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Summary. The purpose of this study is to assess the relationship between
intelligence (or human capital) and the statistical capacity of developing
countries. The line of inquiry is motivated essentially by the scarce literature
on poor statistics in developing countries and an evolving stream of literature
on the knowledge economy. A positive association is established between
intelligence quotient (IQ) and statistical capacity. The relationship is robust
to alternative specifications with varying conditioning information sets and
control for outliers. Policy implications are discussed.

Introduction

Incorrect national statistics negatively affect government effectiveness (Kodila-Tedika,
2014a) and might potentially lead to debates in policy circles because of substantial
disparities between reality and what is reported as factual evidence based on statistics.
An example of a contemporary policy debate related to evidence-based findings is Africa’s
failure to attain the Millennium Development Goal (MDG) extreme poverty targets (see
Asongu & Nwachukwu, 2016a, b). Whereas an April 2015 World Bank report revealed that
since the 1990s extreme poverty has been declining in all regions of the world, with the
exception of sub-Saharan Africa where 45% of countries are still substantially off-track from
achieving the MDGs extreme poverty target, Pinkivskiy and Sala-i-Martin (2014) had
earlier established that, with the exception of the Democratic Republic of Congo, all African
countries had achieved this target in 2014 or one year ahead of time. This debate aligns with
the pros (Leautier, 2012) and cons (Obeng-Odoom, 2015) of the ‘Africa rising’ narrative.
The debate, which has been articulated with fundamental growth issues in Africa,
has coincided with the publication of some notable works on data revision, inter alia:
Jerven (2013a), Devarajan (2013) and Harttgen et al (2013). While Jerven (2013b)
clearly outlined the issues in a new book, Young (2012) established that some indicators
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of Africa’s development are growing by about 4 times compared with those reported in
international datasets. This has motivated a growing stream of literature on the subject,
notably: (i) a recent book premised on whether Africa’s recent growth resurgence is a
reality or a myth (Fosu, 2015a, b) and (i1) another book by Kuada (2015) which
suggested a paradigm shift to ‘soft economics’ or human capability development in order
to understand development trends in developing countries.

In the light of the above, it is important to establish why good statistics may be present
in some countries and not in others. To the best of the authors’ knowledge, very little is
covered in the literature, essentially because this is a relatively new debate; only Kodila-
Tedika (2013) has attempted to investigate this concern of statistical quality in African
countries. The present line of inquiry aims to extend the literature from a human capital
angle: notably, on the role of intelligence or the Intelligence Quotient (IQ) in statistical
capacity. It is interesting to note that intelligence is not best described by the Intelligence
Quotient. In essence, whereas the abbreviation is currently employed in the English
language, the modern IQ is a standardized z-score and not a ratio. Moreover, the
motivation for wanting developing countries to achieve high-quality statistics is to help
governments enhance economic development and the living standards of their citizens.

The positioning of this line of inquiry on human capital aligns well with an evolving
stream of African development literature documenting the imperative for African
countries to catch up with the rest of the world by enhancing their transition from
product-based economies to knowledge-based economies (Anyanwu, 2012; Oluwatobi
et al., 2015; Andrés et al, 2015; Asongu, 2015a). It is important to note that these
recommendations have been emphasized based on the knowledge that it is more feasible
for African countries to engage in reverse engineering because their current technologies
are more imitative and adaptive in nature (Tchamyou, 2015).

The study’s theoretical hypothesis is founded on the following arguments. Educated
persons tend to be good and well-informed citizens (Reynal-Querol & Besley, 2011;
Besley et al., 2011). Consistent with Botero et al. (2012), nations with better-educated
citizens are associated with higher government quality because their citizens are more
likely to report official misconduct. In essence, for the underlying reporting of corruption
and crime to be credible, it should be based on ‘reliable data’. Lynn et @l (2007) and
Lynn and Milk (2007) have shown that IQ is highly correlated with education. People
with high 1Qs can easily use their education for various purposes. Within the framework
of this inquiry, societies enjoying relatively high IQs should be associated with a higher
demand for accurate information, collected as statistics.

