 and 2 in equilibrium be-
cause of their high liquidity, they will set expected returns on these two portfolios
(equation (9)). Given the high risk-bearing capacity (“low risk aversion”) of the
short-term investors, these investors will price portfolio 2 at an only slightly higher
expected return. However, the long-term investors, with their lower risk-bearing
capacity, require a much higher expected return for portfolio 2 and thus decide
not to invest in portfolio 2. Portfolio 1, with its lower risk, is partially held by the
long-term investor: Given its low risk and its liquidity premium, it improves the
risk–return trade-off of the portfolio of the long-term investor.

We find almost the same optimal demands when we allow for a constant term
in the asset pricing model. In this case, the short-term investors hold portfolios
1–14, and the long-term investors hold portfolio 1 and portfolios 14–25. Hence,
portfolios 1 and 14 are held by both investors.

The results in our article imply that short-term (1-month) investors hold, in
value terms, 88% of the total market, whereas long-term (10-year) investors hold
12% of the market. The market is fairly sharply segmented. The most illiquid
stocks are held just by long-term investors, and most of the more liquid stocks
are held just by short-term investors. However, both types of investors hold the
most liquid stocks, those in portfolio 1, which accounts for approximately 50% of
market capitalization. The heterogeneity of investors’ horizons, and their associ-
ated demand for liquidity, is crucial to our model, and it is therefore important to
review the empirical evidence for it.

The empirical evidence strongly supports the heterogeneity of investors on
which our model is based. We also find that the average holding periods in our
model are of the same order of magnitude as those observed in practice, but we
would not wish to put much weight on this. Our model is designed to explain
how the heterogeneous demand for liquidity between investors affects asset re-
turns. It is not a model of trading behavior. For tractability, we model demands
for liquidity by having our investors be forced to liquidate their portfolios at some
defined date, but there are other reasons for demanding liquidity than having an
ineluctable requirement to turn shares into cash. For example, open-end funds
have to demonstrate that they can meet any likely demand for withdrawals with-
out harming remaining investors by being forced to sell assets at a discount to
market prices or by changing the risk profile of their portfolios (see U.S. Secu-
rities and Exchange Commission (2016) for a fuller discussion on the liquidity-
management requirements for open-end funds). This requirement forces funds to
hold a more liquid portfolio than the one that maximizes their expected net return.
Furthermore, the demand by investors for index funds and the pressures on fund
managers to track an index (Basak and Pavlova (2013)) will also increase the de-
mand for liquid assets (which are overrepresented in most indices) in a way that
our model does not capture.

The extension to our model provided in Section VI, which incorporates time-
series variation in liquidity, predicts that when liquidity deteriorates, there is a
shift of portfolios, with long-horizon investors taking on some of the less liquid
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stocks held by short-horizon investors and reducing their holdings of the most
liquid securities. There is some evidence that this does happen in practice. Ben-
Rephael (2017) studies mutual fund behavior at times of financial crisis. He shows
that after a deterioration in market conditions, there tend to be more retail in-
vestor redemptions/withdrawals from mutual funds that hold illiquid stocks. Mu-
tual fund managers as a group therefore reduce their exposure to illiquid stocks.
This sell-off is accommodated by two types of institutional investors: those who
hold large diversified portfolios and trade infrequently and investors who trade
aggressively on short-term information (respectively, “quasi-indexers” and “tran-
sient investors” in the classification of Bushee (1998)).

B. Comparison with Single-Horizon Models
Does the 2-horizon model improve upon single-horizon models? To answer

this question, we compare our model with two single-horizon models. The first
model is the single horizon obtained by setting Q2=0 in equation (6). We choose
h1, the single horizon of all investors, by maximizing the R2 across horizons,
which generates an optimal horizon of 16 months (no constant term) and 21
months (with a constant term). We then estimate the single parameter γ1 (and a
constant term in one specification) using GMM and denote the models by 1HOR
and 1HOR+α.

The second, closely related, single-horizon model is the benchmark empiri-
cal specification used by Acharya and Pedersen (2005). Their setup has a 1-period
horizon (h1=1) but allows for a slope coefficient κ on the expected liquidity term
E [ct+1],

(24) E [Rt+1− 1] = κE [ct+1]+
1
γ1

cov(Rt+1− ct+1, Rm
t+1− cm

t+1).

