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SUMMARY
An analytical method is presented to obtain all surfaces
enveloping the workspace of a general n degree-of-freedom
mechanism with non-unilateral constraints. The method is
applicable to kinematic chains that can be modeled using
the Denavit-Hartenberg representation method for serial
kinematic chains or its modification for closed-loop kine-
matic chains. The method developed is based upon analytical
criteria for determining singular behavior of the mechanism.
Singularities of manipulators with non-unilateral constraints
have never been reported. The complete mathematical for-
mulation is presented and illustrated using 4 & 5 DOF spatial
manipulators. Four types of singularities are classified: Type I
sets are position Jacobian singularities; Type II sets are in-
stantaneous singularities that are due to a generalized joint
are reaching its apex; Type III sets are domain boundary
singularities, which are associated with the time initial and
final values of the time interval; Type IV sets are coupled
singularities, which are associated with a relative singular
Jacobian, where the null space is reduced in one submatrix
due to either of two occurrences: a Type II and Type III
singularities.

KEYWORDS: Non-unilateral; Singularity; Jacobian row
rank deficiency.

I. INTRODUCTION
Numerical methods for determining boundaries of work-
spaces of mechanisms and manipulators have been developed
by a number of authors in recent years. The importance of
the study of manipulator workspaces stems from the need to
better understand their functionality related to issues such as
manipulator design, placement, and utilization.

Some of the earliest studies on the subject of manipulator
performance in terms of workspace were conducted by
Vinagradov,1 where the term service sphere was introduced.
A study of the relationship between the kinematic geometry
and manipulator performance, including the workspace, was
presented by Roth.2 A numerical approach to this pro-
blem was formulated and solved by Kumar and Waldron3 via
tracing boundary surfaces of a workspace. Tsai and Soni4

studied accessible regions of planar manipulators, while
Gupta and Roth5 studied the effect of hand size on workspace
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analysis. Other studies on the subject of manipulator work-
spaces can be found in Gupta,6 Sugimoto and Duffy,7 and
Davidson and Hunt.8 Other works that have dealt with
manipulator workspace are reported by Yang and Lee,9

Agrawal,10 Gosselin and Angeles,11 and Emiris.12

Pennock and Kassner13 presented a numerical algorithm
for the general study of a planar three degree-of-freedom
manipulator. Cecarelli14 used an algebraic formulation of a
workspace boundary to formulate design equations of three-
revolute manipulators. More recently, Zhang et al.15 pre-
sented the graphical representation of kinematic workspaces.

Haug et al.16 formulated numerical criteria to find the
accessible output set of a general multi-degree-of-freedom
system using a continuation method to trace boundary
curves suitable for the study of both open- and closed-
loop manipulators. The initial criteria for this computational
method were presented by Haug et al.17 and Wang and
Wu.18 The algorithm computes tangent vectors at bifurcation
points of continuation curves that define the boundary of
manipulator workspaces. A cross-section of the workspace
is obtained and boundary continuation curves are traced.
The method was demonstrated for a closed-loop mechanism
called the Stewart Platform,19 where continuation curves
are evaluated on the exterior boundary of the accessible
output set. These curves are then assembled into a mesh that
is enveloped by appropriate surface patches. This method
has proved valid for determining the general shape of the
accessible output set. The main difficulty is in determining
the status of a singularity at points along continuation curves.
Although singular behavior occurring at points along the
curves is identified, this method is completely numerical and
only traces boundary curves. It does not result in analytical
surfaces bounding the accessible output set. More recently,
an algebraic formulation to determine the workspace of
four-revolute manipulators was presented by Cecarelli and
Vinciquerra.20 The benefit of this method is shown in the
ability to determine holes and voids in the accessible output
set. The use of the basis of the nullspace was first introduced
by Spanos and Kohli.21

The use of the basis of the null space criteria was first
introduced by Spano and Kohli.21 The consideration of joint
limits in the study of manipulator workspaces was presented
in a recent study by Delmas.22

Bulca et al.23 developed a technique based on the Euler-
Rodrigues parameters of the rotation of a rigid body to
determine the workspace of spherical platform mechanisms.
The workspace boundary is characterized by the occurrence
of manipulator singularity. The singularity locus is obtained
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both as a set of two implicit functions of the four Euler-
Rodrigues parameters, which thus leads to a two-parameter
manifold, and as a set of two-parameter explicit functions of
joint variables that yield the four Euler-Rodrigues parameters
of the rotation of the moving platform at a singular posture.