Studies by Jauk et al. (2013) have established the relationship between creativity and
intelligence. According to the authors, individuals with high intelligence are likely to be
more creative. Hence, intelligence within this context may be an essential condition for
creativity (see Park et al., 2008; Robertson et al., 2010). On the other hand, other studies
take the view that the underlying relationship between intelligence and creativity
depends on certain thresholds (see Batey & Furnham, 2006; Kim et al, 2010).
Meanwhile, according to Silvia (2008), many of the established relationships are
underestimated.

In the light of the above, it is logical to postulate that intelligent persons can improve
statistics or even new statistical indices. It is within this framework of intelligence that
Henderson et al. (2012) suggested that economic growth can be measured through space
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(e.g. spatial regressions). Moreover, Furnham and Chamorro-Premuzic (2004)
established that intelligent people are more at ease with statistics. Accordingly, the
authors found that there was a positive relationship between an intelligent group within
a sample and grade achieved in statistics exams. Whereas the scope of this inquiry is at
the country level, the intuition for the relationship to be estimated is broadly consistent
with the bulk of the literature on personality and individual differences (Vickers et al.,
2004; Preckel et al., 2006; Silvia, 2008; Martin-Raugh et al., 2016). It is important to
note that the relationship between intelligence and statistical capacity is contingent on
institutional quality and other dimensions of the knowledge economy (Asongu, 2014;
Andrés et al., 2015).

Based on the above theoretical postulations, the testable hypothesis in this study is as
follows: on average, countries with a high IQ present better statistics compared with
their low-1Q counterparts. It is important to note that concern about the quality of
statistical data is not exclusively limited to developing countries. Accordingly, the 1Q
data employed have been collected across diverse locations worldwide, including several
developed countries (Meisenberg & Lynn, 2011; Lynn & Vanhanen, 2012). The study
focuses exclusively on developing countries because the indicator of statistical capacity is
not available for developed countries.

Methods

The statistics indicator is obtained from the Bulletin Board on Statistical Capacity
(BBSC) of the World Bank’s Development Data Group. The BBSC focuses on
improving the monitoring and measuring of ‘statistical capacity’ of countries in the
International Development Association (IDA), in close collaboration with users and
countries. The database embodies information on a plethora of aspects of national
statistical systems and provides a country-level statistical capacity indicator based on a
set of criteria that are consistent with international recommendations. The World Bank’s
statistical capacity measurement is a composite score that examines the capacity of a
nation’s system of statistics. It is based on a framework of diagnosis that examines the
following areas: timeliness, periodicity, data sources and methodology. Hence, nations
are evaluated against 25 criteria in these areas with the help of country input and
publicly available information. Ultimately, the overall score is computed as a simple
average of scores in the assessed areas, on a scale of 0—100, with higher values denoting
better capacity. In the light of these assessment insights, statistical capacity represents a
country’s ability to collect, analyse and disseminate data of high quality about its
economy and population. It is important to note that statistical quality is essential for all
stages of evidence-based decision-making. This includes: (i) informing the international
donor community on policy formulation and programme design, (ii) guiding private
sector investment, (iii) allocating government sources and political representation and
(iv) monitoring economic and social indicators.

The data on intelligence are from Meisenberg and Lynn (2011) and Lynn and
Vanhanen (2012). Previous versions can be found in Lynn and Vanhanen (2002, 2006).
This dataset is a compilation of hundreds of average national IQ tests observed over
the 20" and 21 centuries using best-practice methods. Average IQ is a measure of

https://doi.org/10.1017/50021932016000213 Published online by Cambridge University Press


https://doi.org/10.1017/S0021932016000213

312 O. Kodila-Tedika et al.

general-purpose human capital as well as a measure of a nation’s labour quality
(Hanushek & Kimko, 2000; Jones & Schneider, 2006; Hanushek & Woessmann, 2008).