We denote these single-horizon specifications as AP and AP+α if we add the
constant term.

Table 2 shows the estimation results for the 25 illiquidity-sorted portfolios.
The 1HOR and AP models generate very similar R2 values of 27.4% and 26.6%,
respectively, both well below the 2-horizon model R2 of 72.6%. Table 2 also
shows that the 2-horizon model still has a substantially higher R2 than the single-
horizon models when we allow for a constant term α in the asset pricing equation.
It is important to keep in mind that we fixed the horizons in the two-horizon model
ex ante. Robustness tests in Section III.D of the Supplementary Material show that
the empirical results are similar with the long horizon set at 3 years or longer and
the short horizon set at 3 months or less. However, especially when we fix the
short-term horizon at 6 months or longer, the fit deteriorates.

In Figure 3, we plot the model-predicted expected returns against the ob-
served average returns across the 25 portfolios. These figures illustrate the much
better fit of the 2-horizon model compared with the AP model. The observed av-
erage returns exhibit considerable variation across the 25 portfolios, and Graph A
of Figure 3 shows that the AP model is not able to generate and fit this variation.
Graph B of Figure 3 shows that the 2-horizon model obtains a much better fit. We
then investigate the source of the improved fit in more detail and use the empirical
estimates to decompose expected returns into an expected liquidity component
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FIGURE 3
Predicted versus Observed Returns

Graph A of Figure 3 plots the model-implied expected returns for the Acharya and Pedersen (2005) specification (AP),
across the 25 liquidity-sorted portfolios, against the observed average returns. Graph B plots the model-implied expected
returns for the 2-horizon model (2HOR), across the 25 liquidity-sorted portfolios, against the observed average returns.
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Graph A. Predicted versus Observed for the AP Model

Graph B. Predicted versus Observed for the 2HOR Model
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and a risk premium component, according to Proposition 2. We depict this de-
composition for the AP and the 2-horizon model in Figure 4. We notice that in
the single-horizon AP case, the impact of the expected liquidity term is relatively
modest. This is because the expected costs increase exponentially when moving
from liquid to illiquid portfolios, whereas the expected returns do not exhibit such
an exponentially increasing pattern (see Table 1 as well as Figure 1). If anything,
the expected returns increase with illiquidity at a lower rate for the more illiquid
portfolios: The expected return levels off after portfolio 19, but the expected liq-
uidity term keeps rising. The AP specification implies a linear relation between
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FIGURE 4
Decomposition of Expected Excess Returns into the Expected Liquidity Premium

and the Risk Premium

The lower part of each graph in Figure 4 shows the expected liquidity premium, and the upper part shows the risk premium
following Proposition 2. The line indicates the actual average excess return. Graph A shows the decomposition for the
Acharya and Pedersen (2005) specification (AP). Graph B shows the decomposition for the 2-horizon model (2HOR).
The graphs correspond to the estimation results as given in Table 2.

0.0

0.2

0.4

0.6

0.8

1.0

1 3 5 7 9 11 13 15 17 19 21 23 25

Portfolios Sorted on Transaction Costs

Expected Liquidity Premium

Risk Premium

Average Excess Return

M
o
n
th

ly
 E

x
c
e
s
s
 R

e
tu

rn
 (
%

)

Graph A. Decomposition for the AP Model

Graph B. Decomposition for the 2HOR Model

0.0

0.2

0.4

0.6

0.8

1.2

1.0

1 3 5 7 9 11 13 15 17 19 21 23 25

Portfolios Sorted on Transaction Costs

M
o
n
th

ly
 E

x
c
e
s
s
 R

e
tu

rn
 (
%

)

Expected Liquidity Premium

Risk Premium

Average Excess Return

expected costs and expected returns and thus has difficulty fitting the cross sec-
tion of liquid versus illiquid portfolios. As a result, the expected liquidity effect
is rather small for the AP specification (a few basis points per month for most
portfolios).

