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Abstract

Today, in the field of architecture, bio-inspired algorithms can be used to design and seek
solutions to design problems. Two of the most popular algorithms are the genetic algorithm
(GA) and swarm intelligence algorithm. However, no study has examined the simultaneous
use of these two bio-inspired algorithms in the field of architecture. Therefore, this study
aims to test whether these two bio-inspired algorithms can work together. To this end, GA
is used in this study to optimize the rule-based swarm algorithm for the conceptual design
process. In this optimization test, the objective was to increase the surface area, and the con-
straints are parcel boundary and building height. Further, the forms associated with swarm
agents were determined as variables. Following the case studies, the study concludes that
the two bio-inspired algorithms can effectively work together.

Introduction

Many scholars, such as Benyus (1998), Chakrabarti et al. (2005), Vincent et al. (2006),
Chakrabarti and Shu (2010), Sartori et al. (2010), Vattam et al. (2010), Pawlyn (2011), and
Pedersen Zari (2015), have interpreted bio-inspired thinking and production using different
perspectives. Further, many researchers have long debated the immense potential of
bio-inspired (or biomimetic) design. In addition, in the field of architecture, many buildings
have been constructed based on the bio-inspired point of view. Today, architecture, particu-
larly bio-inspired design, emphasizes design that rather than merely imitating, is based on
the functions of the natural environment.

Natural functions can be mathematically analyzed and expressed using computer algo-
rithms. Some of the popular bio-inspired algorithms are swarm intelligence algorithms and
genetic algorithms (GAs), and these algorithms are used in the field of architecture to solve
various problems. For example, Rajan (1995), Chatzi and Koumousis (2009), van Embden
Andres et al. (2011), and Hofmeyer and Davila Delgado (2015) used GAs for structural opti-
mization. Further, the GA was used by Jo and Gero (2006), Rawat et al. (2012), and Su and
Yan (2015) in space planning; Wang et al. (2005), Attia et al. (2012), and Agirbas (2018) in
green building design; and Mukerjee et al. (1997) in shape studies. Fourie and Groenwold
(2002) and Felkner et al. (2013) are among the researchers who used particle swarm optimiza-
tion (PSO), a slightly more advanced version of the swarm intelligence algorithm, in the field
of structural optimization. Moreover, in their study, Hu et al. (2014) used the PSO to select the
most appropriate machining scheme. In addition, hybrid algorithms based on the evolutionary
algorithm have been extensively studied, for example, the study by Ahlquist et al. (2015).

There are general studies on the optimization of Reynolds’ (1987) boids algorithm (rule-
based swarm algorithm) with GAs, for example by Chen et al. (2006) and Alaliyat et al.
(2014). There are also general studies on the optimization of Reynolds’ (1987) boids algorithm
with the PSO, for example, by Cui and Shi (2009) and Alaliyat et al. (2014). However, to date,
no study has examined the simultaneous use of the swarm intelligence algorithm and GA in
the field of architecture. However, the simultaneous use of these two algorithms can undoubt-
edly provide different problem solutions in the architectural world.

In the field of architecture, while there has been no review of the simultaneous use of the
swarm algorithm and GA, there have been extensive reviews on the algorithms used in the
field of building design (especially on optimization). For example, Attia et al. (2013), Evins
(2013), Machairas et al. (2014), Nguyen et al. (2014), and Shi et al. (2016) reviewed the opti-
mization methods in the field of building design. In addition, Wetter and Wright (2004),
Elbeltagi et al. (2005), Wright and Alajmi (2005), Tuhus-Dubrow and Krarti (2009), Kämpf
et al. (2010), and Hamdy et al. (2012) examined the performance of various algorithms in
determining design solution.

The agents in the PSO algorithm move through the problem space in order to find the best
solution, but Reynolds’ (1987) boids algorithm (a rule-based swarm algorithm) does not per-
form optimization like the PSO algorithm. However, it is used for navigation and obstacle
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avoidance problems. In the conceptual design stage of architec-
tural design, the features of this algorithm may conceivably be
important for the production of form alternatives within the
boundaries of the parcel, especially on the building scale.
Therefore, this study focuses on this algorithm and uses the GA
to list the results that can be achieved with this algorithm, in
line with the objectives.

The main research question addressed by this study is as follows:
Can the two bio-inspired algorithms work together in the field of
architecture? Therefore, the hypothesis of this study is that rule-
based swarm intelligence, which serves as a simulation, can be opti-
mized with the GA. To test this hypothesis, the study optimized the
rule-based swarm algorithm with the GA. This optimization test
marks the first test of this hybrid algorithm. Therefore, the optimi-
zation was intentionally based on a simple architectural problem of
increasing the surface area. Further, it was envisaged that architec-
tural solutions would remain at the conceptual level.

This study addresses the following secondary research ques-
tion: Can digital pathways be developed to provide more flexible
solutions in the conceptual design phase? Today, the conceptual
design stage involves the use of various computer programs.
However, in terms of changing or incorporating new details, con-
ceptual design, which is performed by these programs, is less flex-
ible than manual sketching. Therefore, new methods to provide
more flexible solutions should be developed. Accordingly, this
study aims to develop a more efficient method for the conceptual
design stage by using new technologies and computer programs.