Rastegar and Deravi24 developed a general method to
determine the workspace of manipulators. Chirikjian and
Ebert–Uphoff25 applied the convolution of functions on Lie
groups to determine the workspaces through partitioning a
manipulator into segments, and approximating the work-
space of each segment as a density function. Wang and
Chirikjian26 proposed a diffusion-based algorithm for work-
space generation of hyper-redundant manipulators by solving
a partial differential equation defined on the motion group.

In earlier work,27,28 we have used singular behavior to
identify the manipulator, where unilateral constraints were
considered.

In this paper we apply Jacobian row rank deficiency
conditions to determining the singularities of manipulators
with non-unilateral constraints, where one or more joints are
described as nonlinear monotonically increasing functions of
time and where each joint may or may not be independent
on another.

II. FORMULATION
Define q∗ ∈�n as the vector of n-generalized coordinates
characterizing a manipulator configuration. The vector func-
tion generated by a point on the end-effector of a serial arm
written as a multiplication of rotation matrices and position
vectors is expressed by

�(q∗(t)) =




x(q∗(t))
y(q∗(t))
z(q∗(t))


 =

i=n∑
i=1


j=i−1∏

j=1

j−1Rj


 i−1pi (1)

where q∗(t) = [q1(t1) q2(t2) . . . qn(tn)]T , which are non-
unilateral constraints (traditionally, q∗(t) are unilateral
constraints by defining qL

i ≤ qi ≤ qU
i , where qL

i is the lower
limit and qU

i is the upper limit27,28 that at least one of qi(ti)
is the nonlinear monotonically increasing function of time
ti , t = [t1 . . . tn]T is the vector of time variables for each
joint, and both ipj and iRj are defined using the Denavit-
Hartenberg representation method (DH)29,30 such that

i−1Ri =




cos θi − cos αi sin θi sin αi sin θi

sin θi cos αi cos θi − sin αi cos θi

0 sin αi cos αi


 (2)

and

(i−1)pi = [ai cos θi ai sin θi di ]T (3)

where θi is the joint angle from xi−1 axis to the xi axis, di is
the shortest distance between xi−1 and xi axes, ai is the offset
distance between zi and zi−1 axes, and αi is the offset angle
from zi−1 and zi axes. The generalized variable is qi = di if
the joint is prismatic and qi = θi if the joint is revolute.

The vector function �(q∗(t)) characterizes the set of all
points inside and on the boundary of the workspace as a
function of time. The aim of this work is to determine the
boundary to this set and to analytically represent it.

At a specified position in space x = [x0 y0 z0 ]T , Eq. (1)
can be written as a constraint function

�(q∗(t)) =




x(q∗(t)) − x0

y(q∗(t)) − y0

z(q∗(t)) − z0


 (4)

and the joint functions can be written as a constraint function

�(t) =




q∗
1 (t1) − q∗

1

(
t0
1

)
...

q∗
n (tn) − q∗

n

(
t0
n

)

 (5)

Time vector imposed in terms of inequality constraints in the
form of tLi ≤ ti ≤ tUi , where i = 1, . . . n, are transformed into
a parametric equation by introducing a new set of generalized
coordinates λ= [λ1, λ2, . . . , λn]T such that

ti =
((

tLi + tUi
)/

2
) + ((

tUi − tLi
)/

2
)

sin λi i = 1, . . . , n

(6)

These generalized coordinates λi are called slack variables
in the field of optimization.