Due to the segmentation, the 2-horizon model reduces the impact of the ex-
pected liquidity term on the illiquid portfolios relative to the impact on the liq-
uid portfolios. In this way, the model is able to allow for a much larger over-
all expected liquidity premium, and this improves the fit, as shown in Figure 4.
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The average expected liquidity premium across portfolios is 4.58% per year for
the 2HOR specification, compared with an average effect of 0.73% per year for
the AP specification.

To understand the mechanisms of the 2-horizon model in more detail, we
study the segmentation and spillover effects. The type of segmentation that we
find empirically is slightly more complex than that in Section III.D because some
portfolios are held by short-term investors only, some portfolios are held by both
investors, and some portfolios are held by long-term investors only. We can, how-
ever, follow the same reasoning as in Section III.D.14 We start with the expected
liquidity premium. Figure 5 shows, first of all, the expected liquidity premium that
would obtain in a full integration setting (equation (13)). In this case, the liquidity
premium is simply a constant times the expected transaction costs. Next, we graph
the impact of segmentation, without spillover effects, by adding the second term
in equation (16).15 These segmentation effects increase the liquidity premium for
portfolios 2–12 because these are held only by short-term investors, whereas the
effects are negative for portfolios 13 and 16–25, which are held only by long-term
investors. Finally, Figure 5 contains the total liquidity premium, which also in-
cludes the spillover effects. We see that the spillover effects increase the liquidity
premium for portfolios 13 and 16–25 and decrease the liquidity premium for port-
folios 2–12. This is intuitive. Given that portfolios 2–12 are positively correlated
with the portfolios that are held by both short- and long-term investors, the liquid-
ity premium on portfolios 2–12 is dampened to prevent long-term investors from
buying these portfolios (instead of the illiquid portfolios). Similarly, the spillover
effect on portfolios 13 and 16–25 is positive to make sure that long-term investors
want to buy these portfolios.

Figure 5 also contains the segmentation and spillover effects for the risk
premium. Following the same approach as previously, we start with the integration
case (equation (17)). Then we add the pure segmentation effect (equation (18)),
which is strictly positive for all assets, and more so for portfolios 13 and 16–
25 because the risk-bearing capacity is the smallest for the long-term investors.
Finally, adding the spillover effects, we obtain the total risk premium in Figure 5.
These spillover effects are negative: Due to the positive correlation among the
portfolios, the effect of segmentation is neutralized to a large extent. In sum, we
see that for both the liquidity and risk premiums, the segmentation and spillover
effects play an important role.

So far, we have focused on comparing the economic fit of different models.
We now turn to a statistical test on whether the 2-horizon model improves upon
single-horizon models. Given that the 2-horizon model does not nest the single-
horizon models, this is not trivial. We follow Rivers and Vuong (2002) and Hall
and Pelletier (2011), who derive a test statistic for comparing two nonnested mod-
els that are estimated using GMM on the same set of moment conditions. Their

14We again set var(ct )=0 to study these effects. As discussed in Section V.C, this restriction is
innocuous for our application.

15To be precise, for portfolios i=2, . . . ,12, which are held only by short-term in-
vestors, we add ((1/h1)− (γ1+γ2)/(γ1h1+γ2h2))E

[
ci ,t+1

]
, whereas for portfolios 15–25, we add

((1/h2)− (γ1+γ2)/(γ1h1+γ2h2))E
[
ci ,t+1

]
. Portfolios 1, 14, and 15 are held by both investors, and

hence the segmentation effect is 0.

397Beber, Driessen, Neuberger, and Tuijp

https://doi.org/10.1017/S0022109020000137  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109020000137


FIGURE 5
Segmentation and Spillover Effects

Graph A of Figure 5 gives, for each of the 25 equity portfolios sorted on transaction costs, the expected liquidity premiums
implied by the benchmark 2-horizon model with h1=1 and h2=120 (Table 2, without a constant term). First, the liquidity
premium in the case of integration (equation (13)) is plotted (for portfolios 24 and 25, the premiums are 3.2% and 5.8%,
respectively). Then, segmentation effects are added to this premium (as discussed in Section V.B). Finally, the total
liquidity premium generated by the model is given, thus also including spillover effects. Graph B provides the same
effects for the risk premium.
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test statistic is given by the difference of the GMM J -values (equation (21)). If
both models are misspecified, in the sense that the expected J -value is strictly
positive for both models, then the difference between the J -values has an asymp-
totically normal distribution. This comparison of misspecified models is similar
to the approach of Hansen and Jagannathan (1997). In Section II.B of the Sup-
plementary Material, we describe how we use a bootstrap procedure to obtain the
asymptotic variance of the test statistic. Given this variance, we can directly cal-
culate a t-statistic given by the difference between the J -values divided by the
asymptotic standard deviation.