Background

Conceptual design stage

According to Yu et al. (2015), architectural design is a non-linear
process that enables the constant refinement of ideas. Goel (1992)
lists the following phases of the architectural design process: prob-
lem structuring, preliminary design, refinement, and detailing.
Preliminary design, which is a creative process, involves the con-
sideration of several ill-structured design options until the desired
shape is achieved. This is a conceptual design phase because, in
this phase, the designer expresses their design using a sketch or
an abstract and refrains from providing a detailed description.

In the conceptual design stage (particularly, the sketching
stage at the very beginning of the design process), the designer
considers many design possibilities (Schon, 1983; Garner, 1992;
Schon and Wiggins, 1992; Goel, 1995; Suwa and Tversky, 1996;
Lipson and Shpitalni, 2000; Do, 2002). In this process, the
designer performs observations and makes visual documentation.
The ideas developed during this creative process have a significant
impact on the final product (Jin and Benami, 2010).

Constraints and objectives limit the number of solutions at the
beginning of the design process; hence, it is better to define these
aspects at the conceptual design stage. While producing form,
designers consider both constraints and objectives, which are
the facilitators of the design process. Otherwise, the number of
design alternatives will increase, and designers will face difficulty
in making decisions (in the absence of certain constraints, objec-
tives, or rules). The following are feasible examples of design con-
straints: constraints imposed by material use, economic
competence, daylight use, energy minimization, structural con-
straints, and the desired surface area, and limitations caused by
the surrounding structures, parcel boundaries, floor height, and
aesthetic concerns. The designers image their design according

to these constraints and objectives and perform a type of optimi-
zation. However, the computational design offers facilities to
make the optimization of the work easier for the designer.

Swarm intelligence

To clarify the complex swarm intelligence behavior, researchers
often consider the natural behavior of social insects (Bonabeau
et al., 1999; Dorigo et al., 2000; Camazine et al., 2001;
Theraulaz et al., 2003; Dorigo and Stutzle, 2004). As examples
of swarm behavior, researchers have examined the internal orga-
nization of ant colonies (Theraulaz and Bonabeau, 1995), bee
colonies (Camazine, 1991), schools of fish (Partridge, 1982),
and flocks of birds (Reynolds, 1987). These examples clarify
that swarm behavior, which seems complex, is based on simple
rules, and subsequently, these swarm intelligence rules can be
converted into computer algorithms. In multi-agent system-based
swarm intelligence algorithms, agents perform self-organization
by exhibiting autonomous behavior. This study uses a flocking
model that is based on the model referred to as a “boid” by
Reynolds (2017). According to Reynolds (2017), the complex
behavior of birds in their natural environment depends on three
mathematical rules: alignment, separation, and cohesion. When
birds in a flock fly in the same direction, each bird maintains a
certain distance from its neighboring birds, and this is called
the separation rule. Further, each bird follows a direction that is
determined by the average overall orientation of the flock, and
this is the alignment rule. Finally, each bird takes its position rel-
ative to the average position, which is the cohesion rule.
Therefore, although each bird acts in accordance with its neigh-
bor’s environment, the final result is that each bird affects the
swarm’s geometry and self-organization. Therefore, long-term
swarm behaviur and movement remain unpredictable (Fig. 1).

The swarm algorithm has been further developed and used in
optimization studies. The PSO is the swarm algorithm that provides
optimization (Eberhart and Kennedy, 1995; Kennedy and Eberhart,
1995; Eberhart et al., 1996). In addition, many studies have exam-
ined this algorithm in detail (Reddy and Kumar, 2007; Kramar
et al., 2015; Adeniran and El Ferik, 2017; Ab Rashid et al., 2019),
and in general, most of these studies are results oriented.

Genetic algorithms

Today, in the field of computational design, optimization is gen-
erally performed using GAs (Goldberg and Holland, 1988; Frazer,
1995; Bentley and Wakefield, 1997; DeLanda, 2002). To date,
many studies have examined GAs in detail (Rasheed and Hirsh,
1999; Hofmeyer and Davila Delgado, 2015; Su and Yan, 2015).

Using the principles of evolutionary biology, inheritance,
mutation, selection, and crossover, GAs offer solutions to various
design problems in a short time (Renner and Ekárt, 2003; Kim,
2013; Yu et al., 2014). These algorithms, which have very compli-
cated programming structures, can easily be used through the
Galapagos program developed by David Rutten (Rutten, 2013;
González and Fiorito, 2015).

Methods

Constraints, variables, and objectives

For the developed model, the parcel boundary and building height
boundary were defined as the constraints. Further, the avoidance
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points connected to the swarm simulation were the constraints, as
they are related to the boundary limits of the site. In addition, the
number and location of the agents, which were also related to the
boundary limits of the site and whose values were maintained
constant throughout the simulations, could also be defined as
constraints. The objective was the enhancement of the surface
area of the Delaunay or Voronoi-based form (Figs. 2, 3).

