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We investigate the linear properties of the steady and axisymmetric stress-driven
spin-down flow of a viscous fluid inside a spherical shell, both within the incompressible
and anelastic approximations, and in the asymptotic limit of small viscosities.
From boundary layer analysis, we derive an analytical geostrophic solution for the
three-dimensional incompressible steady flow, inside and outside the cylinder C that is
tangent to the inner shell. The Stewartson layer that lies on C is composed of two nested
shear layers of thickness O(E2/7) and O(E1/3) where E is the Ekman number. We derive
the lowest-order solution for the E2/7-layer. A simple analysis of the E1/3-layer lying along
the tangent cylinder, reveals it to be the site of an upwelling flow of amplitude O(E1/3).
Despite its narrowness, this shear layer concentrates most of the global meridional kinetic
energy of the spin-down flow. Furthermore, a stable stratification does not perturb the
spin-down flow provided the Prandtl number is small enough. If this is not the case, the
Stewartson layer disappears and meridional circulation is confined within the thermal
layers. The scalings for the amplitude of the anelastic secondary flow have been found
to be the same as for the incompressible flow in all three regions, at the lowest order.
However, because the velocity no longer conforms the Taylor–Proudman theorem, its
shape differs outside the tangent cylinder C, that is, where differential rotation takes place.
Finally, we find the settling of the steady state to be reached on a viscous time for the
weakly, strongly and thermally unstratified incompressible flows. Large density variations
relevant to astro- and geophysical systems, tend to slightly shorten the transient.

Key words: rotating flows, free shear layers

1. Introduction

One of the long-lasting problems in stellar astrophysics is the nature of the mechanisms
responsible for the angular momentum and chemicals transport within the stably stratified
radiative envelope of rotating massive stars. Such transport can result from various
physical processes such as internal gravity waves (e.g. Rogers et al. 2013; Lee, Neiner
& Mathis 2014), turbulence from shear instabilities due to differential rotation (e.g. Zahn
1974, 1992; Prat & Lignières 2013, 2014; Prat et al. 2016; Garaud, Gagnier & Verhoeven
2017; Gagnier & Garaud 2018; Kulenthirarajah & Garaud 2018) and centrifugal driving
of meridional circulations. The latter is usually associated with the steady baroclinic
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state of the radiative envelope of rotating massive stars (e.g. Garaud 2002; Rieutord
2006; Espinosa Lara & Rieutord 2013; Hypolite & Rieutord 2014; Rieutord & Beth
2014; Hypolite, Mathis & Rieutord 2018). In such a state, isobar and isopycnic lines (or
equipotentials) are different and result in a baroclinic torque (∇p × ∇ρ)/ρ2 where p is
the pressure and ρ is the density. Because of the strength of the pressure and density
gradients in stellar interiors, a slight misalignment of the two vectors is sufficient to
drive a sizeable baroclinic flow. In fact, the misalignment remains less than a degree,
even for the most rapidly rotating stars (Espinosa Lara & Rieutord 2011). The effects
of baroclinicity can, however, be supplemented by the meridional circulation induced
by spin-up or spin-down flows resulting from stellar contraction or expansion (Hypolite
& Rieutord 2014). Furthermore, in massive stars, rapid rotation usually combines with
strong radiation-driven winds that may lead to significant latitude-dependent outward
mass flow and angular momentum flux (e.g. Maeder & Meynet 2000; Pelupessy, Lamers
& Vink 2000; Georgy, Meynet & Maeder 2011; Gagnier et al. 2019a,b). When this is
the case, typically for stars more massive than seven solar masses, the baroclinic flow is
supplemented by a meridional circulation resulting from the surface stress induced by the
mass loss (Zahn 1992). The transport of products of nuclear reactions in the stellar core
can then enrich the surface layers in chemical elements, locally increasing opacity and thus
enhancing the radiation-driven outward mass and angular momentum fluxes (Kudritzki,
Pauldrach & Puls 1987; Puls, Springmann & Lennon 2000; Puls, Vink & Najarro 2008).
The physical process of wind-driven spin-down flow is therefore of crucial importance for
the understanding of the secular evolution of rotating massive stars.

So far, however, there is still no consensus on the appropriate way to model the mixing
induced by such fluid flows in stellar evolution codes. Indeed, while the transport of
chemicals is always accounted for as a diffusive process (as justified by Chaboyer &
Zahn 1992), the angular momentum transport is either treated as an advection–diffusion
process following Zahn (1992), Meynet & Maeder (1997) and Maeder & Zahn (1998) or
as a purely diffusive process (Paxton et al. 2011). Moreover, when facing fast rotation,
developments beyond the current one-dimensional (1-D) model approximations become
necessary. In this context, the achievement of the first self-consistent 2-D models of rapidly
rotating early-type stars, worked out by Espinosa Lara and Rieutord (e.g. Espinosa Lara &
Rieutord 2013; Rieutord, Espinosa Lara & Putigny 2016) and in which the differential
rotation as well as the meridional circulation arising from baroclinicity are computed
self-consistently, opens the door to the exploration of the evolution of fast stellar rotators.
Because the sources of rotation-induced mixing are multiple, a meticulous study of
each transport mechanism appears to be necessary for a better understanding of stellar
evolution. In this paper we address this issue and investigate the properties of the primary
and secondary flows driven by radiation-driven outward mass and angular momentum
fluxes at the surface of rotating massive stars.

However, the complete modelling of astrophysical rotation-induced mixing is a complex
problem. Hence, to understand its different facets, it is useful to study simplified set-ups
which incorporate, step by step, the various physical phenomena that contribute to the
whole realistic model. For instance, we shall be particularly interested in the scaling laws
which control the viscous effects.

When a star loses mass, the associated wind extracts angular momentum. At some
place inside the star, but close to the surface, this extraction generates a radial differential
rotation that further extracts angular momentum from the deeper layers. The upper layers
therefore impose a torque to the interior of the star, which slowly spins down. As is well
known (see Greenspan 1968), the spin-down of an incompressible fluid inside a rigid
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container with no-slip boundaries occurs on a time scale Prot/
√

E, where Prot is the rotation
period of the fluid and E is the Ekman number (see below for its definition). Since in most
situations E � 1, the spin-down time scale is much shorter that the viscous diffusion time
scale Prot/E. In stars, however, boundary conditions are not rigid. Rather, the wind imposes
a global angular momentum loss which amounts to a torque applied to the inner layers of
the star. Hence, at some depth, the fluid is spun-down by a (turbulent) viscous stress. As
in the no-slip case, secondary meridional flows arise as shown by Friedlander (1976).

The set-up is further complicated by the convective core of the massive stars at hand.
Compared to the envelope, the core may be viewed as a very viscous region, since thermal
convection is highly turbulent there. To simplify, we shall represent it with the limiting
case of a solid ball. A solid boundary or an important jump in viscosity both lead to
the formation of Stewartson shear layers staying along the tangent cylinder of the core,
parallel to the rotation axis (e.g. Stewartson 1966; Rieutord 2006). Hence, the secondary
flows are certainly more complex that those arising in a full sphere. Moreover, we wish to
know how long it takes for chemical elements generated in the core by nucleosynthesis to
reach the stellar surface, where they can be observed. Hence, it is important to know the
meridional circulation turnover time and its dependence with viscosity. In addition thermal
stratification and density variations between the core and the surface also influence the
spin-down flow.

Our simplified model takes into account all these features of the problem so as to
examine their particular role. Let us summarise this model: we consider a spherical
shell containing a viscous fluid where the rotation of the core is imposed and where an
imposed large-scale stress is applied on the outer surface. We first consider a fluid of
constant density and temperature, then discuss the case with a stable thermal stratification
(as requested by radiative envelopes) and, finally, we allow for radial density variations
using a polytropic envelope within the anelastic approximation (e.g. Jones, Kuzanyan
& Mitchell 2009). We further assume that the angular momentum extraction and the
associated surface stress are weak enough that linearised equations can be used for the
axisymmetric flow determinations.

The paper is organised as follows: in § 2 we introduce our model and describe the
numerical method used for solving the equations of motion. We then consider the case of
an incompressible flow and we discuss the time scales governing the transient phase and
the asymptotic properties of the stationary primary (differential rotation) and secondary
(meridional circulation) flows in the limit of small Ekman numbers in § 3. In § 4, we
discuss the role of thermal stratification using the Boussinesq approximation, and we
finally include density variations of the background using the anelastic approximation in
§ 5. Discussion and conclusions follow in § 6.

2. Formulation of the problem

2.1. Description
A fluid of constant kinematic viscosity ν is enclosed between two spheres (see below).
The inner one is rigidly rotating with a constant angular velocity Ωc while the outer shell
supports a prescribed tangential surface stress τ∗(θ); R and ηR are the radii of the outer and
inner shells, respectively, and θ is the colatitude. We sketch out this model in figure 1. We
consider the driving stress to be sufficiently weak that the rotation period of the system is
much shorter than the typical turnover times associated with the flow in the rotating frame
of reference. We thus consider the nonlinear terms to be negligible, which we justify a
posteriori in appendix A. The dimensionless equation of vorticity and mass conservation
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Ωs (θ)

τ∗(θ)

Ωc
ηR

R

ez

es

θ

C

FIGURE 1. Schematic view of the system: the inner shell of radius ηR rotates with an angular
velocity Ωc while the outer one of radius R rotates differentially at Ωs(θ) by means of a
prescribed tangential surface stress τ∗(θ). The dashed lines correspond to the edges of the tangent
cylinder C, circumscribing the inner sphere.

equation in the rotating frame with angular velocityΩc, and in the context of an ‘anelastic’
flow, read

∂

∂t
(∇ × ρu)+ ∇ × (ez × ρu) = E∇ × f visc,

∇ · ρu = 0,

⎫⎬
⎭ (2.1)

where we have used R as the length scale, (2Ωc)
−1 as the time scale and ρc, the density at

the inner shell, as the density scale. Here, ez is the unit vector in the z-direction, u is the
non-dimensionalised velocity vector, E is the Ekman number defined as

E = ν

2ΩcR2
, (2.2)

and

f visc = ρ(	u + 1
3∇divu)+ 2(∇ρ · ∇)u + ∇ρ × (∇ × u)− 2

3∇(ρdivu), (2.3)

is the dimensionless viscous force. This expression of the viscous force is meant to
represent the case where the envelope is pervaded by some small-scale turbulence with
constant diffusive properties as often used in stellar physics (Brandenburg et al. 1996;
Käpylä, Mantere & Brandenburg 2012). Centrifugal effects are neglected altogether, and
the flows are considered axisymmetric.