Comparing the 2-horizon model with the AP single-horizon model, the t-
statistic for the test just described is equal to 1.64 if we exclude a constant term
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in the models and is equal to 1.79 with a constant term. Hence, based on this
statistical test, we can conclude with only moderate confidence that the 2-horizon
model outperforms the single-horizon AP model.

C. Liquidity Risk and Robustness Checks
Next, we examine the role of liquidity risk in more detail. We do this by

shutting down liquidity risk: We take constant transaction costs, equal to the time-
series average, throughout the sample period and assess how much the model-
implied expected returns change (keeping the γ parameters the same). This allows
us to quantify the size of the liquidity risk premium implied by our theoretical
model. We find that the liquidity risk premium equals 2 bps per year (averaged
across portfolios), and shutting down liquidity risk hardly affects the R2 of the
model (72.5% and 74.0%, without and with a constant term, respectively). This
liquidity risk premium is small for several reasons. First, consider the illiquid
portfolios held by long-term investors. Table 1 shows that these portfolios have
substantial liquidity risk, but because the horizon of the long-term investors is
long, they hardly care about this liquidity risk. Second, as shown in Table 1, the
portfolios held by short-term investors (portfolios 1–12, 14, and 15) exhibit very
small liquidity risk. Hence, even though short-term investors do care about liquid-
ity risk, the liquidity risk premium remains negligible, given that the risk itself is
so small.

Of course, this reasoning is within the restrictions imposed by the theoretical
model. It might be that liquidity risk does matter empirically, but our model is
not able to pick up this effect. We therefore take the GMM fitting errors g(ψ̂ , γ̂ )
of the 25 portfolios and regress these on the composite AP liquidity covariance
(cov(c,cm)−cov(R,cm)−cov(c, Rm)). This allows us to see if the 2-horizon
model can be improved by adding a separate liquidity risk component. The re-
sults show that this is not the case. Adding this additional covariance increases
the R2 from 72.6% to 74.1% (and from 74.1% to 76.4% with a constant term),
and the slope coefficient on this liquidity covariance has a t-statistic of 0.49 (0.67
with a constant term).

This confirms that the good fit of the 2-horizon model is not obtained through
the liquidity risk channel but, rather, via the expected liquidity effect and the asso-
ciated spillover and segmentation effects. This is an important finding because ex-
isting work (Pástor and Stambaugh (2003), Sadka (2006)) often documents size-
able estimates for the liquidity risk premium. However, these existing studies do
not incorporate expected liquidity in their analysis. We show that the effect of ex-
pected liquidity is large, especially once we allow for segmentation. Hence, our
results suggest that liquidity risk may be less important for pricing the cross sec-
tion of U.S. stocks than previously thought. However, as noted by Acharya and
Pedersen (2005), separating liquidity level and liquidity risk premiums remains
difficult because of the strong relation between liquidity level and risk.

In Section III of the Supplementary Material, we perform a wide range of
robustness checks on these empirical results. First, we show that the results are
not very sensitive to the chosen horizons, as long as the short-term horizon is 3
months or less and the long-term horizon is 3 years or longer. Second, we use
other portfolio sorts, including sorts on size and book-to-market and double sorts
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on the liquidity level and liquidity risk of stocks. Third, we split the sample into
two. Fourth, we use exactly the same sample period as Acharya and Pedersen
(2005). In almost all these robustness checks, the 2-horizon model generates a
good fit to the average portfolio returns, and the fit is substantially better than that
of the single-horizon AP model. Only when we split the sample in two do we find
that for the second half of the sample, both the 2-horizon model and the AP model
generate a relatively low R2.

VI. Extension: Time-Varying Liquidity Premiums
The theoretical model implies that liquidity premiums and risk premiums are

constant over time. In this section, we estimate an extended model that generates
time variation in the liquidity premium and also allows for a time-varying de-
gree of endogenous segmentation. We achieve this by assuming two regimes for
transaction costs.