The variables were the values related to alignment, cohesion,
and separation that determined the paths of agents in the
swarm simulations. However, as the swarm geometry is directly
determined by the agents, we observed the geometry associated
with the form in the simulation. Therefore, the Delaunay or
Voronoi-based form, which is connected to the swarm agents,
was considered a variable (Fig. 2). The Delaunay mesh form
(Lee and Schachter, 1980) and Voronoi-based form (Benvenuti
et al., 2013; Tedeschi, 2014) were separately connected to the
agents in the swarm intelligence simulation. Delaunay and
Voronoi geometries were used because they can provide form as
a product in a certain complexity; they are directly connected to
swarm agents (and, hence, to point geometry), that is, they do
not complicate the simulation process; and form certain surfaces
(or geometries that can become surfaces). However, other geome-
tries with the same characteristics can be used in the simulations
as well.

Computer software

In this study, all of the processes were performed in Grasshopper,
which works as a plug-in to the Rhino program and provides a
visual programming language environment. In addition, the
study used Locust, Weaverbird, and Galapagos as add-ons to
Grasshopper.

Model setup

For the swarm intelligence simulation, the study used Locust,
which was developed as an add-on for the Grasshopper program
created by Cerver Design studio (Cerver tools, 2018). First, a
“bounding box” component was connected to the Locust Brain
component in the Locust add-on. This box component was

calibrated according to parcel boundaries and building height,
and the simulation boundaries were defined. The height of the
box was set as 12 m, as the assumed maximum achievable build-
ing height was 12 m. Further, the box’s width was set as 12 m and
the length as 16 m, which were in line with the boundaries of the
parcel’s usage area. In this manner, the movement boundaries of
the agents in the swarm simulation were determined (Figs. 2, 4).
Later, the starting points of the agents were connected to the
Locust Brain component. These points were positioned on the
ground plane and distributed in an equal ratio to the parcel.
The designer determined the number of starting points, which
is also the number of agents, and the distribution of these points
according to the parcel’s size. A grid was created by making five
partitions each in the X and Y axes, and the points on the grid
were defined as starting points (25 agents). In addition, while
determining the partition ratio, it was assumed that the simula-
tion could be run easily, and there were sufficient agents to create
the desired form. The aforementioned number of partitions can
be changed according to the formal complexity that can be
achieved based on the number of agents and the parcel size.

The alignment, cohesion, and separation parameters, which
correspond with the three main rules of swarm intelligence, can
be separately inputted to the Locust Brain component. Further,
there are two input values for alignment, cohesion, and separa-
tion; steer force and distance. Steer force specifies how power
influences alignment, cohesion, or separation; and distance indi-
cates the maximum distance between neighboring agents for
alignment, cohesion, or separation. In this study, the steer force
value is between 1 and 3 units (as a floating point), and the dis-
tance value is between 1 and 15 m (as a floating point) for align-
ment; the steer force value is between 1 and 3 units (as a floating
point), and the distance value is between 1 and 15 m (as a floating
point) for cohesion; and the steer force value is between 1 and 3
units (as a floating point), and the distance value is between 1 and
15 m (as a floating point) for separation (Table 1). However, these
values can be assigned randomly or lie within very broad ranges.
This is because Galapagos, which was used later in the script,
finds the best value range. The values of these inputs can be chan-
ged parametrically, as well. The changes in these values cause var-
iations in the overall behaviors of the swarm agents, as the former

Fig. 1. Self-organization of agents according to the defined alignment, separation, and cohesion values.
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may cause variations in the minimum and maximum distances
among the agents. However, the probability combination values
of these input values can be very high. In particular, the combina-
tion probability values increase with an increase in the number
value interval (Fig. 2).

In addition, the avoidance point parameter can be added to the
Locust Brain component. This parameter allows the agents to
escape from specified points. Within the scope of this study,
two avoidance points were defined in the considered area.
These points were located in the middle of the buildings next to
the parcel. The avoidance parameter has two inputs, steer force
and distance. Based on the influence of the power of the agents
moving away from the specified points, the steer force value
was assigned the default value of 1 unit. Further, based on the
impact of the distance of the agents moving away from the speci-
fied points, the distance parameter was set as 9 m. Therefore, the
agents in the swarm simulation moved away from these points

(i.e., from the buildings on the side). Based on the desired design,
the script may contain different numbers of avoidance points in
different locations (Fig. 2).

The agents can be identified as points in the swarm intelli-
gence simulation output. A Delaunay mesh component was ini-
tially used, which is a Grasshopper component because it
enables the creation of a complex form with ease by providing
the points as inputs and involves a mesh geometry that allows
the simulation to be performed at high speeds. The point geom-
etry, that is, the input of the Delaunay mesh component, was con-
nected to the swarm agents, which were the output of the swarm
intelligence simulation. Hence, based on the simulation of the
swarm agents, Delaunay mesh geometries were created. For the
second experiment, the study used Voronoi geometry, which is,
again, complex geometry. The Voronoi geometry was divided
using the Catmull–Clark subdivision component, which is a com-
ponent of the Weaverbird add-on. Subsequently, a thickness value

Fig. 2. Flowchart of the simulation script to maximize the surface area of the Delaunay/Voronoi mesh created by swarm agents.
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was input to the division frame to provide a more complex mesh.
The point input of the Voronoi component, which is the same as
the one used in the Delaunay geometry, was connected to the
agents in the point geometry, which was the output of the
swarm intelligence simulation. In this manner, according to the
simulation of the swarm agents, different Voronoi mesh geome-
tries were created (Fig. 2).