The choices of statistical indicator and intelligence measurement are broadly
consistent with recent economic development and intelligence literature (Weede &
Kampf, 2002; Jones & Schneider, 2006; Ram, 2007; Potrafke, 2012; Kodila-Tedika,
2014b; Kodila-Tedika & Mustacu, 2014; Kodila-Tedika & Bolito-Losembe, 2014;
Kodila-Tedika & Asongu, 2015a, b; Rindermann et al., 2015). It is interesting to note
that data from Hanushek on the one hand, and from Lynn and Vanhanen on the other
hand, are continuously being improved upon (Meisenberg & Lynn, 2011, 2012).

In accordance with recent literature on statistical capacity (Kodila-Tedika, 2013,
2014a), the study controls for GDP per capita, trade openness, state fragility,
ethnic fractionalization and government effectiveness. While data on GDP per capita
and trade are sourced from the Penn World Tables, ethnic fractionalization is from
Alesina et al. (2003). The ‘state fragility’ variable is from the International Monetary
Fund (IMF, 2011) and based on the World Bank classification, while the ‘government
effectiveness’ measurement is provided by Kaufmann ez al (2010). The expected signs
of the control variables are engaged simultaneously with the discussion of the
empirical results.

The sampled countries include: Afghanistan; Angola; Albania; United Arab
Emirates, Argentina; Armenia; Azerbaijan; Burundi; Benin; Burkina, Bangladesh;
Bulgaria; Bahrain; Bosnia and Herzegovina; Belarus, Belize, Bermuda; Bolivia; Brazil;
Barbados, Brunei; Bhutan; Botswana, Central African Republic; Chile, China, Cote
d’Ivoire, Cameroon, Congo, Colombia, Comoros, Cape Verde; Costa, Cuba, Cyprus,
Czech Republic; Denmark; Dominican Republic, Algeria, Ecuador, Egypt, Eritrea,
Estonia, Ethiopia; Fiji; Gabon, Georgia, Ghana; Guinea, Gambia. The, Guinea-Bissau,
Equatorial Guinea; Guatemala, Guyana, Hong Kong, Honduras, Croatia, Haiti,
Hungary, Indonesia, India, Ireland, Iran, Iraq; Iceland; Israel; Italy, Jamaica, Jordan,
Japan, Kazakhstan, Kenya, Kyrgyzstan, Cambodia, Kuwait, Laos, Lebanon, Liberia,
Libya, Sri Lanka, Lesotho, Lithuania, Latvia, Morocco, Republic of Moldova,
Madagascar, Maldives, Mexico, Madagascar, Macedonia, Mali, Malta, Myanmar,
Montenegro, Uganda and Ukraine.

Consistent with recent human capital or intelligence (Kodila-Tedika & Asongu,
2015a, b) and development (Asongu, 2013) literature, the specification in Eqn (1)
assesses the correlation between human capital and statistical capacity:

SC,' = +a2HC,~+a3C,~+ei (1)

where SC; (HC;) represents a statistical capacity (human capital) indicator for country i,
ay 1s a constant, C is the vector of control variables, ¢; is the error term. The term HC is
the human capital variable, while C involves: GDP per capita, trade openness, state
fragility, ethnic fractionalization and government effectiveness. In harmony with the
engaged human capital literature, the objective of Eqn (1) is to estimate if intelligence
affects statistical capacity by Ordinary Least Squares (OLS) using standard errors that
are corrected for heteroscedasticity. The sampled developing countries are as above.
The descriptive statistics of the variables are presented in Table 1 and the correlation
matrix in Table 2. The descriptive statistics enable the following to be assessed: (i) if the
variables are comparable, and (ii) whether, from corresponding standard deviations, we
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Table 1. Descriptive statistics of study countries’ statistical capacity and associated

factors
Variable n Mean SD Minimum Maximum
Statistical capacity 118 68.43 15.81 21.67 94.44
1Q 177 84.30 10.93 61.2 106.9
State fragility 184 0.15 0.36 0 1
Ethnic fractionalization 166 0.46 0.27 0 0.98
Government effectiveness 139 0.11 0.99 -1.75 2.22
Trade openness 140 95.42 57.16 26.65 446.06
GDP per capita (log) 140 8.87 1.19 5.90 11.17
Cognitive ability 192 81.79 14.32 55 108
Cognitive skill 77 4.56 .57 3.09 5.45