A. A Model with Time-Varying Transaction Costs
We introduce persistent transaction costs by allowing the level of transaction

costs to depend on a liquidity state It . Specifically, in the liquid state, defined by
It=0, transaction costs are low with Ci ,t=C0

i +η
0
i ,t , where η0

i ,t is a mean-zero,
IID variable that captures the variation in transaction costs within the regime.
Similarly, in the illiquid state (It=1), we have Ci ,t=C1

i +η
1
i ,t , with C1

i ≥C0
i . The

liquidity state follows a Markov-switching process.
Under additional assumptions, stated in Appendix I.D of the Supplementary

Material, we obtain the following asset pricing equation when transaction costs
follow this Markov-switching process (setting R f =1 and h1=1 for notational
purposes):

E [Rt+1− 1 | It ] =(25) (
γ1V1,t + γ2h2V2,t

)−1
γ1V1,tE [ct+1 | It ]

+
(
γ1V1,t + γ2h2V2,t

)−1
cov

(
Rt+1− ct+1, Rm

t+1− cm
t+1 | It

)
,

where

(26) V1,t = var(Rt+1− ct+1 | It)var(Rt+1− ct+1 | It)
−1
y1,t>0,p ,

and

(27) V2,t = h2var(Rt+1− ct+1 | It)var(h2 Rt+1 | It)
−1
y2,t>0,p .

This expression for expected returns is very similar to the benchmark model
(equation (6)), with two important differences. First, all expectations and
(co)variances are conditional on the liquidity state. The model thus generates time
variation in expected returns, driven by variation in expected transaction costs, and
variation in covariances of returns and transaction costs. Note that we allow for
differences across regimes in both the level and variation of transaction costs.
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The second difference from the benchmark model is that the degree of en-
dogenous segmentation may differ across regimes. The optimal demands in the
two regimes can be calculated using the conditional version of Proposition 1.16

B. Estimation Approach: Time-Varying Transaction Costs
To estimate the asset pricing model with time-varying transaction costs,

we first need to identify liquidity regimes. To this end, we estimate a regime-
switching model for the monthly time series of the market-wide transaction cost
level cm

t , as constructed from the ILLIQi ,t values following equation (23). The
main goal of this first step is to identify the regime at each point in time so that we
can subsequently estimate the conditional expectations and covariances in equa-
tion (25). Our specification follows the standard regime-switching approach:

cm
t = c0

+ δ0t + η0
t , if It = 0,(28)

cm
t = c1

+ δ1t + η1
t , if It = 1,

with η0
t ∼N (0,σ 2

0 ) and η1
t ∼N (0,σ 2

1 ). We thus allow both the mean and variance
of the market-wide transaction costs to differ across regimes, consistent with the
assumptions in the theoretical model discussed previously. We also allow for a
linear time trend in both regimes, captured by the coefficients δ0 and δ1. This is
to correct for trends in illiquidity over our sample period. Finally, the regime-
switching probabilities are assumed to be constant over time.

We estimate this model using the standard maximum-likelihood procedure.
In Table 3, we present the estimation results. The results show a difference in the
level of value-weighted transaction costs across regimes, 0.31% versus 0.35%. As
discussed later in more detail, Figure 6 shows that for the less liquid portfolios,
the difference in transaction costs across regimes is much larger. Importantly, the
switching probabilities in Table 3 show that the regimes are quite persistent. The
probability of staying in the illiquid (liquid) regime equals 90.95% (96.51%). This
supports our focus in the theoretical model on the limit case where switching
probabilities tend to 0.