In order to include the effect of joints with non-unilateral
constraints and time limits, it is proposed to augment the
constraint equation �(q∗) with the parameterized inequality
constraints such that

H(q) =




x(q∗(t)) − x0

y(q∗(t)) − y0

z(q∗(t)) − z0

q∗
i (ti) − q∗

i

(
t0
i

)
ti − ((

tLi + tUi
)/

2
) − ((

tUi − tLi
)/

2
)

sin λi




i = 1, . . . n (7)

where q = [q∗T tT λT ]T is the vector of all generalized co-
ordinates. Note that although, 2n − new variables (ti and λi)
have been added, 2n − equations have also been added to the
constraint vector function without losing the dimensionality
of the problem.

The Jacobian of the constraint function H(q) at a point q0

is the (3 + 2n) × 3n matrix

[Hq(qo)] = [∂H/∂q] (8)

where the subscript denotes a derivative. With the modi-
fied formulation including the parameterized inequality
constraints, the Jacobian is expanded as

[Hq] =




�q∗ 01 02

I �t 03

04 I tλ


 (9)
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where the notation xq1 denotes the partial derivative of x with
respect to q1, and

[�q∗] =




xq1 xq2 · · · xqn

yq1 yq2 · · · yqn

zq1 zq2 · · · zqn


 (10)

[�t] = [q̇∗] =




dq∗
1

dt1
0 . . . 0

0
dq∗

2

dt2
. . . 0

0 0 . . . 0

0 0 . . .
dq∗

n

dtn




(11)

and

[tλ] =




− ((
tU1 − tL1

)
/2

)
cos λ1 0 . . . 0

0 − ((
tU2 − tL2

)
/2

)
cos λ2 . . . 0

0 0 . . . 0

0 0 . . . − ((
tUn − tLn

)
/2

)
cos λn




(12)

is a diagonal block matrix, 02 and 01 are (3 × n) zero
matrices, 03 and 04 are (n × n) zero matrices and I is (n × n)
identity matrix.

The boundary to the workspace ∂W (workspace envelope)
is a subset of the workspace at which the Jacobian of the
constraint function of Eqs. (8) and (9) is row rank deficient,
i.e.,

∂W ⊂ {Rank Hq(q) < k, for some q with H(q) = 0} (13)

where k is at least (3 + 2n− 1). For an n-DOF system, the
Jacobian Hq(qo) is row-rank deficient if and only if one of
the following conditions are satisfied.

I.1. Type I singularities
If no ti have reached their limits, which says ti �= tUi and
ti �= tLi , and no joints with dqi

dti
�= 0, the diagonal sub-matrices

[�t] and [tλ] are full row rank. Therefore, the only possibility
for [Hq] to be row-rank deficient is when the block matrix
[�q∗] is row rank deficient. Define two independent sub-
vectors of q∗ as p and u, as

q∗ = [pT uT ]T , where p, u ∈ q∗and p ∩ u = φ (14)

If u ∈ Rm then p ∈ R(n−m).
Type I singularity set can be defined as

S(1) ≡{p ∈ q∗ :Rank[�q∗]<3, for some constant subset of q}
(15)

where p is within the specified joint limit constraints.
The (m × n) block matrix [�q∗] is row rank deficient at

least one, where m = 3 for spatial and m = 2 for planar
manipulators. The rank of the (m × n) matrix is defined to
be the order of the largest non-singular square sub-matrix

which can be formed by selecting rows and columns of the
upper corner matrix [�q∗]. In order to make the sub-matrix
[�q∗] rank deficient of order (d) where d = abs(m − n), it
is necessary to determine all sub-Jacobians. For a rank-
deficiency (d), the largest square sub matrix cannot have
a larger dimension than b = max(n− d, m − d). Therefore,
there must be m!/[(m − b)!b!] possible independent rows
that can be considered in a single square sub-matrix.
Similarly, there are n!/[(n− b)!b!] possible combinations
of columns. Hence, there exists

η = n!