Table 2. Correlation matrix to mitigate potential issues of multicollinearity

(1) &) ©) @ & © O 6 O

Statistical capacity (1) 1

1Q (2) 0.61 1

State fragility (3) -0.48 -0.48 1

Ethnic fractionalization (4) -0.31 -0.45 0.26 1

Government effectiveness (5) 0.59 0.61 -0.52 -0.26 1

Trade openness (6) 0.08 0.30 -0.06 -0.14 033 1

GDP per capita (log) (7) 0.60 0.73 —-047 -0.36 0.73 034 1

Cognitive ability (8) 0.40 098 -046 -0.58 041 030 053 1
Cognitive skill (9) 0.01 0.81 -0.03 -0.43 0.08 066 0.19 0.86 1

can be confident that reasonable estimated linkages would emerge. The purpose of the
correlation matrix is to mitigate potential issues of multicollinearity. The underlying
multicollinearity issues were mitigated by employing different covariates in alternative
specifications.

Results
Main results

The empirical findings are reported in Table 3. The dependent variable is the
‘statistical capacity indicator’. Ordinary Least Squares (OLS) estimates are presented in
columns 2 to 7, and Iteratively Weighted Least Squares (IWLS) regressions are
presented in Table 4 as a robustness check. In the final column of Table 3 a Variance
Inflation Factor (VIF) test was carried out; the results are well below 10 suggesting that
multicollinearity is not an issue (Neter ez al., 1985). In the OLS modelling exercise, one
covariate (listed in column 1) is consistently added to the model on moving from one
specification to the next.
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Table 3. Ordinary Least Squares (OLS) estimates with statistical capacity as the
dependent variable

OLS OLS OLS OLS OLS OLS VIF
1Q 0.80%** 0.53%** 0.57%** 0.43%** 0.52%#* 0.42*%% 3,72
[0.515] [0.346] [0.378] [0.327] [0.398] [0.325]
(0.11) (0.11) (0.13) (0.16) (0.16) (0.18)
State fragility =17.78%**  —]7.21%** —9.50** —9.55%* =9.47%* 297
[-0.467] [-0.451] [-0.253] [-0.259] [-0.256]
(3.60) (3.73) (4.34) (4.52) (4.48)
Ethnic fractionalization 3.65 -0.76 —-0.81 -0.48 1.66
[0.061] [-0.015] [-0.015] [=0.009]
(5.26) (4.53) 4.71) (4.78)
Government effectiveness 5.45%* 4.82%* 3.35 3.58
[0.270] [0.240] [0.166]
(2.53) (2.37) (2.81)
Trade openness —0.05* —0.05%* 1.50
[-0.125] [-0.137]
(0.03) (0.02)
GDP per capita (log) 2.48 3.14
[0.171]
(2.08)
Constant 3.75 29.9(%** 24.49* 40.60%** 37.70%* 24.39
(9.70) (9.38) (12.73) (14.72) (15.04) (18.67)
N 115 110 107 91 90 90
Adjusted R? 0.27 0.47 0.46 0.50 0.53 0.54

Standard errors in parentheses; f-coefficients in square brackets.
VIF, Variance Inflation Factor.
***p <0.01; **p<0.05; *p<0.1.

The 1Q estimates confirm the expected positive correlation between intelligence
and statistical capacity. Hence, intelligence is positively correlated with statistical
capacity. Columns 3 to 7 assess the relationship conditional on other covariates
(control variables). From the results, the positive correlation is broadly confirmed
across specifications in terms of the significance of the estimated human capital
(or intelligence) coefficient. The estimated coefficients vary between 0.8 and 0.3 and
the degree of adjustment (or explanatory power) of the estimated coefficients varies
between 26.5% and 59.3%. It is logical to expect R? to increase when more control
variables are added to the model. Ultimately, it could be inferred from the baseline
estimations that countries with high 1Qs are associated with higher degrees of statistical
capacity.