The maximum-likelihood procedure also delivers an estimate of the preva-
lent regime at each point in time t , P(It=0 |ct ,ct−1, . . .), conditional upon all
information at time t . In Section III.E of the Supplementary Material, we plot
these probabilities and relate them to measures of financial and economic stress,
and we find, as expected, that the probability of being in the liquid regime is
lower in times when these measures indicate adverse economic circumstances.
We use these probabilities to construct estimates of the conditional expectations
and covariances of returns and transaction costs for all portfolios. Specifically,
if P(It=0 |ct ,ct−1, . . .)>0.5, the subsequent month t+1 is assigned to the set of
“liquid months”; otherwise, it is assigned to the set of “illiquid months.” We then
calculate the means and covariances for the liquid months and illiquid months,

16An additional minor difference is that in the extended model, the long-term investors do not
contribute to the expected liquidity premium. The term γ2h2V2 multiplying E

[
ct+1

]
, which is present

in the benchmark model, is absent in the extended model. This is because we assume in this extended
model that the horizon of long-term investors is very long, so transaction costs are not relevant for
these investors.
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TABLE 3
Estimation Results: Regime-Switching Model

Table 3 shows the estimation results for the dynamic version of the model (Section VI), as well as the regime-switching
model that generates the regimes. The estimates are based on monthly data corresponding to 25 value-weighted U.S.
stock portfolios sorted on illiquidity with the sample period 1964–2009. An equal-weighted market portfolio is used. Panel
A reports estimation results for maximum-likelihood estimation of the regime-switching model in equation (28),

cmt = c0
+ δ0t + η0t , if It = 0,(29)

cmt = c1
+ δ1t + η1t , if It = 1,

which specifies the dynamics of market-wide transaction costs. Panel B reports the regime-switching probabilities of the
regime-switching model. Panel C reports generalized method of moments (GMM) estimates of the asset pricing model
with two regimes for transaction costs, as given in equation (30), with a constant term for the expected returns in the
illiquid regime and where we allow transaction costs to differ across regimes but restrict the variances and covariances
of returns and costs to be the same across regimes. We set h1=1, and h2=120. For each portfolio, we have two moment
conditions: the mean return in the illiquid regime and the mean return in the liquid regime. The parameters are estimated
using GMM. For each coefficient, the t -value is given in parentheses. The cross-sectional R 2 and root-mean-square error
(RMSE) are also reported, as well as the risk-bearing capacities (γj hj ).

Panel A. Regime-Switching Estimates

Liquid Regime Illiquid Regime

c 0.311% 0.350%
(47.27) (24.00)

δ (annualized) −0.0014% −0.0007%
(14.56) (7.85)

Panel B. Regime-Switching Probabilities

From / To Liquid Regime Illiquid Regime

Liquid regime 96.51% 3.49%
Illiquid regime 9.05% 90.95%

Panel C. GMM Estimates of Conditional Asset Pricing Model

γ1 γ2 αIt=1 R 2 RMSE γ1h1 γ2h2

0.68818 0.00033 −0.2401% 38.5% 0.167% 0.68818 0.04004
(2.08) (0.89) (−0.58)

respectively. This gives sample estimates for E [Rt+1−1 | It ], E [ct+1 | It ], and all
conditional covariances.

Figure 6 plots the conditional mean returns and transaction costs across
the 25 portfolios. We see that for all portfolios, transaction costs are higher in
the illiquid regime, and more so for the less liquid portfolios, which shows that
the regime-switching model for market-wide transaction costs captures liquidity
regimes for all portfolios. We also calculate the composite liquidity covariance
(cov(c,cm)−cov(R,cm)−cov(c, Rm)) in both regimes and find that this liquidity
covariance is a factor 2.4 higher in the illiquid regime compared with the liquid
regime (averaged across portfolios). Hence, even though we construct the regimes
based on transaction-cost levels, the regimes also exhibit changing liquidity risk.
These results are similar to those of Watanabe and Watanabe (2008), who find that
liquidity betas are approximately 4 times higher in their regime with high liquidity
risk.

We see in Figure 6 that average returns are a bit lower for the illiquid regime.
To accommodate for this difference, we incorporate a constant term for the illiq-
uid regime αIt=1 in the conditional asset pricing model in equation (25). This
way, we focus on explaining the cross-sectional variation of expected returns in
both regimes, rather than explaining why average returns are mostly lower in the
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FIGURE 6
Average Returns and Transaction Costs across Regimes

Figure 6 illustrates the average monthly return (Graph A) and average transaction costs (Graph B) for the 25 U.S. stock
portfolios sorted on illiquidity. Portfolio 1 is the most liquid portfolio, whereas portfolio 25 is the least liquid portfolio. Each
graph shows the values in the liquid regime and the illiquid regime, obtained from estimation of the regime-switching
model (equation (28)).
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illiquid regime. Our empirical model thus becomes

E [Rt+1− 1 | It ] =(30)

αIt=1+
(
γ1V1,t + γ2h2V2,t

)−1
γ1V1,tE [ct+1 | It ]

+
(
γ1V1,t + γ2h2V2,t

)−1
cov

(
Rt+1− ct+1, Rm

t+1− cm
t+1 | It

)
.