Optimization simulation

In this study, for a particular parcel, the maximization of the sur-
face area of the Delaunay/Voronoi mesh created by the agents
throughout the simulation was defined as the criterion. This
enabled the testing of how the mesh can be placed in the parcel
with the maximum surface area at the conceptual level.

Fig. 3. The developed script.

Fig. 4. The parcel and specified constraints (the arrows high-
lighted in red represent swarm agents; and the building height
limit is 12 m, parcel boundaries are 12 m to 16 m).
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However, it is very difficult for this formation to capture the com-
bination of the agent parameters that form the maximum surface
area by adjusting the number of slider parameters (the values of
inputs of the alignment, cohesion, and separation components)
and then running the simulation. Therefore, Galapagos, which
was developed as an add-on for Grasshopper based on GA, was
used as an optimization tool to determine the options for the
most suitable values. The genome part of Galapagos (representing
the variables to be used to reach the fitness value) was connected
to the number value parameters (six inputs) of the steer force and
distance inputs of alignment, cohesion, and separation. Further,
the numerical value of the Delaunay mesh surface/Voronoi
mesh average surface area to be formed as a result of the swarm
simulation was connected to the fitness part. Subsequently, the
Galapagos optimization was initiated without a runtime limit,
and the process was set to maximize the value (initial settings
for the optimization process: maximum stagnant: 50, population:
50, initial boost: 2, maintain: 5%, and inbreeding: +75%; Fig. 2).

Results and discussion

Case 1: Delaunay mesh

Using the Galapagos program, 20 experiments were conducted to
identify the combination of alignment, cohesion, and separation
values that increases the surface area of the Delaunay mesh
(Table 1). In the first experiment, the alignment, cohesion, and

separation values were randomly assigned before starting the
simulation. In the experiments, the combination of alignment,
cohesion, and separation values identified by the Galapagos pro-
gram at the end of each experiment was used as the combination
of the initial values for these parameters in the next experiment.
This is because, in the swarm simulation, the combination of
the initial values of the agents is important, as it allows the agents
to influence each other’s organization throughout the simulation
process. In addition, more than one generation was produced in
each of these 20 experiments to achieve the optimized result. At
least 49 generations were produced in each of these experiments,
and the number of generations produced in each experiment is
illustrated in Table 1.

At the conclusion of all of the experiments, the combinations
of the alignment, cohesion, and separation values determined by
the Galapagos program to maximize the surface area value were
found to be different from each other. An important reason is
that the organization of swarm agents among themselves in
each combination was different (in other words, each simulation
recorded different movements of the agents), providing different
Delaunay geometries for different combinations as well.
However, all of the experiments provided area values between
253.16 and 548.54 m2 (Table 1). Hence, in the model, each of
the 20 experiments provided information about the maximum
surface area of the corresponding form, which could be created
with different combinations of the swarm simulation. This
enabled the designer to identify the combination accurately of

Table 1. Results depicting the maximization of the area of the Delaunay mesh within the specified constraints

Experiment
no.

Fitness value
(maximum
area, m2)

Number of
generations
created

Alignment Cohesion Separation

Steer force
(Range:1–3

units)

Max distance
(Range:
1–15 m)

Steer force
(Range:1–3

units)

Max distance
(Range:
1–15 m)

Steer force
(Range: 1–3

units)

Max distance
(Range:
1–15 m)

1 413.64 51 1.76 13.23 1.7 5.13 2.24 11.58

2 399.59 49 2.8 11.06 1.67 12.8 1.53 5.61

3 505.61 91 2.34 6.62 2.03 7.9 2.57 9.66

4 253.16 49 2.1 9.21 2.71 8.05 1.78 9.07

5 404.93 52 1.96 7.47 2.14 2.67 1.73 6.14

6 387.83 49 1.53 8.2 1.96 14.58 1.25 6.37

7 381.45 49 1.32 10.84 1.41 2.5 1.42 12.23

8 331.57 57 1.72 8.06 2.63 5.38 1.69 7.1

9 360.31 49 2.74 5.67 2.57 5.51 1.05 5.73

10 345.04 49 2.37 12.31 2.52 13.27 1.9 1.65

11 367.65 49 2.67 2.89 2.25 8.13 1.1 8.51

12 526.89 124 1.73 8.15 1.83 8.23 2.73 7.22

13 523.20 62 1.72 8.25 1.94 8.5 2.14 7.02

14 409.99 49 2.22 8.77 2.99 9.31 1.14 8.06

15 448.46 146 2.33 10.72 1.71 3.35 1.86 7.21

16 529.01 73 2.16 6.35 1.74 5.83 2.35 6.55

17 452.64 54 2.32 9.41 1.55 4.98 2.48 8.79

18 498.72 123 2.32 4.05 1.65 5.32 1.68 11.87

19 548.54 50 2.35 4.22 1.96 6.98 2.54 8.02

20 401.89 49 2.74 1.88 1.52 3.46 1.26 3.93
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the starting values at which the maximum surface area could be
reached.