This system is then completed by boundary conditions. On the outer shell, we impose a
specified stress, which represents the torque resulting from the stellar wind. The simplest
dimensionless expression of such a stress, which we take equatorially symmetric, is

τ(θ) = σrφ/ρ = −A

√
3

4π
sin θ, (2.4)

where [σ ] is the dimensionless stress tensor and A is a positive constant that sets the
amplitude of the prescribed (braking) stress. Although the wind imposes a small radial
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Stress-driven spin-down in a spherical shell 904 A35-5

flow at the surface, we shall ignore it in this first approach, and impose a vanishing normal
velocity on the outer shell. Finally, we impose no-slip boundary conditions at the inner
boundary, as justified by the important viscosity jump at the stellar envelope/core interface.
Boundary conditions thus read

ur = uθ = uφ = 0 at r = η, (2.5a)

ur = r
∂

∂r

(uθ
r

)
= 0,

σrφ

ρ
= r

∂

∂r

(uφ
r

)
= −A

√
3

4π
sin θ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

at r = 1. (2.5b)

2.2. Numerical method
We use a spectral decomposition and expand the fields in spherical harmonics for the
angular part and Chebyshev polynomials for the radial part (see Rieutord & Valdettaro
1997). We write

q = ρu =
+∞∑
l=0

+l∑
m=−l

ul
m(r)R

m
l + vl

m(r)S
m
l + wl

m(r)T
m
l , (2.6)

where
Rm

l = Ym
l er, Sm

l = ∇Ym
l , T m

l = ∇ × Rm
l , (2.7a–c)

with Ym
l being the usual normalised scalar spherical harmonic function. Because the q-flow

is divergenceless both in the incompressible and anelastic models, vl
m can be expressed as

a function of ul
m only (Rieutord 1987). Projecting the vorticity equation (2.1) on Rm

l and
T m

l for an axisymmetric flow (m = 0), we obtain the following system of equations for the
radial parts

∂wl

∂t
−
[

Al
l−1rl−1 ∂

∂r

(
rul−1

rl−1

)
+ Al

l+1r−l−2 ∂

∂r
(rl+3ul+1)

]
= Ehl,

∂

∂t
(	lrul)+ Bl

l−1rl−1 ∂

∂r

(
wl−1

rl−1

)
+ Bl

l+1r−l−2 ∂

∂r
(rl+2wl+1) = −E

r

(
f l − ∂rgl

∂r

)
,

vl = 1
rΛ

∂r2ul

∂r
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.8)

where Λ = l(l + 1). Here, Al
l−1, Al

l+1, Bl
l−1 and Bl

l+1 are the coupling coefficients defined
as

Al
l−1 = Al−1

l = 1
l

√
1

(2l − 1)(2l + 1)
, Bl

l−1 = Bl−1
l =

√
l(l2 − 1)

(2l − 1)(2l + 1)
. (2.9a,b)

The viscous force is projected on the spherical harmonics basis as well, namely

f visc =
+∞∑
l=0

+l∑
m=−l

f l
m(r)R

m
l + gl

m(r)S
m
l + hl

m(r)T
m
l , (2.10)
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where

f l = 2
∂ρ

∂r
Λbvl − 2bul

r
+ Λρ

r
zl + ∂

∂r

(
4ρ
3

dl

)
,

gl = 1
r
∂

∂r
(rρzl)+ 2

r
∂ρ

∂r
(bul − bvl)+ 4ρ

3r
dl,

hl = ρ	lbwl + r
∂ρ

∂r
∂

∂r

(
bwl

r

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.11)

with

zl = 1
r
∂rbvl

∂r
− bul

r
, dl = 1

r2

∂r2bul

∂r
− Λbvl

r
, (2.12a,b)

and where b(r) = 1/ρ(r) is the inverse density function.
Finally, the boundary conditions in the rotating frame of reference are projected on the

spherical harmonics and read

ul = vl = wl = 0, at r = η,

ul = r
∂

∂r

(
bvl

r

)
= 0, r

∂

∂r

(
bwl

r

)
= −Aδl1, at r = 1,

⎫⎬
⎭ (2.13)

where δij is the Kronecker symbol.

3. The incompressible flow

In this section, and as a first step, we solve (2.1) for constant density throughout the
domain, namely for ρ(r) = 1, with the boundary conditions (2.5), and with the initial
condition u = 0. Of course, before the steady state is reached, the flow is in a transient
state during which the driving surface stress has not yet been fully communicated to the
interior of the fluid. We now briefly analyse this transitional stage so as to estimate the
transient time scale.

3.1. The transient phase
As to assess the relevance of the steady-state approximation for geophysical and
astrophysical applications, it is important to determine the time scales the flow
characteristics are governed by. To do so, we measure the time at which the evolution
of the total angular momentum in the rotating frame may be considered to its end. We
note that the change in angular momentum of the fluid is due to the difference between the
torque exerted on the fluid by the outer boundary condition and the torque that the fluid
exerts on the steady inner sphere. Therefore, a stationary state is reached when

	Γ ≡ Γ (1)− Γ (η) = 0, (3.1)

where Γ (1) and Γ (η) are the torques about the z-axis exerted on the outer and inner
boundary surfaces, respectively. The torque about the z-axis exerted on a layer located at
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FIGURE 2. Relative difference between the torque applied on the outer sphere and the torque
exerted by the fluid on the stationary inner sphere, as a function of the reduced time Et. We find
the steady state to be reached on a O(E−1) time scale, that is on a viscous time scale, in the
asymptotic regime of small Ekman numbers.

some radius r can be written

Γ (r) =
∫
∂r

σ · ez dS, (3.2)

where σ is the local stress applied on the sphere of radius r. We expand σ on the spherical
harmonics basis, hence the torque about the z-axis reads

Γ (r) = −
∫
∂r

r sin θρ(r)
∑

l

r2tl ∂Yl

∂θ
dΩ, (3.3)

where

tl = r
∂

∂r

(
wl

r

)
. (3.4)

Using Legendre polynomials recurrence relations, (3.3) actually reads

Γ (r) = 4
√

π

3
r3ρ(r)t1(r). (3.5)

Applying boundary conditions (2.13), (3.1) can finally be written

	Γ = −4
√

π

3

(
Aρs + η3 ∂w1

∂r

∣∣∣∣
r=η

)
, (3.6)

where the non-dimensional surface density ρs = ρ(1) = 1 for the considered
incompressible model. We monitor the evolution of the relative difference between the
torques 	Γ/Γ (1) for various Ekman numbers and show the result in figure 2. It shows
that on a time scale O(E−1) the stress is completely communicated to the interior flow, and
a steady state is reached.

Of course in the astrophysical or geophysical context, it may become necessary to relax
the constant rotation of the inner sphere. The torque exerted by the fluid on this boundary
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Et
2.0 2.5 3.0

1.0
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0.6

0.4

0.2

0

E = 10–5

E = 10–6

E = 10–7

E = 10–8
ψ

h/
ψ

h,
st

FIGURE 3. Amplitude of the streamfunction taken at s = η and z = 1/2 normalised by its value
at the steady state ψh/ψh,st, as a function of the reduced time Et for various Ekman numbers.
We find the Stewartson to appear within a few inner sphere revolutions and to evolve in a viscous
time scale.

can make the inner sphere spin-down. According to the angular momentum theorem

Γ∗(ηR) = dLcore
z

dt∗
= Ic

dΩc

dt∗
, (3.7)

where Γ∗ is the dimensional torque, Ic is the moment of inertia of the core assumed to
be in solid-body rotation and Lcore

z is its total angular momentum. Starred quantities are
dimensional.

The core spin-down then engenders an additional Euler force Ω̇cez × r since our frame
is attached to the core. This force can, however, be neglected if the time scale associated
with the core spin-down is larger than the (viscous) time scale during which the angular
momentum is redistributed. In that case, the flow can reach a quasi-steady state. In the
present work, for simplicity, we shall use this assumption (Ω̇c = 0). Astrophysically, we
justify its adoption by the Roche approximation, often used for massive stars, where the
whole mass of the star is assumed to be in the core.

Another important time scale is that of the rise of the Stewartson layer. This layer
appears as the result of the equatorial singularity of the inner Ekman boundary layer.
It is well known that within an equatorial band of latitude O(E1/5), the thickness of the
Ekman boundary layer is δE = O(E2/5) (Roberts & Stewartson 1963). Hence, this singular
equatorial viscous boundary layer is expected to be fully developed, and to initiate the
development of the Stewartson layer, on the O(δ2

E/E) = O(E−1/5) time scale, that is much
shorter than the O(E−1) viscous time scale. Likewise, the central Stewartson layer of
thickness O(E1/3) is fully developed on the O(E−1/3) time scale, again, much shorter than
the viscous time scale. We therefore expect the Stewartson layer to start developing within
a few revolutions of the inner shell and to be fully developed on a time scale that is much
shorter than the viscous one on which we expect the shear flow inside it to evolve towards
the steady state. We verify this in figure 3 showing the amplitude of the streamfunction
ψh/ψh,st, taken at cylindrical radius s = η and z = 1/2, and normalised by its value at the
steady state, as a function of the reduced time Et for various Ekman numbers.

The analysis of the transient phase preceding the settling of a steady state thus
underlines that the entire meridional flow evolves on a viscous time scale of order E−1.
In the astrophysical context characterised by extremely small Ekman numbers (typically
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FIGURE 4. Normalised angular velocity as a function of the cylindrical radial coordinate s for
E = 10−7, η = 0.35, A = 0.01 and for various r.

E < 10−10), such a scaling implies that a steady state of the radiative envelope of massive
stars is not reached during their lifetime.

3.2. The steady flow
Even if it is not reached during the lifetime of the star, the steady state is worth studying
since it owns many simple features and its structure is very similar to that of the transient
flow.

It is well known that the linear and stationary vorticity equation of an inviscid
incompressible flow verifies Taylor–Proudman theorem (Proudman 1916; Taylor 1921),
namely

(ez · ∇)u = 0. (3.8)

For quasi-inviscid interior flows, that is for sufficiently small Ekman numbers, we thus
expect a quasi-geostrophic solution for the velocity field. Figure 4 shows the normalised
angular velocity as a function of the cylindrical radial coordinate s for E = 10−7, η = 0.35
and for various radial distances r. Figure 5 shows a 2-D view of the meridional circulation
as well as the differential rotation in the rotating frame for the same model. The resulting
flow is characterised by a nested Stewartson shear layer along the tangent cylinder C
where the meridional circulation is essentially concentrated. This narrow shearing region
separates two regions of quasi-geostrophic flow: the volume inside and outside C. Inside
C, the no-slip conditions on the inner core impose an almost rigid rotation, while outside
C a columnar differential rotation appears as a consequence of the surface stress.