(n − b)!b!
· m!

(m − b)!b!
(16)

sub-Jacobians. Equating the determinants to zero yields
η-number of equations to be solved simultaneously. The solu-
tions to these η equations are the singular sets of Type I.
This criterion is used to obtain square sub-Jacobians. Solu-
tions of the resulting η equations are sets of constant gene-
ralized coordinates denoted by pi and are characterized by
the following set

pi =




det(hihjhk)1

:
det(hihjhk)η


 = 0,

for i, j, k = 1, . . . , n and i �= j �= k


 i = 1, 2, . . . , β

(17)

where hi denotes a column of the matrix [�q∗] =
[hk, . . . , hm]. For each pi , the remaining variables are ui .

I.2. Type II (Instantaneous) singularities
When we find there are m(m ≥ 2) joints that have dq∗

i

dti
= 0,

then Type III singularities are

S(2) ≡ {
p ∈ �(n−2) : p ≡ ∂tinst = [

t inst
i , t inst

j , . . .
]}

(18)

This type of singularities comes from the non-unilateral
constraints.

I.3. Type III singularities
Type III singularities are defined as

S(3) ≡ {
p ∈ �(n−2) : p ≡ ∂tinst ∪ ∂tLimit

= [
t inst
i , t inst

j , . . .
] ∪ [

t limit
i , t limit

j , . . .
]}

(19)

I.4. Type IV singularities (Coupled Singularities)
When certain ti reach their limits, e.g., [ti , tj , tk] =
[t limit

i , t limit
j , t limit

k ], the corresponding diagonal elements in
the matrix [tλ] will be equal to zero. For example, if ti = tLi ,
the diagonal element of [∂t/∂λ]ii will be zero (i.e., bi cos λi

is zero for either i = 1, . . . , n then ti has reached a limit).
When certain ti reach their instantaneous points (say dq∗

i

dti
= 0),

e.g., [ti , tj , tk] = [t inst
i , t inst

j , t inst
k ], the corresponding diagonal

elements in the matrix [�t] will be equal to zero.
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Solving the row rank deficiency condition for Eq. (9) is equi-
valent to solving the rank deficiency for

[
�q∗ �⊂ [

�qi
, �qj

, �qk

]]
, (20)

with

qi = q limit
i , qj = q limit

j , qk = q limit
k

or qi = q inst
i , qj = q inst

j , qk = q inst
k

where the notation of represents the exclusion of the right
matrix from the left matrix and it represents the sub-matrix
of [�q∗] when ti are at their limits or instantaneous points.

From the foregoing observation, the second type of
singular sets is formulated. Define a new vector ∂q(tlimit) =
[qi(t limit), qj (t limit), qk(t limit)]T , or ∂q(tinst) = [qi(t inst),
qj (t inst), qk(t inst)]T , which is a sub-vector of q∗ where

1 ≤ dim(∂q(tlimit or tinst)) ≤ (n − 3) (21)

For the case of dim(∂q(tlimit or tinst) = (n − 2) it is noted that
the solution of Eq. is readily available as will be discussed
in the following paragraphs. The joint coordinates can be
partitioned as

q∗ = [wT, ∂q(tlimit or tinst)T]T , and w ∩ ∂q(tlimit or tinst) =φ

(22)

Then, if [�w(w, ∂q(tlimit or tinst))] is row rank deficient, the
sub-Jacobian [�q∗] is also rank deficient. Let the solution
for this condition be denoted by p̂, which is a constant sub-
vector of w, and w = [uT , p̂T ]T . The type IV singularity set
is defined as

S(4) ≡ {
p = [p̂ ∪ ∂q(tlimit or tinst)] :

Rank[�q∗(w, ∂q(tlimit or tinst))] < 3,

for some p̂ ∈ w, dim(∂q(tlimit or tinst)) ≤ (n − 3)
}

(23)

II. ILLUSTRATIVE EXAMPLES
In this section we will use two examples to demonstrate
the formulation to determine the singular surfaces of the
manipulators with non-unilateral constraints. The first one
is a 4DOF spatial example and the second one is a 5DOF
spatial example.