A detailed examination of these 20 experiments reveals the fol-
lowing: The steer force values range between 1 and 3 units; align-
ment steer force has a maximum value of 2.80 unit and a
minimum of 1.32 unit; cohesion steer force value ranges between
the upper and lower limits of 2.99 unit and 1.41 unit, respectively;
and separation steer force value varies from 2.73 unit to 1.05 unit.
In other words, the values can vary significantly according to dif-
ferent combinations. Further, based on the limited distance values
between 1 and 15 m, the alignment distance has a maximum
value of 13.23 m and a minimum of 1.88 m, the range of the
cohesion distance value is 14.58–2.50 m, and the range of the sep-
aration distance value is 12.23–1.65 m. In other words, the dis-
tance values can vary extensively according to different
combinations. However, the value of one parameter does not
increase in response to an increase in the values of other param-
eters. On the contrary, the other parameters have smaller values.
For example, in experiment 1, the separation, alignment, and
cohesion distances were 11.58 m, 13.23 m, and 5.13 m, respec-
tively. Similarly, in experiment 2, the cohesion, alignment, and
separation distances were 12.80 m, 11.06 m, and 5.61 m, respec-
tively (Table 1).

In terms of maximizing the surface area, the aforementioned
values, which were obtained from the model as a result of optimi-
zation, can be utilized to achieve a more efficient form-finding
process. Accordingly, an experiment in which a swarm simulation
was initiated with the values obtained at the end of the initial
optimization was performed. As seen from the simulation process,
the values of the Delaunay mesh surface areas tended to increase
(Table 2), and the fluctuations in the area value were caused by
the movements of agents in the simulation and, hence, considered
normal.

Case 2: Voronoi mesh

Using the Galapagos program, 20 experiments were conducted to
identify the combination of alignment, cohesion, and separation
values that increases the average surface area of the Voronoi
mesh. A process similar to the one performed in the Delaunay
mesh experiment was followed. Further, similar to the Delaunay
mesh case, different combinations of the alignment, cohesion,
and separation values were determined by the Galapagos program
to achieve the maximum surface area value. The major reason is
that the organization of swarm agents among themselves in each
combination was different, such that each combination formed a
different Voronoi geometry. However, the experiments provided
area values between 420.15 and 1261.74 m2 (Table 3), and at
least 25 generations were produced in each of these experiments.
The number of generations produced in each experiment is illus-
trated in Table 3.

A detailed examination of the results of the 20 experiments
reveals the following: the steer force values range between 1 and
3 units, the alignment steer force has a maximum value of 2.70
unit and a minimum of 1.00 unit, the cohesion steer force value
is between 2.58 and 1.66 units, and the separation steer force
value is between 2.73 and 1.45 units. In other words, the values
vary significantly according to the different combinations. From
the limited distance values between 1 and 15 m, the alignment
distance value varies between 13.55 and 1.93 m, the cohesion dis-
tance value is between 14.14 and 4.14 m, and the separation dis-
tance value is between 11.32 and 3.06 m. In other words, the

distance values vary significantly according to the different com-
binations. However, similar to the Delaunay mesh experiment, the
value of one parameter does not increase in response to an
increase in the values of other parameters. In contrast, the other
parameters have smaller values. For example, in experiment 1,
the separation, alignment, and cohesion distances are 7.94 m,
4.66 m, and 9.68 m, respectively. Similarly, in experiment 2, the
cohesion, alignment, and separation distances are 8.97 m,
10.67 m, and 11.32 m, respectively (Table 3).

Similar to the case of the Delaunay mesh, an experiment in
which a swarm simulation was initiated with the values obtained
at the end of the initial optimization was conducted for the
Voronoi mesh. As seen from the simulation process, the values
of Voronoi mesh surface areas tend to increase with the progress
of the experiment (Table 4). The fluctuations in the area value
were caused by the movements of agents in the simulation and,
hence, considered normal.

The number of agents in the swarm simulation; locations of
the agents; and initial values of the alignment, cohesion, and sep-
aration parameters are the factors determining how a swarm
simulation will formally occur. In the experiments conducted in
this study, the number and locations of agents were kept constant.
The simulation was initiated with random alignment, cohesion,
and separation values. At the end of the experiments, GA optimi-
zation was performed to identify the combination of alignment,
cohesion, and separation values in the swarm simulation that cre-
ated the maximum surface area values.

Opposite objective test

In this study, to test the accuracy of the information produced by
the proposed model, a process to minimize the surface area of the
Delaunay mesh produced by swarm simulation was determined as
a criterion, and a test operation was carried out. In this process,
apart from applying the settings to minimize the area value of
the objective (criterion) in the optimization step, the constraints
and methodology were exactly the same as the process for deter-
mining the maximum surface area.

This process aimed to test the accuracy of the information
included in the model by performing an opposite operation. In
this process, test experiments for the Delaunay mesh were con-
ducted to examine whether the forms, which could be formed
in a swarm simulation and could cover the minimal area,
occurred or not. The test trials revealed that forms with very
low area values could be obtained by swarm simulation optimiza-
tion (Table 5), and the model took only a short time to provide
this information. All of the experiments revealed area values
between 104.21 and 0 m2. In the swarm simulation, when the
agents came very close to each other and became concentrated
in some regions, the area value can fall to 0, which is reflected
in the results. Hence, the model could provide information on
the minimum surface area of the form that resulted from the
swarm simulation in different combinations in each of the 20
experiments. This assisted the designer in identifying the combi-
nation of starting values that could yield the minimum surface
area.