3.2.1. Flow outside the core tangent cylinder C
We now seek for an analytical solution for both the primary and secondary flows outside

C (s > η). In the limit of small Ekman numbers, the divergenceless velocity satisfies the
Taylor–Proudman theorem, we thus seek a geostrophic solution for both primary and
secondary flows outside the tangent cylinder C. Such a solution usually does not satisfy
the viscous boundary conditions, however. We thus decompose the dynamical variables as

u = ū + ũ, and p = p̄ + p̃, (3.9a,b)

where overlined variable correspond to the interior geostrophic fields, and tilded variables
are their boundary layer corrections. Introducing the O(1) stretched boundary layer
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FIGURE 5. Meridional view of the streamfunction ψ (a) and of the differential rotation in the
rotating frame of reference δΩ = (Ω −Ωc)/2Ωc (b) for E = 10−7, η = 0.35 and A = 0.01.
Three regions can be distinguished: a Stewartson layer on the outer boundary of a tangent
cylinder C of radius η separating two regions of weak amplitude circulation. The region inside
the cylinder C corotates with the inner sphere and the region outside C rotates differentially with
a columnar profile.

coordinate ζ = (1 − r)/
√

E, and using the geostrophic equilibrium relation ez × ū =
−∇p̄, the equation of motions, or Ekman boundary layer equation, reads

ez × ũ = − ∂ p̃
∂ζ

n + ∂2ũ
∂ζ 2

, (3.10)

where n ≡ er is the outwardly directed normal vector at the outer shell. Integrating the
azimuthal component of (3.10) from 0 to ∞ yields, at the lowest order,

cos θQ̃ = −∂ ũφ
∂ζ

∣∣∣∣
ζ=0

with Q̃ =
∫ ∞

0
ũθ dζ. (3.11)

Here, Q̃ is the outer Ekman layer θ -directed volume flux.
Using the boundary condition for the prescribed tangential stress on the outer shell (2.5),

(3.11) can be rewritten, at the lowest order

cos θQ̃ =
√

E
[
τ(θ)− ∂

∂r

(
F(s)

r

)∣∣∣∣
r=1

]
, (3.12)

where F(s) = ūφ is the geostrophic solution for the azimuthal velocity in the interior. To
ensure mass conservation, the divergence of ũ in the boundary layer generates further
interior motion by establishing a weak amplitude secondary normal flow ũr known
as Ekman pumping. This radial velocity can be determined by integrating the mass
conservation equation in the outer Ekman boundary layer

ũr = −
√

E
sin θ

∂ sin θQ̃
∂θ

= − E
sin θ

∂

∂θ

sin θ
cos θ

[
τ(θ)− ∂

∂r

(
F(s)

r

)∣∣∣∣
r=1

]
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.13)

This equation shows that, near the outer shell, and in the Ekman layer, for the boundary
condition on the tangential stress to be ensured, there must exist a O(

√
E) tangential
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Stress-driven spin-down in a spherical shell 904 A35-11

flow that, in turn, generates a O(E) circulation in the interior. We now express the
geostrophic azimuthal velocity F(s) as a function of the prescribed tangential surface stress
τ(θ) driving differential rotation. To do so, we ensure that the no-penetration boundary
condition ur = 0 at r = 1 is enforced, namely

sus + zuz + ũr = 0 at r = 1, (3.14)

where us and uz are obtained from the azimuthal component of the momentum equation
and from the mass conservation equation, respectively. Equation (3.14) finally yields a
third-order ordinary differential equation for F(s)

− 1 − s2

s2

∂

∂s
s
(

∇2 − 1
s2

)
F+s

(
∇2 − 1

s2

)
F + ∂

∂s

(
s2 ∂

∂s
F
s

)
+ sq

∂

∂s
F
s

= −K(1 + q(s)),

(3.15)
where K = A

√
3/4π. The solutions of (3.15) can be expressed as an integral functional of

the prescribed stress (Friedlander 1976), that is

F(s) = −s
∫

ds

s3
√

1 − s2

∫
s ds

∫
∂

∂s

( −Ks2

√
1 − s2

)
ds. (3.16)

The solution for the geostrophic azimuthal velocity outside the tangent cylinder C,
avoiding singularities of the vorticity at s = 1, and accounting for the no-slip boundary
condition at the inner shell finally reads

F(s) = −K
3

(
s ln s − 1

s
+ α(η)s

)
, (3.17)

with

α(η) = 1
η2

− ln η, (3.18)

and for which

us = E
(
Δ− 1

s2

)
F(s) = −2KE

3s
, and uz = −

∫ z

0

1
s
∂sus

∂s
dz = 0. (3.19a,b)

We compare the angular velocity profiles from full numerical solutions to the analytical
expression δΩ = F(s)/s, for various Ekman numbers and two inner core radii (η = 0.1
and 0.35) in figure 6. The analytical asymptotic solution reproduces rather well our
numerical results when the Ekman number is below 10−9. Our boundary layer analysis
also predicts the secondary meridional flow amplitude to be O(E) outside the tangent
cylinder C. In figure 7 we show the streamfunction, defined as

∂ψ

∂r
= r sin θuθ ,

∂ψ

∂θ
= −r2 sin θur, (3.20a,b)

as a function of the cylindrical radial coordinate s for various Ekman numbers. We note
that ψ indeed scales as E outside the Stewartson layer, which appears as oscillations
of ψ near s = η. Furthermore, using (3.19a,b), the streamfunction associated with the
geostrophic solution for the velocity field reads

ψ̄(s, z) = −2KE
3

z, (3.21)

implying that streamlines are z = Cst lines in a meridional plane. Hence, the outer
Ekman boundary layer expels fluid in the s-direction, towards the Stewartson shear layer.
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FIGURE 6. Angular velocity in the rotating frame of reference as a function of the cylindrical
radial coordinate s for various Ekman numbers, r = 0.7, η = 0.1 (a) and η = 0.35 (b), and
A = 0.01. The black dashed line corresponds to the analytical solution δΩ = F(s)/s (see (3.17)).
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–0.010
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0.005

0

0.40 0.45 0.50 0.55
s

0.60 0.65 0.70

E = 10–6

E = 10–7

E = 10–8

E = 10–9

 ψ
E

−
1

FIGURE 7. Value of ψE−1 along a meridian at r = 0.7 as a function of the cylindrical radial
coordinate s for various Ekman numbers, η = 0.35 and A = 0.01. The predicted O(E) scaling
of the secondary flow amplitude is verified outside the Stewartson layer, which is located at
s = 0.35.

The streamfunction ψ as well as the corresponding streamlines, from (3.21) and from
full numerical solutions are represented in figure 8, where we have masked the Stewartson
layer. We see that the analytical and numerical solutions nicely match. Interestingly, the
flow (3.19a,b) reconnects with the Stewartson layer and partly sources the upwelling flow
in this region (see below § 3.2.3).

The foregoing solution shows that the stress-driven spin-down flow is rather different
from the spherical Taylor–Couette flow outside the tangent cylinder. For such a flow, the
amplitude of the meridional circulation in this region is vanishing exponentially away from
the Stewartson layer (Proudman 1956; Dormy, Cardin & Jault 1998). In our case there is a
residual flow, exactly perpendicular to the rotation axis, directed to it, and which scales as
the Ekman number.

3.2.2. Flow inside the tangent cylinder C
Let us now investigate the geostrophic flow inside the tangent cylinder C. Writing uφ =

�/(r sin θ) where � is the specific angular momentum, the azimuthal component of the
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FIGURE 8. Meridional view of the streamfunction and streamlines from full numerical
simulations (a), and from the boundary layer analysis (b), for E = 10−8, η = 0.1 and A = 0.01.
The tangent cylinder C as well as the adjacent reconnecting layer are masked.

momentum equation and vorticity equation respectively read (e.g. Goldstein 1938, 1965;
Proudman 1956; Stewartson 1966)

∂ψ

∂r
cos θ − 1

r
∂ψ

∂θ
sin θ = ED2�,

−∂�
∂r

cos θ + 1
r
∂�

∂θ
sin θ = ED4ψ,

⎫⎪⎪⎬
⎪⎪⎭ (3.22)

where

D2 = ∂2

∂r2
+ sin θ

r2

∂

∂θ

(
1

sin θ
∂

∂θ

)
. (3.23)

The boundary conditions (2.5) in terms of streamfunction and specific angular
momentum in turn read

ψ = ∂ψ

∂r
= � = 0 at r = η, (3.24a)

ψ = ∂2ψ

∂r2
− 2

∂ψ

∂r
= 0,

∂�

∂r
− 2� = −K sin2 θ,

⎫⎪⎪⎬
⎪⎪⎭ at r = 1. (3.24b)

In the Ekman boundary layers, (3.22) may be rewritten

∂ψ

∂r
cos θ = E

∂2�

∂r2
,

−∂�
∂r

cos θ = E
∂4ψ

∂r4
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.25)

We integrate the first equation over r to obtain the fourth-order differential equation on ψ

∂4ψ

∂r4
= −cos2 θ

E2
(ψ − ψ̄), (3.26)

where ψ̄ is a function of θ only that can be determined by the boundary conditions
(Proudman 1956). Let us first focus on the outer Ekman layer localised near r = 1.
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904 A35-14 D. Gagnier and M. Rieutord

The solution of (3.26) satisfying the boundary conditions (3.24) as well as the condition
ψ(ξ → ∞) = ψ̄ , where ξ = (1 − r)

√
cos θ/2E, reads

ψ = ψ̄
(
1 − e−ξ cos ξ

)
. (3.27)

From the first equation of (3.25), we may further write

�− �̄ = ψ̄αe−ξ sin(ξ − π/4), (3.28)

where α = √
cos θ/(2E) 	 1 in the asymptotic limit of small Ekman numbers. The

boundary condition (3.24b) then implies

∂�

∂r

∣∣∣∣
r=1

− 2�(1) = −2α2ψ̄ − 2�̄+ 2αψ̄ = −K sin2 θ, (3.29)

where �̄ is also a function of θ only that can be determined by the boundary conditions.
Hence, the azimuthal and meridional components of the quasi-geostrophic velocity outside
the Ekman and Stewartson shear layers, are not independent and satisfy the outer Ekman
jump condition at the lowest order

ψ̄ = E
cos θ

(K sin2 θ − 2�̄). (3.30)

In a similar way, the study of the inner Ekman layer with boundary conditions (3.24a)
yields

ψ = ψ̄(1 − e−ξ ′
(cos ξ ′ + sin ξ ′)), (3.31)

where ξ ′ = (r − η)α, and the Ekman jump condition at the inner shell reads

�̄ = −2ψ̄α. (3.32)

Hence (3.32) implies ψ̄ = O(�̄
√

E) and thus (3.30) implies ψ̄ = O(E) and �̄ = O(
√

E).
We may therefore rewrite (3.30) as

ψ̄ = E
cos θ

K sin2 θ + O(E3/2). (3.33)

Finally, the geostrophic solution for the velocity inside the tangent cylinder C (s < η)
reads, at the lowest order,

ψ̄(s) = EKs2

√
1 − s2

and δΩ = �̄(s)
s2

= −
√

2EK√
1 − s2

(
1 − s2

η2

)1/4

, (3.34a,b)

and the meridional components of the geostrophic velocity at the lowest order

us = 1
s
∂ψ̄

∂z
= 0 and uz = −1

s
∂ψ̄

∂s
= − EK√

1 − s2

(
1 + 1

1 − s2

)
. (3.35a,b)

We compare these analytical z-directed velocity and angular velocity profiles with full
numerical solutions in figure 9, for various E. We find our analytical expression to be
in good agreement with the numerical solutions. Remarkably, the meridional flow inside
the tangent cylinder is parallel to the rotation axis and directed towards the inner core,
which is quite different from the outer-C meridional flow. Once inside the inner Ekman
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FIGURE 9. The z-directed velocity uzE−1 (a) and angular velocity in the rotating frame of
reference (b) inside the tangent cylinder C as a function of the cylindrical radial coordinate s,
for E = 10−7 and E = 10−8, r = 0.7 and η = 0.35. The black dashed line corresponds to the
analytical geostrophic solutions (3.34a,b) and (3.35a,b).
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FIGURE 10. Meridional view of two arbitrarily selected streamlines, inside and outside the
tangent cylinder C. The arrows indicate the direction of propagation of the fluid along the
streamlines.

layer, the flow heads towards the equator where the Ekman layer thickens and eventually
changes scale at the equatorial singularity (e.g. Roberts & Stewartson 1963; Stewartson
1966; Hollerbach 1994; Dormy et al. 1998; Marcotte, Dormy & Soward 2016). The fluid
then returns to the outer Ekman layer following the Stewartson layer. Figure 10 shows
the meridional view of two arbitrarily selected streamlines, one inside and one outside
the tangent cylinder C. It illustrates the different shape of the secondary flow in the two
regions, as well as the reconnecting shear layer redirecting the s-direction flow outside C to
the Stewartson layer where it flows parallel to the rotation axis towards the outer boundary.