II.1. 4DOF RPRP example
A spatial 4-DOF manipulator as shown in Fig. 1 will be
used to demonstrate the proposed method determining the
singularities and the DH table is shown in Table 1.

The manipulator has two revolute and two prismatic joints.
The joint profiles are defined by the following equations and
shown in Fig. 2.

q1(t1) = πt1 (24)

Fig. 1. The spatial 4-DOF RPRP manipulator.

Table I. DH table for a spatial 4-DOF manipulator.

θi di αi ai

1 q1 0 0 0
2 0 q2 π/2 30
3 π/2 + q3 0 π/2 0
4 0 q4 0 0

q2(t2) = 12t2 + 20 (25)

q3(t3) = −7π

4
t2
3 + 3.5πt3 − π

4
(26)

q4(t4) = −6.667t2
4 + 20t4 + 10 (27)

where 0 ≤ t1 ≤ 2, 0 ≤ t2 ≤ 2.5, 0 ≤ t3 ≤ 1.53452, 0 ≤ t4 ≤
2.36586.

For the joint frames selected in Fig. 2, the position vector
of the end-effector is formulated as

x = �(q(t)) =




q4 cos q1 cos q3 + 30 cos q1

q4 sin q1 cos q3 + 30 sin q1

q4 sin q3 + q2


 (28)

and the inequality constraints are parameterized as
t1 = 1 + sin λ1, t2 = 1.25 + 1.25 sin λ2, t3 = 0.76726 +
0.76726 sin λ3, and t4 = 1.18293 + 1.18293 sin λ4, where
λ = [λ1 λ2 λ3 λ4]T .

The Jacobian matrix is derived as

[Hq] =




�q∗ 01 02

I �t 03

04 I tλ




11×12

(29)

where

[�q∗](q) =




−q4 sin q1 cos q3 − 30 sin q1 0 −q4 cos q1 sin q3 cos q1 cos q3

q4 cos q1 cos q3 + 30 cos q1 0 −q4 sin q1 sin q3 sin q1 cos q3

0 1 q4 cos q3 sin q3




3×4

(30)
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Fig. 2. Joint profiles (a) q1 profile (b) q2 profile (c) q3 profile (d) q4 profile.

�t =




−π 0 0 0

0 −12 0 0

0 0 3.5π(t3 − 1) 0

0 0 0 13.334t4 − 20




4×4

(31)

tλ =




− cos λ1 0 0 0

0 −1.25 cos λ2 0 0

0 0 −0.76726 cos λ3 0

0 0 0 −1.18293 cos λ4




4×4

(32)

II.1.1. Type I singularities: Since [�q∗] is a (3 × 4) block
matrix, n= 4, m = 3 and the deficiency criteria mandates that
d = (4 − 3) and b = max(3, 2). Substituting into Eq. (16)
yields η = 4 equations to be solved simultaneously to be
zero which represent the determinants of the (3 × 3) sub-
Jacobians as

Det[J1] = −q4(30 + q4 cos q3) sin q3

Det[J2] = cos q3(30 + q4 cos q3)

Det[J3] = 0

Det[J2] = q4(30 + q4 cos q3)

Solution to the ten is given by q4 =−30 sec q3, this solution
does not satisfy the joint profiles. Therefore the rank-
deficiency criterion of the Jacobian yields no singular set.