A detailed examination of the 20 test results reveals that among
the steer force values that are limited between 1 and 3 units, the
values of the alignment steer force have a maximum of 2.63 unit,
and a minimum of 1.49 unit, the cohesion steer force value has a
maximum of 2.68 unit and a minimum of 1.23 unit, and the sep-
aration steer force value is at a maximum 2.78 unit and a
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minimum of 1.14 unit. In other words, the values can vary signif-
icantly among the combinations. From the limited distance values
between 1 and 15 m, the alignment distance has a maximum
value of 14.76 m and a minimum of 2.93 m, the cohesion distance

has a maximum value of 12.03 m and a minimum of 1.17 m, and
the separation distance has a maximum value of 12.15 m and a
minimum of 3.04 m. Finally, once again, the distance values var-
ied extensively for different combinations (Table 5).

Table 2. Sections of the swarm simulation initiated by the values obtained from the first Galapagos optimization for the Delaunay mesh area

Initial setup Alignment steer force: 1.76 unit, alignment max distance: 13.23 m

Cohesion steer force: 1.7 unit, cohesion max distance: 5.13 m

Separation steer force: 2.24 unit, separation max distance: 11.58 m

Avoidance parameter: 2 points (radius of avoidance distance: 9 m, steer force: 1 unit)

Number of agents: 25 (X:5, Y:5)

Box: 12 × 16 × 12 m

Swarm simulation results

10th second Delaunay mesh area: 347.65 m2
20th second
Delaunay mesh area: 218.12 m2

30th second
Delaunay mesh area: 184.3 m2 40th second

Delaunay mesh area: 88.99 m2

50th second
Delaunay mesh area: 227.17 m2

60th second
Delaunay mesh area: 146.36 m2
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On concluding the experiments that were part of the test, the
combination of alignment, cohesion, and separation values in the
swarm simulation that created the minimum surface areas could
be identified using GA optimization.

This test examined whether the script can work effectively by
using opposite objectives (minimizing surface area). All of the
other values in the main test were kept the same, and as a result,
the script could perform the minimizing surface area task, which
is the opposite objective. In particular, although the value ranges
of the variables (the values related to alignment, cohesion, and
separation) are the same with the main test, the decrease in fitness
values obtained as a result of GA optimization demonstrated that
the script could perform the opposite task. In addition, in the
swarm simulation, which began by taking the values in the
third experiment, the decrease of the area covered by the
Delaunay form is noticeable in a short time (Table 6).

Analysis of the relationship between the values and the surface
area

Another analysis was made to observe how the alignment, cohe-
sion, and separation values affect the surface area of the form in
the swarm simulation. To understand the effect in the Delaunay
mesh form, first, a simulation experiment was carried out with
the alignment steer force value: 1, alignment maximum distance
value (m): 2, cohesion steer force value: 1, cohesion maximum

distance value (m): 2, separation steer force value: 1, and separa-
tion maximum distance value (m): 2. Then, keeping the other val-
ues constant, an experiment with an increased alignment
maximum distance value of 5 m, an experiment with an increased
cohesion maximum distance value of 5 m, and another experi-
ment with an increased separation maximum distance value of
5 m were conducted. This experiment was performed for the
first 5 and 10 s because beyond this time, the form was found
to be influenced by environmental factors owing to the effect of
the bounding box. Therefore, the change could not be clearly
observed (Table 7).

According to this analysis, the separation maximum distance
value variable has the potential to increase the area of the form.
If the environmental factors had no effect on shaping the form,
it would be reasonable to retain the separation maximum distance
value variable high to maximize the surface area because the sep-
aration feature enlarges the distance between the agents, and
therefore increases the surface area formed between the agents.
However, in this study, this is not a criterion as the environmental
factors (sidewalls) affect the swarm simulation, and the swarm
agents are self-organized in line with these environmental factors.
However, GA optimization offers us a potential value combina-
tion (incorporation with environmental factors into the process),
so we can obtain a form that may emerge during the swarm simu-
lation. However, there may be increases and decreases in the sur-
face area during the simulation period of this combination.

Table 3. Results of maximizing the area of the Voronoi mesh within the specified constraints

Experiment
no.