3.2.3. Flow in the nested Stewartson shear layer
In figures 7 and 9 we see that the meridional flow strongly deviates from the analytical

solution as one nears the Stewartson layer. From the numerical solution, the amplitude of
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FIGURE 11. (a) Total meridional kinetic energy of the stationary flow as a function of
the Ekman number, for A = 0.01 and η = 0.1. The black dashed line corresponds to the fit in the
asymptotic regime (E � 10−9) and yields Ek,tot ∝ E1.074. (b) Ek,totE−1.074 as a function of the
reduced time Et for various Ekman numbers, A = 0.01 and η = 0.35.

the meridional circulation turns out to be much stronger in this layer than outside it. This
is obvious if we compute the total meridional kinetic energy of the secondary flow

Ek,tot =
∫

V2
m dV, (3.36)

where V2
m = u2

r + u2
θ . In figure 11(a) we show Ek,tot as a function of the Ekman number. We

find Ek,tot to scale as E in the asymptotic regime E → 0, whereas the contribution of the
flows outside the Stewartson layer remains O(E2). Hence, the Stewartson layer deserves
some investigation.

We first recall that in the Taylor–Couette flow the Stewartson layer is a nested shear
layer that can be split into three layers of width E2/7, E1/3 and E1/4 (Stewartson 1966). The
E1/3-layer is the central layer, while the E2/7-layer is on the inner side and the E1/4 on the
outer side. We now wish to find out if these three nested layers are present in our models.
Let us start by noticing that, according to (3.13), the Ekman pumping may be written

ũr = −
√

E[∇ × (Q̃eφ)] · er. (3.37)

Hence, introducing the adimensional Cartesian stretched coordinate of order O(1) in a
shear layer parallel to the rotation axis, outside the tangent cylinder, and of thickness
O(Eγ ), ξ = E−γ (s − η), we get

ũr = O
[(

E∇ ×
(

E−γ ∂F
∂ξ

eφ

))]
· er = O(E1−2γ ), (3.38)

where F = ūφ . We conclude that, in such layers, the radial velocity resulting from the
Ekman pumping/suction is of order O(E1−2γ ). The mass conservation equation, in turn,
reads

E−γ ∂us

∂ξ
+ ∂uz

∂z
= 0, (3.39)

implying that in such a shear layer uz = O(E−γ us), that is uz 	 us in the asymptotic regime
of small Ekman numbers.
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Stress-driven spin-down in a spherical shell 904 A35-17

Simple manipulations of the momentum and vorticity equations allow us to eliminate
the velocity u and lead to the following sixth-order partial differential equation for the
pressure (Greenspan 1968)

∂2p
∂z2

+ E2−6γ ∂
6p
∂ξ 6

= 0, (3.40)

representing a balance between Coriolis and viscous forces. The equality of these two
terms thus requires γ = 1/3, and indicates a shear layer of thickness O(E1/3) as expected.
Hence, in this central ageostrophic layer, we expect

us = O(E2/3), and uz = O(E1/3). (3.41a,b)

Let us now recall that the quasi-geostrophic E1/4 layer is associated with the equilibrium
between the Ekman pumping flow, and the internal friction of the O(1) azimuthal flow
(e.g. Stewartson 1966; Barcilon 1968). This equilibrium is, in fact, exactly that which is
in place in the entire region outside the tangent cylinder C, and the E1/4-layer is therefore
not needed. Indeed, the azimuthal component of the momentum equation in the boundary
layer of thickness O(Eγ ) reads

us = E1−2γ ∂
2uφ
∂ξ 2

, (3.42)

that is us = O(E1−2γ ) if we assume uφ = O(1). In addition, (3.39) further implies uz =
O(E1−3γ ). However, the Ekman pumping still demands uz = O(E1−2γ ) (see (3.37)). Hence,
γ = 0 and the equilibrium between the Ekman pumping flow and the internal friction of
the O(1) azimuthal flow does indeed occur in a O(1) ‘layer’ that is the entire s > η region.
Note that if we had considered no-slip boundary conditions at the outer shell, that is the
case of a spherical Taylor–Couette flow, the z-directed velocity resulting from the Ekman
pumping would be of order O(

√
E∇ × ūφeφ) = O(E1/2−γ ). The matching of the uz-flux

and the Ekman pumping implies that 1/2 − γ = 1 − 3γ , and thus γ = 1/4 as expected.
Let us finally consider the case of a quasi-geostrophic z-directed free shear layer of

thickness O(Eγ
′
) located inside the tangent cylinder C and near s = η. It follows that in

such a region, � is a function of s only. Note that in the case of a spherical Taylor–Couette
flow, γ ′ = 2/7 and uφ(s = η) = O(E1/28) (e.g. Stewartson 1966; Marcotte et al. 2016). In
this region, the azimuthal component of the momentum equation (3.22) integrated over z
reads

ψ = Ez
∂2�

∂s2
+ f (s), (3.43)

where f (s) is determined by applying the inner Ekman layer jump condition (3.32) at z = 0
and s − η � 1 (Stewartson 1966), yielding

f (s) � −
√

E
2

[
2
(

1 − s
η

)]−1/4

�. (3.44)

In addition, at z = √
1 − η2, that is at r = 1 and s = η, (3.30) reads

ψ = EKη2√
1 − η2

, (3.45)

and (3.43) finally becomes

E1−2γ ′
√

1 − η2

η4

d2�

dx2
− E1/2−γ ′/4(2x)−1/4� = EKη2

√
1 − η

, (3.46)
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where we have introduced the stretched O(1) shear layer coordinate x = (1 − s/η)/Eγ
′ .

At this point, it is interesting to determine the correct balancing in (3.46). We note that the
only balance implying the existence of an asymptotically narrow shear layer is that of the
first two terms, the third one being of higher order. This balance enforces γ ′ = 2/7, that
is a standard inner Stewartson shear layer of thickness O(E2/7). Hence, the second-order
ordinary differential equation for the specific angular momentum at the lowest order and
in the E2/7 shear layer reads

d2�

dx2
− βx−1/4� = 0, (3.47)

where

β = η2

23/4
√

1 − η2
. (3.48)

This equation can be transformed into a Bessel equation, and the solution asymptotically
matching the solution (3.34a,b), that is decaying to zero as x → +∞, reads (see also
Stewartson 1966; Moore & Saffman 1968; Marcotte et al. 2016)

�(x) = �(0)C
√

xK4/7(
8
7

√
βx7/8), (3.49)

where Kν(z) is the modified Bessel function of second kind and C is a constant to be
determined. We note that

lim
x→0

√
xK4/7

(
8
7

√
βx7/8

)
= Γ (4/7)

2β2/7

(
7
4

)4/7

+ O(x), (3.50)

and thus, at the lowest order

C = 2β2/7

Γ (4/7)

(
4
7

)4/7

. (3.51)

Finally, d�/ds is rendered continuous across s = η in the two quasi-geostrophic regions,
that is

d�
ds

∣∣∣∣
s=η−

= d�
ds

∣∣∣∣
s=η+

, (3.52)

which yields the specific angular momentum at s = η

�(0) = −Kη2E2/7

3β4/7

(
2
η2

+ 1
)(

7
4

)1/7
Γ (4/7)
Γ (3/7)

= O(E2/7). (3.53)

We verify the shear layer thickness as well as the analytical azimuthal velocity profile
(3.49) comparing it with full numerical solutions in figure 12(a). The lowest-order
solution for the azimuthal velocity in the entire s ≤ η domain is shown in figure 12(b).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

71
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.712


Stress-driven spin-down in a spherical shell 904 A35-19

–3.5 × 10–2

–3.0 × 10–2

–2.5 × 10–2

–2.0 × 10–2

–1.5 × 10–2

–1.0 × 10–2

–5.0 × 10–3

0 × 100

–6 –5 –4 –3 –2 –1 0

u φ
E

–
2
/7

δΩ

(s – η)E –2/7

E = 10–7

E = 10–8

E = 10–9

–5.0 × 10–6

–4.0 × 10–6

–3.0 × 10–6

–2.0 × 10–6

–1.0 × 10–6

0 × 100

0.05 0.10 0.15 0.20 0.25 0.30 0.35

s

(a) (b)

FIGURE 12. (a) Value of uφE−2/7 as a function of the stretched cylindrical radial coordinate
(s − η)E−2/7 for various Ekman numbers, η = 0.35, z = 0.7 and A = 0.01. The black dashed
line corresponds to the analytical geostrophic solution (3.49). (b) Angular velocity in the
rotating frame of reference as a function of the cylindrical radial coordinate s. The dashed lines
correspond to the analytical solutions (3.34a,b) and (3.49).