II.1.2. Type II (instantaneous) singularities: From the
joint profile equations q1(t1) and q2(t2) do not have
instantaneous points. However, dq3(t3)

dt3
= 0 yields t3 = 1.0,

and dq4(t4)
dt4

= 0 yields t4 = 1.5. Therefore singularity set is
p1 ={q3(1.0), q4(1.5)}.
II.1.3. Type III singularities: This includes joint outer
limits and instantaneous limits combinations as follows:

p2 ={q3(1.53452), q4(0)}, p3 ={q3(1.53452), q4(2.36586)},
p4 ={q2(0), q3(0)}, p5 ={q2(0), q3(1.53452)},
p6 ={q2(0), q4(0)}, p7 ={q2(0), q4(2.36586)},
p8 ={q2(2.5), q3(0)}, p9 ={q3(2.5), q4(0)},
p10 ={q2(2.5), q4(2.36586)}, p11 ={q3(0), q4(0)},
p12 ={q3(0), q4(2.36586)}, p13 ={q3(1), q4(0)},
p14 ={q3(1), q4(2.36586)}, p15 ={q2(0), q3(1)},
p16 ={q2(2.5), q3(1)}, p17 ={q1(0), q3(1)},
p18 ={q1(2), q3(1)}, p19 ={q3(0), q4(1.5)},
p20 ={q3(1.53452), q4(1.5)}, p21 ={q2(0), q4(1.5)},
p22 ={q2(2.5), q4(1.5)}, p23 ={q1(0), q4(1.5)},
p24 ={q1(2.5), q4(1.5)}.

II.1.4. Type IV (coupled) singularities: The block tλ is
rank deficient at t4 = 0. Substituting t4 = 0 into �(q∗),
computing [�q∗], then [�q∗ �⊂ �q4 ] is defined as

[
�q∗ �⊂ �q4

]
=




−30 sin q1 − 10 cos q3 sin q1 0 −10 cos q1 sin q3

−30 cos q1 + 10 cos q3 cos q1 0 −10 sin q1 sin q3

0 1 10 cos q3



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Fig. 3. Cross sections of the singular surfaces (a) Due to ψ1 and ψ13, . . . , ψ18 (b) Due to ψ19, . . . , ψ21 (c) Due to ψ25, ψ26, ψ27 (d) Due to
ψ2, . . . , ψ12.

and applying the rank deficiency condition to [�q∗ �⊂ �q4 ]
where ∂q(tlimit) = q4(tL4 ) yields a solution q3 = 0, which is
at t3 = 0.07418. Therefore a singular set identified as p =
[p̂, ∂q(tlimit)] = p25 = {q3(0.07418), q4(0)}, similarly, p26 =
{q3(0.07418), q4(2.36586)}.

The block [�t] is rank deficient at t4 = 1.5. Substituting
t4 = 1.5 into �(q∗), computing [�q∗], then [�q∗ �⊂ �q4 ] is
defined

JJ =




−30 sin q1 − 25 cos q3 sin q1 0 −25 cos q1 sin q3

−30 cos q1 + 25 cos q3 cos q1 0 −25 sin q1 sin q3

0 1 25 cos q3


 ,

and applying the rank deficiency condition to JJ where
∂q(tinst) = q4(t inst

4 ) yields a solution q3 = 0, which is at
t3 = 0.07418. Therefore a singular set identified as p27 =
{q3(0.07418), q4(1.5)}.

Substituting each singularity set into Eq. (28) yields
parametric equations of singular surfaces in R3. Fig. 3
shows the cross sections of singular surfaces due to different
singular sets and Fig. 4 is a cross-section of the workspace
volume depicting all singular surfaces.

II.2. 5DOF RRPRR example
Consider the 5-DOF manipulator shown in Fig. 5. It includes
4 revolute joints and 1 prismatic joint.

Joints are defined by the following profiles:

q1(t1) = πt1 (33)

q2(t2) = 1.88496t2 − 0.785398 (34)

q3(t3) = −2t2
3 + 8t3 (35)

q4(t4) = −2.0944t2
4 + 2πt4 (36)

q5(t5) = −3π

2
t2
4 + 3πt4 − π

2
(37)
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Fig. 4. Cross sections of the final workspace.