Fitness value
(maximum
area, m2)

Number of
generations
created

Alignment Cohesion Separation

Steer force
(Range:

1–3 units)

Max distance
(Range:
1–15 m)

Steer force
(Range:

1–3 units)

Max distance
(Range:
1–15 m)

Steer force
(Range:

1–3 units)

Max distance
(Range:
1–15 m)

1 512.94 63 1.76 4.66 1.99 9.68 2.44 7.94

2 838.17 59 2.26 10.67 2.12 8.97 2.09 11.32

3 780.99 67 2.15 10.93 2.12 8.53 1.75 10.6

4 732.38 89 2.02 10.15 2.04 8.93 1.8 9.6

5 1226.26 40 2 9.74 2.02 8.95 1.82 9.57

6 923.08 84 2.66 2.15 1.66 14.14 2.73 9.5

7 455.94 131 1.55 12.91 2.58 8.24 2.7 8.98

8 420.15 90 2.7 8.39 2.25 10.24 2.61 7.08

9 424.34 44 1.1 1.93 2.17 11.98 1.64 6.82

10 823.21 143 2.31 13.55 2.03 4.14 1.45 11.06

11 434.42 58 2.15 5.84 1.95 7.53 1.94 9.3

12 437.97 64 2.66 4.48 1.86 10.5 2.33 9.01

13 453.84 75 1.62 9.29 2.36 5.38 2.2 8.74

14 461.11 25 1.47 11.3 2.02 9.99 1.69 3.06

15 422.29 60 2.37 7.03 1.88 7.07 1.69 4.18

16 887.66 56 2.33 5.82 2.44 6.31 2.1 9.93

17 974.03 95 2.3 7.23 2.32 5.93 2.05 9.01

18 947.85 44 1.67 8.1 2.28 6.32 2.08 8.29

19 1261.74 46 1.66 8.1 2.28 6.32 2.08 9.62

20 861.02 184 1 8.57 2.33 9.41 2.18 7.57
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It should be noted that, in these simulations, the form changes
every second. Therefore, depending on the computer used, the
results may vary. The computer used in this study is a portable
workstation (equipped with the Intel Core i7 – 3820QM processor
– 8 MB Cache up to 3.70 GHz, 8 GB RAM, 500 GB Hard Disk

Drive, 7200 rpm, and a separate NVIDIA Quadro K2000M gra-
phics processor with 2GB DDR3 Memory). In the rule-based
swarm intelligence simulation, 6% CPU was used, and in the
combined simulation (swarm + GA optimization), 17% CPU
was used.

Table 4. Sections of the swarm simulation initiated by the values achieved from the first Galapagos optimization for the average Voronoi mesh area

Initial setup Alignment steer force: 1.76 unit, alignment max distance: 4.66 m

Cohesion steer force: 1.99 unit, cohesion max distance: 9.68 m

Separation steer force: 2.44 unit, separation max distance: 7.94 m

Avoidance parameter: 2 points (radius of avoidance distance: 9 m, steer force: 1 unit)

Number of agents: 25 (X:5, Y:5)

Box: 12 × 16 × 12 m

Swarm simulation results

Plan view Plan view

Perspective view Perspective view

10th second
Voronoi mesh average area: 253.54 m2

20th second
Voronoi mesh average area: 261.67 m2

30th second
Voronoi mesh average area: 286.9 m2

40th second
Voronoi mesh average area: 358.49 m2
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Conclusions

This study is the first test on the simultaneous use of two
bio-inspired algorithms in the field of architecture. As depicted
by the case studies, the combined model developed by the study
is effective. In other words, the two bio-inspired algorithms, the
swarm intelligence algorithm and GA, could work together.
Specifically, the GA optimized swarm agents in motion.

In this study, the parcel boundary and the maximum achiev-
able height of the mass were the constraints in the swarm simula-
tion, and the maximization of the average surface area of the
Delaunay/Voronoi mesh associated with the alignment, cohesion,
and separation values was defined as the criterion (objective).
Accordingly, the swarm simulation was optimized using the
Galapagos program to achieve the desired values. As this study
focused on the effective use of two bio-inspired algorithms
together, other architectural parameters (e.g., functional, struc-
tural, and material parameters) were excluded from the study’s
scope, with the exception of increasing the surface area parameter,
which was determined as an objective.

The ability of two bio-inspired algorithms to run together is
the main inference of this study. However, based on the results
obtained in this study, the following additional inferences are
open for discussion.

Normally, the rule-based swarm algorithm does not work as
an optimization algorithm. As many combinations of alignment,
cohesion, and separation values are possible in the rule-based

swarm intelligence approach, it is very difficult to identify maxi-
mum or minimum values of specific criteria and constraints with-
out using an optimization tool. Therefore, the benefit of the
combined method produced in this study is that the combination
values of self-organizing swarm agents can be found through
optimization (with the GA).

Today, the concept design process has changed from a two-
dimensional approach (e.g., manual sketches on paper) to a static
three-dimensional approach (e.g., digital sketches on computer-
aided design programs). Accordingly, concept design with intelli-
gent modeling and simulation tools has started superseding other,
less advanced, methods. However, computer programs can some-
times restrict the flexibility of the designer, as they do not facilitate
sufficient form formation during the conceptual design phase.
Therefore, as suggested by this study, various new methods,
which can be used in computer-aided design platforms, should
be developed. In this study, the method, which involved the
simultaneous use of two bio-inspired approaches – the swarm
intelligence algorithm and GA – by utilizing advanced technolo-
gies, enabled the designer to increase the speed of the sketching
process in the conceptual design stage of architectural design.
The digital sketches, which were formed in line with the estab-
lished criteria and constraints throughout the simulation, could
introduce new ideas to the designer, which may inspire the
designer to initiate a process of rediscovery. As demonstrated in
the case studies (Delaunay and Voronoi), optimization offers

Table 5. Results of the minimization of the area of the Delaunay mesh (fitness value) within the specified constraints

Experiment
no.