Finally, using (3.43), the corresponding streamfunction reads

ψ(x) = − 2Kη2E5/7

3β2/7Γ (3/7)

(
2
η2

+ 1
)(

4
7

)3/7

x1/4K4/7

(
8
7

√
βx7/8

)[
βz
η2

− 1
23/4

]
, (3.54)

and thus

us = − BsE5/7

1 − xE2/7
x1/4K4/7

(
8
7

√
βx7/8

)
,

uz = BzE3/7

x3/4(1 − xE2/7)

(
K4/7

(
8
7

√
βx7/8

)
+ 4

√
βx7/8K3/7

(
8
7

√
βx7/8

))
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.55)

in the E2/7-layer, where

Bs = 2Kβ5/7

3ηΓ (3/7)

(
2
η2

+ 1
)(

4
7

)3/7

(3.56)

and

Bz = K
(
2 + η2

)
6η2β2/7Γ (3/7)

(
4
7

)3/7 (
βz
η2

− 1
23/4

)
. (3.57)

We verify the validity of the solution (3.54) in the E2/7-layer away from the E1/3-layer
in figure 13. We note that ψ and its derivatives remain discontinuous across s = η, hence,
contrary to the differential rotation (3.49), the solution (3.54) is not valid in the close
vicinity of s = η, and it is the ageostrophic E1/3-layer that smooths them out. Furthermore,
since 3/7 > 1/3, the z-component of the velocity is expected to be maximum in the E1/3

layer.
We further verify the scalings for the thickness of the two Stewartson shear layers, as

well as that of the amplitude of their associated s- and z-directed velocity numerically,
in figures 14 and 15. Although the amplitude of the z-directed velocity is, as expected,
maximum in the central Stewartson layer, we find a slight discrepancy with the expected
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FIGURE 13. Value of ψE−5/7 as a function of the cylindrical radial coordinate s for various
Ekman numbers, η = 0.35, z = 0.7 and A = 0.01. The dashed lines correspond to the analytical
geostrophic solutions (3.54).
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FIGURE 14. Value of usE−2/3 (a) and uzE−1/3 (b) as a function of the stretched cylindrical
radial coordinate (s − η)E−1/3 for various Ekman numbers, η = 0.35, z = 0.7 and A = 0.01.

power laws for the velocity near s = η. This discrepancy is, in fact, not surprising as these
two Stewartson shear layers are nested. The velocity in the region where the two coexist,
that is the E1/3-layer, is thus expected to follow both (3.41a,b) and (3.55). In practice, we
measure

us � O(E0.7), and uz � O(E0.37), (3.58a,b)

which lies in between the velocity scalings in the two layers. For simplicity’s sake, we
may consider the amplitude scaling of meridional velocity in the E1/3-layer to be that of
(3.41a,b), that is us = O(E2/3) and uz = O(E1/3).

Ultimately, we find our results to be consistent with the scaling of the kinetic energy
Ek,tot ∝ E, which suggests that the main contribution comes from a E1/3-velocity field
spread over a free shear layer of width E1/3. This E1/3 amplitude scaling of the velocity
field in the Stewartson layer is actually verified throughout the transient, as can be seen
in figure 11(b). This implies that despite a steady state seemingly not being reached in
the lifetime of massive stars, the time relevant for the advective transport of angular
momentum and of chemicals within their radiative envelope scales as E−2/3, since the
whole meridional velocity grows on a viscous time scale (e.g. figure 3).
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FIGURE 15. Value of usE−5/7 (a) and uzE−3/7 (b) as a function of the stretched cylindrical
radial coordinate (s − η)E−2/7 for various Ekman numbers, η = 0.35, z = 0.7 and A = 0.01.
The black dashed lines correspond to the solution (3.55).

3.3. Conclusions
The picture which results from the foregoing discussion is rather neat. The spherical shell
is split into three domains:

(i) The domain outside the tangent cylinder C, s > η where at first order, and outside
any layer,

us = −2KE
3s

, uφ = −K
3

(
s ln s/η − 1

s
+ s
η2

)
, uz = 0. (3.59a–c)

Thus for a braking torque, uφ < 0 and us < 0 so that there is a weak radial flow
towards the Stewartson layer.

(ii) The domain inside the tangent cylinder, s < η where we find that

us = 0, uφ = −
√

2EKs√
1 − s2

(
1 − s2

η2

)1/4

, uz = − EK√
1 − s2

(
1 + 1

1 − s2

)
.

(3.60a–c)
(iii) In between, the Stewartson layer is composed of two nested shear layers of

thicknesses O(E2/7) and O(E1/3), and is dominated by a flow parallel to the rotation
axis and directed towards the outer shell. In the E2/7-layer,

us ∼ E5/7, uφ ∼ E2/7, uz ∼ E3/7 (3.61a–c)

and in the E1/3-layer,

us ∼ E2/3, uφ ∼ E1/3, uz ∼ E1/3. (3.62a–c)

Hence the meridional circulation is completely dominated by the shear flow of the
E1/3 Stewartson layer.
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4. The role of thermal stratification

4.1. Description
Stable stratification introduces a restoring buoyancy force that acts to inhibit vertical
motions and may partially or entirely eliminate the control of the flow exercised by the
Ekman layers. Indeed, the tendency for viscous layers to generate secondary circulation
is counteracted by the stable stratification. Thus, we may wonder to what extent the flow
inside the stably stratified radiative envelope of a massive star losing angular momentum
can remain properly modelled with a geostrophic solution. To investigate this question
we introduce a radially stable stratification and use the Boussinesq approximation. We
still neglect the centrifugal acceleration. The linearised and dimensionless vorticity, mass
conservation and heat equations read

∂

∂t
(∇ × u)+ ∇ × (ez × u − δTr) = E	∇ × u,

∇ · u = 0,

∂δT
∂t

+ PrSrur = E	δT,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.1)

where we have used 	T(2Ωc)
2/N 2 as the temperature scale; 	T is the temperature

difference between outer and inner shells, and N is the Brunt–Väisälä frequency defined
as

N 2 = αg	T
R

, (4.2)

where α is the coefficient of thermal expansion and g = −gr is the gravitational
field. We have assumed the equilibrium temperature gradient to be produced by a
uniform distribution of heat source (Chandrasekhar 1961), which implies that ∇Teq,∗ =
(	T/R2)rer; δT is the temperature perturbation from such thermal equilibrium, and
Pr = ν/κT is the Prandtl number, which only enters the equations of motion combined
with S = N 2/(2Ωc)

2, as actually noted by Barcilon & Pedlosky (1967). Here, κT is the heat
diffusivity that we have assumed to be constant. In what follows, we use the dimensionless
parameter introduced by Garaud (2002), namely

λ = Pr
N 2

(2Ωc)2
, (4.3)

as the parameter characterising the effective strength of thermal stratification.
We complete these equations with the boundary conditions (2.5) for the velocity field,

and we impose δT = 0 at the boundaries. The initial conditions are u = 0, and δT = 0.
Projecting (4.1) on spherical harmonics yields the following system of equations for radial
parts

∂wl

∂t
−
[

Al
l−1rl−1 ∂

∂r

(
rul−1

rl−1

)
+ Al

l+1r−l−2 ∂

∂r

(
rl+3ul+1)] = E	lwl,

∂

∂t

(
	lrul

)+ Bl
l−1rl−1 ∂

∂r

(
wl−1

rl−1

)
+ Bl

l+1

rl+2

∂

∂r

(
rl+2wl+1)+ΛTl = E	l	lrul,

∂Tl

∂t
+ λrul = E	lTl,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.4)
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where

δT(r, θ) =
+∞∑
l=0

Tl(r)Yl(θ). (4.5)

Figure 16 shows the differential rotation in the rotating frame of reference and the
meridional circulation for E = 10−7 and various λ once the steady state is settled. We
see that the flow departs from the quasi-geostrophic equilibrium as λ increases. At high λ
the angular velocity profile thus becomes shellular, namely it only depends on the radial
distance.

4.2. Horizontal boundary layers
In the case of a thermally homogeneous fluid, we have seen that horizontal boundary
layers, and specifically Ekman layers play a crucial role on the interior dynamics of the
flow. Hence, one may wonder how such layers impact the interior flow in a thermally
stratified fluid. We first consider the condition of existence of such horizontal boundary
layers and determine their thickness scaling with the relevant adimensional parameters.

Inside boundary layers, horizontal length scales are much larger than the transverse one.
Radial derivatives are therefore expected to prevail. We thus write the simplified equations,
assuming ∂r 	 ∂θ in horizontal boundary layers

−uφ sin θ � −∂p
∂r

+ δTr + E
∂2ur

∂r2
,

−uφ cos θ � −1
r
∂p
∂θ

+ E
∂2uθ
∂r2

,

uθ cos θ + ur sin θ � E
∂2uφ
∂r2

,

∂ur

∂r
+ 1

r
∂uθ
∂θ

� 0,

rur � E
λ

∂2δT
∂r2

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.6)

Combining these equations, only keeping the highest-order derivatives for each
coefficient (E2, λ and 1) yields the general horizontal boundary layer equation (see also
Raze, Lignières & Mimoun 2017)

E2r
∂6uθ
∂r6

+ λ∂
2uθ
∂θ 2

− r cos2 θ
∂2uθ
∂r2

� 0. (4.7)

Introducing the O(1) stretched radial coordinate ζ = (1 − r)/
√

E, (4.7) can be
re-written, in the outer boundary layer and in the asymptotic regime of small Ekman
numbers,

1
E
∂6uθ
∂ζ 6

+ λ∂
2uθ
∂θ 2

− 1
E

cos2 θ
∂2uθ
∂ζ 2

� 0. (4.8)

We see that if λ� 1/E, we get the actual Ekman layer where the Coriolis force is
balanced by the viscous shear. As remarked by Barcilon & Pedlosky (1967), we note
that, whenever Ekman layers are present, their structure is independent of the stratification
strength because the forces in balance in such layers essentially involve horizontal motions.
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FIGURE 16. Meridional view of the streamfunction ψ (a,c,e,g) and of the differential rotation
in the rotating frame of reference δΩ = (Ω −Ωc)/(2Ωc) (b,d, f,h) for E = 10−7, η = 0.35, A =
0.01 and various λ.

Similarly, if λ	 1, introducing the stretched radial coordinate γ = (1 − r)
√
λ, (4.7) can

be re-written, in the outer boundary layer,

E2λ2 ∂
6uθ
∂γ 6

+ ∂2uθ
∂θ 2

− cos2 θ
∂2uθ
∂γ 2

� 0. (4.9)
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Hence, if 1 � λ2 � 1/E2, the viscous term drops out and buoyancy balances the
Coriolis force. This is typical of a thermal boundary layer of width δλ = O(1/

√
λ). We

note that in the parameter regime λ� 1, only Ekman layers are present at the boundaries,
while in the regime 1 � λ� 1/E both thermal and Ekman boundary layers coexist. In
this latter case thermal boundary layers are always much thicker than Ekman layers.

4.3. Massive stars interior flows
From the foregoing discussion, it turns out that the dynamics of the flows may be quite
different whether λ	 1 or λ� 1. Let us now place the case of rapidly rotating massive
stars.

We note that, in the envelope of massive stars, the radiative viscosity and radiative heat
diffusion largely dominate diffusion of collisional origin (Espinosa Lara & Rieutord 2013).
These two quantities read

νrad = 4aT4

15cκR
, κrad = 4acT3

3κRcp
, (4.10a,b)

where T is the temperature, κR is the Rosseland mean opacity, a = 4σ/c is the radiation
density constant with σ the Stefan–Boltzmann constant, c the speed of light and cp is
the specific heat capacity at constant pressure. In such a radiation-dominated system, the
radiative Prandtl number reads

Prrad = 3
10

c2
s

c2
, (4.11)

where cs is the adiabatic sound speed, showing that, naturally, Prrad � 1.
However, the differential rotation of the radiative envelope is expected to drive

some small-scale turbulence. Zahn (1992) proposes that the turbulent vertical kinematic
viscosity associated with marginal shear stability reads as

νt = RicκT

3

(
s
N

dΩ
ds

)2

, (4.12)

where Ric � 1/4 is the critical Richardson number. In figure 17, we plot the radiative and
turbulent Prandtl numbers radial profiles at the equator of a 15 solar mass star as given by
a 2-D ESTER model (Rieutord et al. 2016) for various rotation rates defined as the ratio
ω between the equatorial angular velocity and the equatorial Keplerian angular velocity.
The associated radial profiles of λ are also shown. Although the turbulent Prandtl number
is a few orders of magnitude larger than the radiative one in fast rotating stars, turbulent λ
is just one order of magnitude larger.