Fig. 5. The 5-DOF RRPRR Manipulator.

where 0 ≤ t1 ≤ 2, 0 ≤ t2 ≤ 2.06695, 0 ≤ t3 ≤ 3.22474,
0 ≤ t4 ≤ 2.5, 0 ≤ t5 ≤ 1.57735. The profiles can be plotted in
Figure 6.

Using Denavit-Hartenberg, the position vector of point p
in Fig. 7 is determined as

�(q∗) =




−5 sin q5 cos q1 sin q2 sin q4 − 5 sin q5 sin q1 cos q4 + 5 cos q1 cos q2 cos q5 + 15 cos q1 cos q2 + q3 cos q1 cos q2

−5 sin q5 sin q1 sin q2 sin q4 + 5 sin q5 cos q1 cos q4 + 5 sin q1 cos q2 cos q5 + 15 sin q1 cos q2 + q3 sin q1 cos q2

5 cos q2 sin q4 sin q5 + 5 sin q2 cos q5 + 15 sin q2 + q3 sin q2 + 25




(38)

and the inequality constraints are parameterized as
t1 = 1 + sin λ1, t2 = 1.25 + 1.25 sin λ2, t3 = 1.61237 +
1.61237 sin λ3, t4 = 1.18301 + 1.18301 sin λ4, and t5 =
0.788675 + 0.788675 sin λ4, where λ = [λ1 λ2 λ3 λ4 λ5]T .
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Fig. 6. The joint profiles (a) q1 profile (b) q2 profile (c) q3 profile (d) q4 profile (e) q5 profile.

The Jacobian matrix is derived as

[Hq] =




�q∗ 01 02

I �t 03

04 I tλ




13×15

(39)

where

[�q∗](q) =




−c2(23 + 5c5)s1 + 5(−c1c4 + s1s2s4)s5 −c1((23 + 5c5)s2 + 5c2s4s5) 0 5(−c1c4s2 + s1s4)s5 −5(c4c5s1 + c1(c5s2s4 + c2s5))

−5c4s1s5 + c1(c2(23 + 5c5) − 5s2s4s5) −s1((23 + 5c5)s2 + 5c2s4s5) 0 −5(c4s1s2 + c1s4)s5 5c1c4c5 − 5s1(c5s2s4 + c2s5)

0 c2(23 + 5c5) − 5s2s4s5 0 5c2c4s5 5c2c5s4 − 5s2s5




3×5

(40)

[�t] =




−π 0 0 0 0
0 −1.88496 0 0 0
0 0 4t3 − 8 0 0
0 0 0 4.1888t4 − 6.28319 0
0 0 0 0 3π (t5 − 1)




5×5

(41)

[tλ] =




− cos λ1 0 0 0 0
0 −1.25 cos λ2 0 0 0
0 0 −1.61237 cos λ3 0 0
0 0 0 −1.18301 cos λ4 0
0 0 0 0 −0.788675 cos λ5




5×5

(42)
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Fig. 7. A cross-section of the workspace of the 5-DOF RRPRR manipulator.

Applying the criteria in section 2 yields all singularity sets
shown in the Appendix. Substituting all of the singular
surfaces into Eq. (38) a cross-section of the workspace of
a 5-DOF RRPRR manipulator is shown in Fig. 7.