Fitness value
(minimum
area, m2)

Number of
generations
created

Alignment Cohesion Separation

Steer force
(Range:

1–3 units)

Max distance
(Range:
1–15 m)

Steer force
(Range:
1–3 units)

Max distance
(Range:
1–15 m)

Steer force
(Range:

1–3 units)

Max distance
(Range:
1–15 m)

1 104.21 70 2.34 8.91 1.23 5.63 1.53 9.66

2 0 32 2.46 10.06 2.18 1.45 1.27 6.49

3 0.01 29 2.03 5.99 2.21 5.97 1.75 5.97

4 0 23 2.33 7.65 2.3 6.49 1.69 8.42

5 28.99 41 1.91 5.93 1.84 12.03 1.91 7.17

6 0.06 21 2.05 7.89 1.91 10.46 1.75 7.93

7 116.11 78 2.3 5.53 1.49 8.63 2.78 6.26

8 85.96 67 1.98 6.7 1.73 8.27 1.87 12.15

9 78.47 54 1.86 6.11 1.93 4.78 2.62 9.64

10 80.61 67 1.84 12.2 1.41 5.4 2.08 8.75

11 21.28 62 2.34 2.93 2.06 6.79 2.17 9.83

12 82.62 60 2.54 8.24 2.35 9.94 2.03 5.99

13 0.2 18 2.49 6.9 2.33 4.88 1.64 9.36

14 0 13 1.89 9.54 2.29 6.78 1.52 7.04

15 1.2 20 2.29 8.12 1.74 6.44 1.44 7.81

16 4.17 24 1.78 3.78 1.6 1.17 1.14 12.04

17 0 29 1.49 8.03 2.3 6.05 2.07 10.62

18 0 20 2.63 9.2 2.32 4.23 1.63 11.17

19 73.94 56 2.05 9.88 2.32 4.89 2.52 3.04

20 85.02 44 1.52 14.76 2.68 1.71 2.66 6.47
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Table 6. Sections of the swarm simulation initiated by the values achieved from the third Galapagos optimization for the Delaunay mesh area (minimizing the
surface area)

Initial setup Alignment steer force: 2.03 unit, alignment max distance: 5.99 m

Cohesion steer force: 2.21 unit, cohesion max distance: 5.97 m

Separation Steer Force: 1.75 unit, separation max distance: 5.97 m

Avoidance parameter: 2 points (radius of avoidance distance: 9 m, steer force: 1 unit)

Number of agents: 25 (X:5, Y:5)

Box: 12 × 16 × 12 m

Swarm Simulation results

10th second
Delaunay mesh area: 71.31 m2

20th second
Delaunay mesh area:40.55 m2

30th second
Delaunay mesh area:15.76 m2

40th second
Delaunay mesh area: 34.5 m2

50th second
Delaunay mesh area: 36.73 m2

60th second
Delaunay mesh area: 23.87 m2
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various form alternatives (in accordance with the established
objectives and constraints) to the designer and thereby, strength-
ens the conceptual design stage.

Limitations and future work

As the main focus of this study was based on the simultaneous use
of two algorithms, an experiment was carried out on a simple
objective. However, using more sophisticated objectives, experi-
ments should be done on the interoperability of these two algo-
rithms in the field of architecture and design.

In the combined method, Galapagos optimization was
initiated without a runtime limit. However, the number of genera-
tions produced was observed to differ in each test. Consequently,
the computation times were also different for each test. Another
observation was that the computation time varied according to
the objective of minimizing or maximizing the surface area of
the form and according to the type of form being used.
Moreover, the number of swarm agents and the width of the
area that the swarm agents effect, has a significant impact on
the computation time. The type of computer hardware was also
found to influence the computation time. It will therefore be
advantageous to perform various tests and comparative analysis
on the aforementioned topic.

In this paper, if we make inferences in line with the objective
chosen within the scope of optimization, the optimization of
boids does not provide direct results (within the scope of
Voronoi and Delaunay geometries). The results demonstrate
that the optimal parameter values for alignment, cohesion, and
separation can vary, and the run time of the swarm simulation
affects the resulting geometry. However, GA optimization pro-
vides a conclusion about the overall value range, and this could
be an answer to another research question within the scope of

this study: “Can digital pathways be developed to provide more
flexible solutions in the conceptual design phase?” The method
used in this study may be suitable for the conceptual design
phase in the digital environment because this method contributes
to the sketching process in the digital environment with different
alternatives offered to the designer, and thus, the designer can
revise and reshape their ideas. This conforms to the definition
of ill-structured design options that should take place in the con-
ceptual design phase.

As a future direction of this study, the maximization of the
surface area using a multi-objective optimization add-on (e.g.,
the Octopus add-on) should be optimized using another
parameter. Some examples of this other parameter are the provi-
sion of daylight control using the Honeybee add-on, the genera-
tion of environmentally conscious architectural designs using
the Ladybug add-on, the provision of acoustic control using the
Pachyderm add-on, and the provision of structure-related con-
trols using the Karamba add-on.
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