We find that the turbulent λ-parameter is roughly independent of ω, and never exceeds
10−3 in the considered models. The radiative λ-parameter, on the other hand, increases for
decreasing ω to the point it may locally exceed 10−4 when ω � 0.1. As massive stars are
often considered to be fast rotators, we conclude that the thermal stratification regime of
their radiative envelope corresponds to λ� 1.

4.4. Asymptotically weak thermal stratification regime
We now study the case of weak temperature stratification, relevant to the radiative envelope
of rotating massive stars. In other contexts the λ� 1 regime may also be reached if the
Brunt–Väisälä frequency is just small. We have seen that in this regime, only Ekman layers
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FIGURE 17. The Pr and λ radial profiles at the equator measured from ESTER 2-D stellar
models of a 15 M� star, for various angular velocity ratios ω. The radiative Prandtl number Prrad
and the corresponding λ-parameter are represented in full lines, and their turbulent counterparts
are represented in dashed lines.

characterised by an O(E) radial velocity at their edge, are present at the boundaries. We
thus assume λ� 1 for the weak stratification, but also suppose that E � λ as expected in
stars.

4.4.1. The steady flow
We first focus on the steady flow. The radial component of the steady momentum

equation reads

− uφ sin θ = −∂p
∂r

+ δTr + E
[
	ur − 2

r2

(
ur + 1

sin θ
∂ sin θuθ
∂θ

)]
, (4.13)

where differential rotation is driven by the O(1) surface stress, that is uφ = O(1). In the
asymptotic regime of small Ekman number, the temperature deviation from equilibrium
is therefore, at most, O(1). If that is the case, namely if δT = O(1), the heat equation
(4.1) implies that the interior radial velocity ur is O(E/λ), namely larger than the O(E)
Ekman pumping (3.13), in the considered stratification regime. Because of the boundary
conditions imposed by Ekman layers, an O(E/λ) radial velocity must vanish at r = η and
r = 1. Furthermore, the radial component of the vorticity equation reads

∂ur

∂z
= O(E), (4.14)

implying that ur is z-independent up to O(E) corrections (see Barcilon & Pedlosky 1967).
Hence, a consistent solution for the interior flow is ur = O(E) and consequently δT =
O(λ), which is completed by the classical Ekman boundary layer with ũr = O(E) and
ũθ = O(

√
E).

Let us now write the variables of the interior flow, as a power expansion of the small
parameter λ, in the asymptotic regime of small Ekman numbers. They read

ur = E(ur,0 + λur,1 + . . .),

uφ = uφ,0 + λuφ,1 + . . . ,

δT = λδT1 + λ2δT2 + . . . ,

p = p0 + λp1 + . . . .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.15)
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Injecting (4.15) into the momentum equation then yields, at zeroth and first orders

uφ,0 = ∂p0

∂s
, and 0 = ∂p0

∂z
, (4.16a,b)

and

uφ,1 = ∂p1

∂s
− sδT1, and zδT1 = ∂p1

∂z
. (4.17a,b)

Hence, at the lowest order, and identically to the homogeneous case, the
Taylor–Proudman theorem is satisfied and the O(1) geostrophic flow dynamics is
consequently entirely controlled by the Ekman pumping. This is indeed verified in
figure 16. On the other hand, the O(λ) flow is affected by temperature deviation
from equilibrium produced by the O(E) radial velocity. We conclude that the thermal
stratification regime in the radiative envelope of rotating massive stars has a negligible
influence on the primary and secondary quasi-geostrophic and stationary flows.

4.4.2. The transient flow
As in the unstratified case, we now wish to determine the scaling of the transient

time with the relevant non-dimensional parameters, that is, the Ekman number and the
λ-parameter, in the E � λ� 1 limit. We write the radial component of the vorticity
equation

∂

∂t

(
1

r sin θ
∂

∂θ
sin θuφ

)
− ∂ur

∂z
− sin θ

r
uθ = E

r sin θ
∂

∂θ
sin θ

(
∇2 − 1

r2 sin2 θ

)
uφ,

(4.18)
as well as the z-derivative of the heat equation

∂

∂t

(
cos θ
λ

∂

∂z
δT
z

)
+ ∂ur

∂z
= cos θ

E
λ

∂

∂z
1
z
	δT + sin2 θ

r cos θ
ur. (4.19)

Adding (4.18) and (4.19), and using the φ-component of the momentum equation, we
get

∂

∂t

(
z
λ

∂

∂z
δT
z

+ cotanθ
∂

∂θ
tan θuφ

)

= Ecotanθ
∂

∂θ
tan θ

(
∇2 − 1

r2 sin2 θ

)
uφ + E

λ
z
∂

∂z
1
z
	δT. (4.20)

Hence, if δT remains O(λ) during the transient, we expect the quasi-geostrophic steady
state to be reached on the O(E−1) viscous time scale in the limit λ� 1.

We verify this conclusion with our numerical solution and measure the transient
time scale τt as the time required for the relative difference between the torques at the
boundaries to be less than 0.01 %. We show the scaled values Eτt as a function of λ for
E = 10−6 in figure 18. We find that indeed, as for the thermally homogeneous case, the
transient time scale is O(E−1) in the weakly stratified limit.

The thermal stratification regime in the interior of slowly rotating stars may, on the other
hand, lie in the λ	 1 limit. In this regime, it is well known that the Eddington–Sweet time
scale associated with the angular momentum redistribution by meridional circulation is so
long that it is unlikely that the system would ever relax to a steady state. Hence, the study of
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FIGURE 18. The scaled transient time scale Eτt given by the numerical solution as a function
of λ for E = 10−6. The steady state is reached on a O(E−1) time scale, both in the strongly and
weakly stratified limits.

the time-dependent interior dynamics of slowly rotating stars, which may largely depend
on initial conditions and on the damping rate of the baroclinic modes, is outside the scope
of this work. However, for the sake of completeness and to appreciate some effects of a
strong thermal stratification in the stress-driven barotropic spin-down flow, we give a short
account of the λ	 1 regime in appendix B.

5. The flow in a polytropic envelope

5.1. The background
The next step towards a realistic model of the radiative envelope of a massive star is to
include the strong density variations of the fluid between the convective core and the
stellar surface. Typically density varies by a factor of 109 in the envelope of a star of
15 solar masses. To take this density distribution into account in a simple way we assume
that the gas can be described by a polytropic equation of state as usually done in stellar
physics (e.g. Maeder 2009). Hence the hydrostatic background state verifies

− dp∗
dr∗

− GM
r2∗
ρ∗ = 0 and p∗ = κρΓ∗ , (5.1a,b)

where p∗, ρ∗ and r∗ are the dimensional pressure, density and radial coordinate,
respectively. As previously, we also use the Roche approximation and assume that the
core gathers all the mass M of the star. In (5.1a,b) G is the gravitational constant, κ is a
constant related to the thermal conditions at the core boundary and Γ = 1 + 1/n, where
n is the so-called polytropic index. In the following we shall set n = 3, which is typical
for radiative envelopes. We note that for such an index the fluid is stably stratified (e.g.
Dintrans & Rieutord 2001; Rieutord & Dintrans 2002, for instance), but as concluded from
the previous section the small value of the Prandtl number allows us to neglect buoyancy
effects. The following results therefore assume no buoyancy force.

Equation (5.1a,b) can be easily solved and gives the density profile

ρ∗(r∗) = ρc(1 + Bj(r∗))n, (5.2)

where

B = ρ1/n
s − 1

1/η − 1
, j(r∗) = 1

η
− R

r∗
. (5.3a,b)
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FIGURE 19. Scaled steady-state time scale Eτt as a function of the surface density ρs, for
E = 10−6 models with various values of ρs, n = 3/2 and n = 3. The dashed and dotted lines
correspond to the steady-state time scalings with ρs.

Here ρc = ρ∗(ηR) is the density at the core boundary and ρs = ρ∗(R)/ρc is the
adimensional surface density. Note that such a background is also used in numerical
simulations of convection in stellar envelope (Raynaud et al. 2018) or planetary
atmospheres (Gastine & Wicht 2012). Hence, in this section, we solve (2.1) with the
background polytropic density profile (5.2), the boundary conditions (2.5) and with the
initial condition u = 0.

5.2. The transient phase
Again, we first focus on the transient phase preceding the settling of a steady state. In
particular, we aim at determining whether the scaling of the governing time scales are
modified by density variations of the background. We measure the transient time as the
time for which relative difference between the torque exerted by the fluid on the stationary
inner sphere and the torque applied on the outer sphere, is less than 0.01%. We monitor
the evolution of the relative difference between the torques 	Γ/Γ (1) given by (3.6), for
various surface density ratios. We show the resulting steady-state times in figure 19 for
the polytropic indexes n = 3 and n = 3/2. The latter index corresponds to an isentropic
monatomic gas, hence to a neutral thermal stratification. We find the steady-state time to
depend on the density ratio between the core and the surface. For the polytropic index
n = 3, relevant to the envelope of massive stars, we find Eτt ∝ ρ0.3

s for 10−3 ≤ ρs, and
Eτt ∝ ρ0.09

s for ρs < 10−4. Of course, these power laws quantitatively depend on the chosen
density profile, as can be seen with the n = 3/2 case. Unlike thermal stratification, density
stratification thus (mildly) influences the time scale required to reach a steady state in a
stellar envelope.

5.3. The steady flow
We now focus on the steady flow. We may observe that if viscosity, nonlinearity and
buoyancy are neglected then the steady flow obeys a Taylor–Proudman theorem applied to
the momentum ρu instead of the velocity, namely

(ez · ∇)ρu = 0. (5.4)

Unfortunately, we cannot reiterate the boundary layer analysis of the incompressible case
since the viscous force (2.3) now includes terms that depend on r = √

s2 + z2 and make
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FIGURE 20. Meridional view of the streamfunction χ = ρψ (a) and of the differential rotation
in the rotating frame of reference δΩ = (Ω −Ωc)/2Ωc (b) for E = 10−7, η = 0.35, ρs = 10−4

and A = 0.01.

the partial differential equation not separable. We may, however, observe that since the
density variations do not add any new length scale, the viscous balance in the shear layers
remains similar and we can still expect the presence of a Stewartson layer along the tangent
cylinder.

We now revert to numerical solutions to make progress. We thus solve (2.1) with
boundary condition (2.5). As already mentioned, we neglect the effects of buoyancy. We
first focus on the differential rotation and the meridional circulation. It is convenient to
introduce the streamfunction χ associated with the meridional momentum, namely

∂χ

∂r
= r sin θρuθ ,

∂χ

∂θ
= −r2 sin θρur. (5.5a,b)

Figure 20 shows the differential rotation and this new streamfunction in the rotating
frame of reference for E = 10−7.