In the estimation of the unconditional benchmark model, we focused on ex-
plaining unconditional average returns across 25 portfolios sorted on illiquidity.
Now, we have 50 moment conditions for the GMM estimation because for each
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of the 25 portfolios, we have an equation for the conditional expected return in
the liquid and illiquid regimes.

The theoretical model allows both expectations and covariances of costs and
returns to differ across regimes. For our benchmark estimation, we focus on the
variation in expected costs and returns across regimes and restrict all covariances
to be the same across regimes. As discussed later, this simplifies the interpreta-
tion of the results. In Section III.F of the Supplementary Material, we show that
allowing the covariances to differ across regimes also does not change the fit sub-
stantially and gives very similar results. We thus fill in all sample equivalents of
the (conditional) moments, using the classification of months into liquid versus
illiquid, and then estimate the conditional asset pricing model by applying GMM
to the 50 moment conditions. This gives estimates of the parameters γ1 and γ2.

C. Estimation Results
We report the estimates in Table 3. We find that the risk-bearing capacities

γ j h j are quite similar for the short- and long-term investors; hence, both investors
are important for risk sharing. The cross-sectional R2 equals 38.5%, which shows
that the model provides a reasonable fit to the cross-sectional variation in expected
returns for both regimes, once we include a constant term for the illiquid regime.
Note that this is the R2 for the 50 conditional expected returns, and hence this
number cannot be compared directly with the unconditional case in Table 2.

In Figure 7, we plot the optimal demand of the long-term investor in both
regimes, as a fraction of total supply, obtained from the conditional version of
Proposition 1. We see that in the liquid regime, the long-term investors hold port-
folios 1 and 15–25. The long-term investor invests in portfolio 1, thus accepting its

FIGURE 7
Optimal Portfolio Holdings in Different Regimes

Figure 7 gives, for each of the 25 equity portfolios sorted on transaction costs, the optimal holdings of long-term (120-
month) investors for the dynamic 2-horizon model in Table 3, in both the liquid regime and the illiquid regime. These
holdings are obtained using Proposition 1 for each regime and are presented as a fraction of the total supply of the
value-weighted market portfolio.
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relatively low expected return, because this portfolio delivers diversification ben-
efits for this investor. Moving to the illiquid regime, we see a flight-to-liquidity
effect: The long-term investor sells (part of) portfolio 1 and buys portfolios 13
and 14. This implies that when moving to the illiquid regime, the short-term
investors are buying more of the most liquid portfolio 1 and selling their least
liquid portfolios 13 and 14. This effect can be understood using the example in
Section III.C. Specifically, equations (9) and (10) show when short-term investors
choose to invest in an asset or not. This depends on both transaction costs and
return covariances. To isolate the effect of higher transaction costs in the illiquid
regime, we restrict the covariances to be constant across regimes in our benchmark
estimation. Then, equations (9) and (10) tell us that if transaction costs increase
substantially when moving from the liquid to illiquid regime, the short-term in-
vestor may stop investing in a given asset. This is exactly what we see in our
results. In Section III.F of the Supplementary Material, we show the results for
the case where we also allow the covariances to change across regimes. We find a
similar flight-to-liquidity effect in this case.

We then calculate the expected liquidity premium. There are two opposing
effects that determine the expected liquidity premium across regimes. First, trans-
action costs are higher in the illiquid regime, which increases the liquidity pre-
mium. Second, in the illiquid regime, more portfolios are held by the long-term
investors, who care less about liquidity, which decreases the liquidity premium.
Empirically, we find that the first effect dominates. Across all portfolios, the liq-
uidity premium implied by our model equals 4.79% per year in the liquid regime,
whereas it is higher, at 4.90%, in the illiquid regime.