III. CONCLUSIONS
A general formulation for determining boundary surface
patches in closed form to 5DOF manipulators with non-
unilateral constraints has been presented. The workspace
constraint function was formulated in terms of generalized
coordinates including inequality constraints imposed on each
joint’s time function. It was shown that Jacobian rank-
deficiency conditions usually applied in robotics analysis
to determine degenerate conditions, are employed here to
generate constant singular sets and to identify coupled
singular behavior.
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APPENDIX
Singular sets:
p1 ={q2(1.25), q4(0), and q5(1.57735)} p2 = {q2(0), q4(0), and q5(0.183503)},
p3 ={q2(0), q4(0.275255), and q5(1.57735)} p4 = {q2(0), q4(1.5), and q5(1.57735)}
p5 ={q3(0), q4(0), and q5(0.183503)} p6 = {q2(1.25), q3(0), and q4(0)},
p7 ={q3(3.22474), q4(0), and q5(0)} p8 = {q2(1.25), q3(3.22474), and q4(0)} ,
p9 ={q2(0), q3(0), and q4(0.275255)} p10 = {q2(0), q3(3.22474), and q4(0.275255)}
p11 ={q3(0) and q5(1.57735)}, p12 = {q3(3.22474) and q5(1.57735)}
p13 ={q3(2), q4(1.5), q5(1)}
p14 . . . p17 Four combinations t3 = 8, t1 =

{
0
2

}
, t2 =

{
0

2.5

}

p18 . . . p21 Four combinations t3 = 8, t1 =
{

0
2

}
, t4 =

{
0

2.36602

}

p22 . . . p25 Four combinations t3 = 8, t1 =
{

0
2

}
, t5 =

{
0

1.57735

}

p26 . . . p29 Four combinations t3 = 8, t2 =
{

0
2.5

}
, t4 =

{
0

2.36602

}

p30 . . . p33 Four combinations t3 = 8, t1 =
{

0
2.5

}
, t5 =

{
0

1.57735

}

p34 . . . p37 Four combinations t3 = 8, t4 =
{

0
2.36602

}
, t5 =

{
0

1.57735

}

p37 . . . p41 Four combinations t4 = 1.5, t1 =
{

0
2

}
, t2 =

{
0

2.5

}

p42 . . . p45 Four combinations t4 = 1.5, t1 =
{

0
2

}
, t3 =

{
0

3.22474

}

p46 . . . p49 Four combinations t4 = 1.5, t1 =
{

0
2

}
, t5 =

{
0

1.57735

}

p50 . . . p53 Four combinations t4 = 1.5, t2 =
{

0
2.5

}
, t3 =

{
0

3.22474

}

p54 . . . p57 Four combinations t4 = 1.5, t2 =
{

0
2.5

}
, t5 =

{
0

1.57735

}

p58 . . . p61 Four combinations t4 = 1.5, t3 =
{

0
3.22474

}
, t5 =

{
0

1.57735

}
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p62 . . . p65 Four combinations t5 = 1.0, t1 =
{

0
2

}
, t2 =

{
0

2.5

}

p66 . . . p69 Four combinations t5 = 1.0, t1 =
{

0
2

}
, t3 =

{
0

3.22474

}

p70 . . . p74 Four combinations t5 = 1.0, t1 =
{

0
2

}
, t4 =

{
0

2.36602

}

p75 . . . p78 Four combinations t5 = 1.0, t2 =
{

0
2.5

}
, t3 =

{
0

3.22474

}

p79 . . . p82 Four combinations t5 = 1.0, t2 =
{

0
2.5

}
, t4 =

{
0

2.36602

}

p83 . . . p86 Four combinations t5 = 1.0, t3 =
{

0
3.22474

}
, t4 =

{
0

2.36602

}

p87 . . . p88 Two combinations t3 = 2.0, t5 = 0, t4 =
{

0
2.36602

}

p89 . . . p90 Two combinations t3 = 2.0, t5 = 0, t2 =
{

0
2.5

}

p91 . . . p92 Two combinations t3 = 2.0, t5 = 0, t1 =
{

0
2

}

p93 . . . p94 Two combinations t2 = π
2 , t5 =π , t1 =

{
0
2

}

p95 . . . p96 Two combinations t2 = π
2 , t5 =π , t3 =

{
0

3.22474

}

p97 . . . p98 Two combinations t2 = π
2 , t5 =π , t4 =

{
0

2.36602

}
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