We note that as for the incompressible flow, the amplitude of the secondary flow is
dominated by the Stewartson layer located at the edge of the tangent cylinder C. The
differential rotation, on the other hand, and as expected, is no longer cylindrical and
very z-dependent, with a maximum value that is close to the outer shell and the tangent
cylinder. Figure 21(a) shows the differential rotation as a function of the cylindrical radial
coordinate for E = 10−7 at different radii r, illustrating the z-dependence of uϕ , while
figure 21(b) shows that qϕ = ρ(r)uϕ verifies the Taylor–Proudman constraint.

As far as meridional circulation is concerned, this is still an O(E) flow outside the
Stewartson layer as shown by figures 22(a) and 23(a). We note that outside the tangent
cylinder, streamlines are no longer straight lines, even for the q momentum field. In the
inner cylinder and near the rotation axis we still get streamlines parallel to the rotation axis
for the momentum q. This latter feature comes from the fact that the Ekman layer has the
same structure as in the constant density case and drives an Ekman circulation which has
a unique component along the z-axis. From, (3.35a,b) we deduce that

qz = − EKρs√
1 − s2

(
1 + 1

1 − s2

)
+ O(E2) (5.6)

in this region.
Finally, the Stewartson layer seems to conserve its structure if we focus on the

momentum, as shown by figures 24 and 25. Hence, the E1/3 scale is still the dominating
scale.
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FIGURE 21. Normalised angular velocity (a) and normalised angular velocity multiplied by the
density ρ (b), and as a function of the cylindrical radial coordinate s for E = 10−7, η = 0.35,
ρs = 10−4, A = 0.01 and various radii.
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FIGURE 22. (a) Value of χE−1 as a function of the cylindrical radial coordinate s for various
Ekman numbers, η = 0.35, r = 0.7, ρs = 10−4 and A = 0.01. The predicted O(E) scaling of the
secondary flow is verified away from the Stewartson nested layers. (b) Meridional view of the
streamfunction χE−1 outside C, for the E = 10−9 model.
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FIGURE 23. (a) Value of uzE−1 as a function of the cylindrical radial coordinate s for various
Ekman numbers, η = 0.35, r = 0.7, ρs = 10−4 and A = 0.01. (b) Meridional view of the
streamfunction χ inside C and away from the O(E2/7) Stewartson layer, for the E = 10−9 model.
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FIGURE 24. Value of qsE−2/3 (a) and qzE−1/3 (b) as a function of the stretched cylindrical
radial coordinate (s − η)E−1/3 for various Ekman numbers, η = 0.35, z = 0.7, ρs = 10−4 and
A = 0.01.

0 × 100

5.0 × 10–7

1.0 × 10–6

1.5 × 10–6

2.0 × 10–6

2.5 × 10–6

3.0 × 10–6

–10 –8 –6 –4 –2 0

(s – η)E–2/7

–10 –8 –6 –4 –2 0

(s – η)E–2/7

q sE
–
5
/7

q zE
–
3
/7

E = 10–7

E = 10–8

E = 10–9

–3.0 × 10–7

–2.0 × 10–7

–1.0 × 10–7

0 × 100

1.0 × 10–7

2.0 × 10–7

3.0 × 10–7
(a) (b)

FIGURE 25. Value of qsE−5/7 (a) and qzE−3/7 (b) as a function of the stretched cylindrical
radial coordinate (s − η)E−2/7 for various Ekman numbers, η = 0.35, z = 0.7, ρs = 10−4 and
A = 0.01.

6. Summary and conclusions

Aiming at a better description of the dynamics of the radiative envelopes of massive
stars, which lose both mass and angular momentum through radiative winds, we have
considered the problem of the spin-down flow of a viscous fluid inside a spherical shell.
The spin-down is assumed to be driven by a tangential stress prescribed on the outer shell.
This problem is quite close to the classical spherical Couette flow (Zikanov 1996; Rieutord
et al. 2012), but includes new features like density and thermal stratification, or stress
driving, that needed new investigations.

To start with, we therefore considered this problem in the case of a mild driving so
as to be able to deal with linear equations. After examining the case of constant density,
we investigated the role of both density and thermal stable stratification. Since stars are
large-size bodies, the Ekman number is very small. We therefore restricted our analysis to
small Ekman numbers.

Our numerical solutions showed that the meridional kinetic energy is concentrated
in the Stewartson shear layer that is tangent to the inner shell, both for incompressible
and anelastic stationary flows assuming no thermal stratification. Outside this layer, a
boundary layer analysis of the Ekman layers allowed us to exhibit analytical solutions
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for the quasi-geostrophic and incompressible primary and secondary stationary flows.
We found the latter flow to be essentially perpendicular to the rotation axis outside
the tangent cylinder, flowing from the outer Ekman layer towards the Stewartson layer.
Inside the tangent cylinder, we found this poloidal flow to be parallel to the rotation
axis, being pumped into the Ekman layer attached to the inner core. The mass flux is
then returned towards the outer Ekman layer through the Stewartson layer. Outside of the
Stewartson layer, the amplitude of the meridional flow (Ekman circulation) scales like
E, as a consequence of the surface stress driving. In our model, the Stewartson layer is
composed of two nested free shear layers of thicknesses O(E2/7) and O(E1/3). The analysis
of the quasi-geostrophic E2/7-layer located inside the tangent cylinder allowed us to derive
asymptotic solutions for the primary and secondary flows, and a simple analysis of the
ageostrophic E1/3-layer indicates that it dominates the entire meridional circulation with a
maximum amplitude of the z-directed velocity scaling as E1/3.

We then accounted for a stable thermal stratification by introducing a radial
temperature gradient using the Boussinesq approximation. Two limits of the parameter
λ = PrN 2/(2Ωc)

2 show up. In the limit of strong thermal stratification, λ	 1, the
angular velocity profile becomes shellular (only radially dependent), while the circulation
is concentrated in thermal boundary layers and the radial motion is strongly inhibited
outside of them. As a consequence, the Stewartson layer is suppressed. A more in-depth
consideration of this regime, although certainly relevant to slowly rotating stars, has been
deliberately left aside. Indeed, such slow rotators may never relax to a steady state and thus
might crucially depend on initial conditions. The study of the λ	 1 asymptotic regime,
including the time-dependent baroclinic flow, certainly calls for a separate investigation.
However, for rapidly rotating stars the relevant limit is λ� 1. In this case both the
structure and amplitude of the incompressible and stationary flow are unaffected by the
thermal stable stratification.

Radiative envelopes of massive stars exhibit, however, strong density variations
between the convective core and the surface, making the incompressible and Boussinesq
approximations too restrictive. But since thermal stratification has little impact for our
stars, we can neglect buoyancy in the dynamics and concentrate on the effects of density
stratification through the anelastic approximation. We chose to describe the gas of the
stellar envelope by a polytropic equation of state with polytropic index n = 3. We found
that, assuming no further thermal stratification, the amplitude scaling of the stationary
flow remains O(E) outside the Stewartson layer and O(E1/3) inside. However, outside the
tangent cylinder, the streamlines are no longer straight lines and the flow becomes very
dependent on the coordinate parallel to the rotation axis.

Because of the weakness of the meridional circulation, the stationary state of the flow
is not quite relevant because it implies very long transients that might actually exceed the
lifetime of the star. Massive stars are indeed short lived (a few million years). We therefore
checked the time scale associated with the transient phase and found it to be governed by
the viscous diffusion time, that is O(E−1) indeed. The density variations of the hydrostatic
background seem to shorten it slightly. This implies that such a steady flow is typically
reached on a time that is longer than the lifetime of the star. Fortunately, though the flow
structure outside the tangent cylinder evolves during the transient, the dominating E1/3

amplitude scaling of the meridional velocity stands. Hence, for all the models considered,
the time relevant to the advective transport of chemicals within the radiative envelope
of massive stars scales as E−2/3, which is much shorter than the advection of angular
momentum acting on O(E−1) time scale.

The conclusion of the foregoing study is that the Stewartson layer is a key feature for
the transport of chemical elements between the core and the surface of a massive star.
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The advective time scale is indeed O(E−1/3) shorter than the spin-down time scale. In our
case indeed, spin-down is driven by a stress and the steady state is reached on a viscous
diffusion time, which is longer than the star’s life. The much shorter time associated with
the meridional current of the Stewartson layer allows chemical elements produced in the
core to be transported to the surface of the star and be possibly observable. We have
shown that neither the stable stratification of the envelope, nor its strong density variations
inhibit the rise of the Stewartson layer. The stable stratification is bypassed thanks to the
low Prandtl number, while density variations have little influence on the mass flux ρu
basically because they occur on a large scale.

These conclusions are not the end of the story of course since other effects might
complicate the scenario. The first effect one might think of is the local anisotropic
turbulence of the envelope. Indeed, the differential rotation induces a local shear that is
unstable. This shear instability is reduced by the stable stratification (Richardson criterion)
but eased by the large heat diffusion. Zahn (1992) and Maeder & Zahn (1998) have argued
that such instabilities will lead to a strongly anisotropic turbulence, making horizontal
transport much more efficient than the vertical one. It is therefore an open question
whether the Stewartson layer can resist to an anisotropic turbulent diffusion and in which
circumstances.

If we still wish more realism, the interface between the core and the envelope will
need a more detailed description. In this region, stable chemical stratification builds up
in the course of stellar evolution. This so-called μ-barrier might isolate the core from the
envelope. However, the thermal gradient is still unstable and overstable double-diffusive
convection is suspected to develop there (Garaud 2020). The impact of rotation on the
dynamics of this region is almost unknown and will also motivate future studies. Finally,
magnetic fields, of fossil or core dynamo origin, may have a dramatic impact on a massive
star’s interior dynamics. Indeed, depending on the field geometry, it can, for instance,
amplify (Hollerbach 1997) or suppress the Stewartson layer and yield a super-rotating jet
(Kleeorin et al. 1997; Dormy et al. 1998). Their consideration is also a matter for future
work.
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Appendix A. The linear approximation

A.1. Validity condition
This appendix presents an a posteriori justification for the use of linear approximation.
For simplicity, we focus on the incompressible flow. In spherical coordinates and in the
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inertial frame, the nonlinear dimensional momentum equation reads

∂u∗
∂t∗

+ (u∗ · ∇)u∗ = −∇p∗ + F visc, (A 1)

where

F visc = μ(	u∗ + 1
3∇divu∗)+ 2(∇μ · ∇)u∗ + ∇μ× (∇ × u∗)− 2

3∇(μdivu∗) (A 2)

is the dimensional viscous force, and μ = ρ∗(r)ν is the dynamical viscosity. Let us
decompose the velocity field as the sum of the bulk component Ωcez × r and a residual
velocity field ur

∗
u∗ = Ωcez × r∗ + ur

∗. (A 3)

For an axisymmetric flow, the nonlinear term can be rewritten

(u∗ · ∇)u∗ = Ω2
c ez × (ez × r∗)+ 2Ωcez × ur

∗ + (ur
∗ · ∇)ur

∗. (A 4)

We further note that the centrifugal term derives from a potential that can be gathered
with the pressure into Π . Finally, we write the nonlinear adimensional momentum
equation in the rotating frame