We also calculate the liquidity risk premium implied by the model, in the
same way as before: We shut down the time variation in transaction costs and
recalculate the model-implied expected returns. Even though we find that liquidity
risk is higher in the illiquid regime, the liquidity risk premium is 2.6 bps per year
in the illiquid regime and 1.4 bps in the liquid regime. This is because all assets
with substantial liquidity risk are held by long-term investors, who hardly care
about this risk. This does not necessarily mean that our empirical findings conflict
with Watanabe and Watanabe (2008), who find a higher liquidity risk premium
in their illiquid regime. This is because, on a purely empirical basis, it is difficult
to distinguish expected liquidity and liquidity risk effects. Our structural model
is thus helpful because it puts structure on the size of the expected liquidity and
liquidity risk premiums.

To validate the liquidity risk effects of the structural model, we perform the
same analysis as in Section V.C. We calculate the composite liquidity beta of
Acharya and Pedersen (2005), where we allow this beta to differ across regimes,
and perform a cross-sectional regression of the residual pricing errors of the 2-
horizon model on this liquidity beta. Again, we find that liquidity risk does not
matter much. In fact, the coefficient on the liquidity beta is even (counterintu-
itively) negative. The R2 increases from 38.5% to 44.6% when adding this nega-
tive liquidity risk premium.

In sum, in this section, we have shown that it is possible to extend the model
to a setting with regimes for transaction costs and that our main empirical find-
ings are unchanged: We continue to find that segmentation is important to fit the

405Beber, Driessen, Neuberger, and Tuijp

https://doi.org/10.1017/S0022109020000137  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109020000137


cross section of expected returns, and we again find evidence for a large expected
liquidity premium. In addition, we obtain the intuitive result that in illiquid times,
short-term investors reduce their investments in illiquid assets and invest more in
liquid assets.

VII. Conclusions
Heterogeneous demands for liquidity among investors, deriving from differ-

ent investment horizons, can have important asset pricing effects. Liquidity, as
measured by trading costs, varies widely across stocks and is valued very dif-
ferently by short- versus long-term investors. We present a new liquidity-based
asset pricing model with investors with heterogeneous investment horizons and
stochastic transaction costs. Our model contributes to the literature by effectively
combining the clientele of investors in the Amihud and Mendelson (1986) article
with the risk-averse agents and stochastic illiquidity of the Acharya and Pedersen
(2005) model. The increased generality of our model delivers a number of new
theoretical insights. In equilibrium, investors may choose to hold only a subset of
the assets, depending on the liquidity and risk–return profile of each asset. This
endogenous segmentation has an effect on the expected liquidity premium and
risk premiums, and the size of these segmentation effects depends on the correla-
tion between segmented and integrated assets.

We estimate our model on the cross section of U.S. stock returns and find
that it generates a good fit to the cross section of liquidity-sorted portfolio returns.
The main reason for the good fit is the interaction between the expected liquid-
ity premium and segmentation effects. Two aspects of the empirical results are
particularly striking. First, our model generates a much larger expected liquidity
premium than previous work. Second, our estimates imply a negligible liquidity
risk premium. Once we allow for segmentation and multiple horizons, we obtain
a good fit of the cross section of liquidity-sorted equity portfolios even when we
shut down liquidity risk.

There are several interesting extensions to our work. A natural extension of
our article would be to model investor horizons so that one could jointly test for
a better fit on returns, investor holding periods, and the portfolio weights of in-
vestors with these horizons. The development of a more sophisticated modeling of
liquidity demand, going beyond the simple imposition of a fixed liquidation hori-
zon, and a more nuanced measure of liquidity than the bid–ask spread could help
refine and deepen our understanding of the pricing of liquidity. Making liquidity
endogenous would also be an important step forward because the trading behavior
of short- and long-term investors is likely to influence liquidity and the relation
between returns and liquidity. On the empirical side, it would be interesting to
study the pricing of different asset classes using our model. For example, our
model has predictions on the liquidity premiums in private equity. Private equity
is usually less liquid than public equity, but the correlation between their returns
is substantial, which affects the liquidity premiums, according to our model.
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Supplementary Material
Supplementary Material for this article is available at https://doi.org/10.1017/

S0022109020000137.
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