∂ur

∂t
+ (ur · ∇)ur + ez × ur = −∇Π + E	ur. (A 5)

From now on the adimensional velocity field in the rotation frame ur will be written u
for simplicity. We now make explicit the nonlinear term as

u · ∇u =

⎡
⎢⎣

(u · ∇)ur − (u2
θ + u2

φ)/r

(u · ∇)uθ + (uθuφ − u2
φ cot θ)/r

(u · ∇)uφ + (uruφ + uθuφ cot θ)/r

⎤
⎥⎦ . (A 6)

The Ekman boundary layer analysis presented in § 3.2.1 revealed ur and uθ to be of order
E (except in the Stewartson layer). For an axisymmetric flow, and neglecting O(E2) terms,
(A 6) can be simplified as

u · ∇u =

⎡
⎢⎣

−u2
φ/r

−u2
φ cot θ/r

(u · ∇)uφ + (uruφ + uθuφ cot θ)/r

⎤
⎥⎦ . (A 7)

The Coriolis acceleration, in turn, reads

ez × u =

⎡
⎢⎣

− sin θuφ
− cos θuφ

cos θuθ + sin θur

⎤
⎥⎦ . (A 8)

Since we work with the vorticity equation, we need

∇ × (u · ∇)u =

⎡
⎢⎣

1/(r sin θ)∂θ [sin θ((u · ∇)uφ + (uφur + uφuθ )/r)]
−1/r∂r[r(u · ∇)uφ + uφur + uφuθ

Aφ

⎤
⎥⎦ , (A 9)
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and

∇ × (ez × u) =

⎡
⎢⎣

1/(r sin θ)∂θ (sin θ cos θuθ + sin2 θur)

−1/r∂r (r cos θuθ + r sin θur)

Bφ

⎤
⎥⎦ , (A 10)

where

Aφ = 1
r

(
1
r
∂

∂θ
− cot θ

∂

∂r

)
u2
φ = −2uφ

r2
(s + z cot θ)

∂uφ
∂z
, (A 11)

and

Bφ = 1
r
(∂θ sin θ − ∂rr cos θ) uφ = −∂uφ

∂z
. (A 12)

We note that, in the steady state, outside boundary layers ∂uφ/∂z = O(E) according to
the Taylor–Proudman theorem, we can thus write the amplitude scaling of both terms

‖∇ × (ez × u)‖ =
∥∥∥∥∂u
∂z

∥∥∥∥ = O(E) and ‖∇ × (u · ∇)u‖ = O(uφE). (A 13a,b)

Hence, if uφ = O(1), nonlinear terms in the vorticity equation are of the same order as
the curl of the Coriolis acceleration and therefore cannot be neglected. However, inside the
tangent cylinder, we have found, in § 3.2.2, that uφ = O(

√
E). In that region the nonlinear

terms can be neglected. Outside the tangent cylinder, the amplitude of the azimuthal
velocity scales as A (see (3.17)), and the nonlinear terms are therefore O(AE). Hence,
for sufficiently small A, we expect the linear approximation to be relevant to our problem.
We show the ratio between the Euclidian norm of (A 9) and that of (A 10) calculated a
posteriori, for A = 0.01 and A = 1, in figure 26. We find, as expected, this ratio to be
of order A outside the tangent cylinder. The linear solution can therefore be considered
as a good approximation to the nonlinear and incompressible vorticity equation provided
A � 1.Similarly, for the anelastic flow, we find

‖∇ × ρ(u · ∇)u‖
‖∇ × (ez × ρu)‖ = O(uφ), (A 14)

where this time uφ = O(Aρs) outside the tangent cylinder. Since ρs � 1, the conditions of
linearity are more easily met.

A.2. Application to massive stars
Let us now determine a typical value for A when considering the differential rotation to be
driven by a radiative wind at the surface of a massive star. We consider the outwardly
accelerated outer layers to exert a viscous stress on the underlying layers of the star,
spinning them down. Hence, we assume the local vertical angular momentum flux from
the outwardly accelerated flow at the stellar surface to amount for the torque applied to the
inner layers of the stars. That is

�̇z = R sin θσrφ,∗, (A 15)

where �̇z ≡ ṁΩs(R sin θ)2 is the local angular momentum flux, ṁ is the associated local
mass flux that is assumed isotropic, R is the stellar radius and [σ∗] is the dimensional
stress tensor. Combining the expression for the imposed azimuthal stress (2.5) with (A 15)
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FIGURE 26. Meridional view of the ratio between the Euclidian norm of the vorticity equation
nonlinear term and that of the curl of the Coriolis acceleration, for A = 0.01 (a) and A = 1 (b),
and for an incompressible flow.
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FIGURE 27. Amplitude of the surface stress weighed by the adimensional surface density Aρs
resulting from the angular momentum outward flux, as a function of co-latitude, for a 15 M�
2-D ESTER stellar model rotating with a period of one day.

yields the adimensional amplitude of the surface stress resulting from the outward angular
momentum flux

A =
√

4π

3
ṁΩs(θ)R(θ)
2Ωcρs,∗(θ)ν

, (A 16)

where ρs,∗ = ρsρc is the dimensional surface density. We compute all quantities with the
ESTER 2-D code (Rieutord et al. 2016; Gagnier et al. 2019a) for a 15 M� stellar model
with a rotation period of one day and we assume a (turbulent) kinematic viscosity at
the surface ν = 1012 cm 2 s−1 (Zahn 1992; Espinosa Lara & Rieutord 2013). We plot the
amplitude of the surface stress weighed by surface density Aρs as a function of co-latitude
in figure 27. We further note that rotating stars are not strictly spherically symmetric
because of the centrifugal force, in particular when rotation is rapid. Hence, the stellar
radius as well as the surface density have latitudinal dependencies. Besides the resulting
slight variation on the stellar surface, we see that Aρs is of the order 5 × 10−8 � 1 for
this model. Hence, according to the results of appendix 1, the linear approximation can be
used to model massive stars losing angular momentum, provided the kinematic viscosity
at the surface is no less than ∼107 cm2 s−1, a typical value in radiation-dominated surface
layers of massive stars (Espinosa Lara & Rieutord 2013).
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Appendix B. Asymptotically strong thermal stratification regime

In this appendix, we study the case of strong temperature stratification, that is in the
λ	 1 asymptotic regime. We have seen, in § 4.2, that in this regime, both Ekman and
thermal horizontal boundary layers coexist, with respective thickness of order

√
E and

1/
√
λ.

B.1. The steady flow
In the asymptotic regime of small Ekman numbers, we have seen that because uφ = O(1),
the temperature deviation from equilibrium is at most O(1). Unlike the weakly stratified
case, however, the associated O(E/λ) interior radial velocity is less than the O(E)
stratification independent Ekman pumping, and is therefore a consistent solution for the
interior flow. Let us now write the dynamical variables in the interior, as a power expansion
of the small parameter 1/

√
λ corresponding to the width of the thermal boundary layer, in

the asymptotic regime of small Ekman numbers. They read

ur = E
(

1√
λ

ur,1 + 1
λ

ur,2 + . . .

)
,

uθ = E
(

1√
λ

uθ,1 + 1
λ

uθ,2 + . . .

)
,

uφ = uφ,0 + 1√
λ

uφ,1 + . . . ,

δT = δT0 + 1√
λ
δT1 + . . . ,

p = p0 + 1√
λ

p1 + . . . .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B 1)

Injecting (B 1) in the momentum equation then yields the O(1) and O(1/
√
λ) interior

equations, that is

uφ,0 = ∂p0

∂s
− sδT0, zδT0 = ∂p0

∂z
, and

(
∇2 − 1

s2

)
uφ,0 = 0, (B 2a–c)

and

uφ,1 = ∂p1

∂s
− sδT1, zδT1 = ∂p1

∂z
, and

(
∇2 − 1

s2

)
uφ,1 = us,1. (B 3a–c)

Hence, for large values of λ, thermal stratification inhibits vertical motions in the
interior, and the Ekman layer pumping/suction no longer controls the dynamics of the
interior flow. The Taylor–Proudman is not verified and is replaced by the thermal wind
equation

(ez · ∇)u = r × ∇δT, (B 4)

to O(Eu), and the O(1) azimuthal velocity can be obtained solving(
∇2 − 1

s2

)
uφ = 0. (B 5)
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FIGURE 28. Angular velocity radial profiles in the rotating frame δΩ , at θ = π/2, E = 10−7

and for various λ. The black dashed line corresponds to the asymptotic solution (B 6).

This yields, using boundary conditions (2.13)

uφ � K
3

(
1
r3

− 1
η3

)
r sin θ. (B 6)

Hence, at the lowest order, δΩ = uφ/(r sin θ) is shellular in the asymptotic regime of
large λ. Figure 28 shows the angular velocity radial profiles at θ = π/2, for E = 10−7 and
for various λ. We see that the asymptotic limit where the O(1/

√
λ) terms can be neglected

corresponds to λ � 104.
Another interesting feature of the λ	 1 regime is that the circulation is concentrated

in the boundary layers (see also Rieutord 2006; Raze et al. 2017). This can be seen in
figure 16 for λ = 102. In the interior, the radial motion is so strongly inhibited by thermal
stratification that it prevents the existence of the Stewartson layer, thus undermining
rotation-induced advection.

In the thermal layers, radial gradients are increased by a factor
√
λ which gives ûr =

O(E), and from the continuity equation ûθ = O(
√
λE). In figure 29, we plot uθ/(E

√
λ)

as a function of the stretched radial coordinate (r − η)
√
λ, for various combinations of

Ekman numbers and λ parameters. We find that, indeed, the latitudinal velocity scales
as

√
λE in the outer part of the layer of thickness δλ, that is in the thermal boundary

layer region, outside the Ekman layer (typically for (r − η)
√
λ � 0.5). Additionally, we

verify the O(
√

E) amplitude scaling of the latitudinal velocity in the Ekman boundary
layer. Indeed, figure 29 shows that provided fixed values of δE/δλ, that is fixed values
of

√
λE, the latitudinal velocity scales as

√
λE in the Ekman boundary layer as well.

However, taking
√
λE = D, where D is some constant, implies that

√
λE = D

√
E, hence

ûθ ∝ ũθ = O(
√

E).

B.2. The transient flow
We finally determine the scaling of the transient time with the Ekman number and the
λ-parameter, in the λ	 1 limit. Assuming that in this regime, δT remains O(1) during
the transient, (4.18) simplifies to

∂

∂t

(
cotanθ

∂

∂θ
tan θuφ

)
� Ecotanθ

∂

∂θ
tan θ

(
∇2 − 1

r2 sin2 θ

)
uφ, (B 7)
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FIGURE 29. Value of uθ (
√
λE)−1 as a function of the stretched radial coordinate (r − η)

√
λ,

for various combinations of Ekman numbers and λ parameters, η = 0.35, θ = π/8 and
A = 0.01.

indicating that the (non-geostrophic) steady state is reached on a O(E−1) time scale as
well. This is verified in figure 18. We note a weak λ dependence of this time scale in the
intermediate stratification regime.
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