Robustness check

Robustness with respect to influential observations. Given that the estimations by the
OLS technique may be weak in the presence of outliers, the robustness of the corre-
sponding estimates is verified by employing an estimation technique that controls for the
presence of such outliers. For this purpose IWLS is used (Huber, 1973). The robustness
check process is as described by Kodila-Tedika and Asongu (2016). The findings pre-
sented in Table 4 are consistent in sign and significance with the OLS results, although
they have a relatively lower magnitude. The corresponding lower magnitude implies that
outliers influence the investigated nexus between statistical capacity and intelligence.
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Table 4. Robustness check for the presence of outliers using
IWLS analysis

IWLS?
IQ 0.26*
(0.14)
State fragility —14.70%**
(3.22)
Ethnic fractionalization 2.50
(4.08)
Government effectiveness 1.54
(2.30)
Trade openness -0.05*
(0.03)
GDP per capita (log) 4.49**
(1.77)
Constant 19.47
(15.05)
N 90
Adjusted R? 0.59

Standard errors in parentheses; “TWLS, Iterated Reweighted Least Squares.
*Ep <0.01; **p <0.05; *p<0.1.

Hence, the corresponding lower magnitude is also a justification for the robustness
check. It is important to note that the effect of IQ on statistical capacity is above and
beyond that of other country characteristics.

Most of the significant control variables have the expected signs. (i) ‘State fragility’
should intuitively be negatively related to the ability of governments to collect good data
because some regions in a given country may be affected by political strife, civil conflicts
and wars, hence rendering data collection very difficult. (ii) ‘Government effectiveness’
has been documented to be positively associated with statistical capacity (Kodila-
Tedika, 2014a). (iii)) “Trade openness’ may decrease the ability to collect good data in
inherently corrupt developing countries because underlying trading activities are very
likely to be associated with mis-invoicing, bribery and unfair lobbying. (iv) The positive
nexus of the dependent variable with GDP per capita essentially builds on the intuition
that wealthier countries are endowed with more financial resources for good data
collection, relative to their less-wealthy counterparts.

Alternative measures of cognitive human capital. Cognitive human capital has been
measured in different ways in the human capital literature. As discussed in the Methods
section, its measurement has experienced an evolution. Rindermann (2007) defined
cognitive ability as student achievement plus intelligence, primarily measured by
common cognitive ability at the macro-social level. This ability entails: (i) intelligence
(the capacity to think) and (ii) knowledge (degree of relevant and true knowledge and the
capacity to acquire and use knowledge). Hanushek and Woessmann (2009) suggested an
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appreciation of cognitive skills. They defined cognitive skills as the average test results in
maths and sciences, at primary level through all years until the end of secondary school
(scaled to the Programme for International School Assessment (PISA) divided by 100).
These indicators have been exploited here to confirm the baseline findings in Table 3.
The results in Table 5 broadly confirm a positive correlation between intelligence and
statistical capacity. The result for ‘cognitive skill’ is not significant, but the sign remains
positive. This is probably due to the significant reduction in degree of freedom.

Discussion

The purpose of this note has been to assess the relationship between intelligence or
human capital and a nation’s statistical capacity. The line of inquiry has been essentially
motivated by the scarce literature on poor statistics in developing countries and an
evolving literature on the knowledge economy. The study has established a positive
association between intelligence quotient (IQ) and statistical capacity. The relationship is
robust to the employment of alternative specifications with varying conditioning
information sets and the control for outliers.

The findings imply that as average levels of IQ in developing countries increase, we
should expect to see countries revising their national statistics substantially. This has
been the recent experiences of Nigeria and Kenya in Africa. Given the leading roles of
these countries on the continent in education, innovation and information and
communication technology (ICT) (Tchamyou, 2015), the intuition for associating
higher 1Qs with better statistical capacity is sound. This is essentially because the
highlighted variables are three of the four dimensions of the World Bank’s knowledge
economy index: the fourth being ‘economic incentives and institutional regime’.
Accordingly, for better statistics to be collected, broad-based ICTs are essential to
facilitate exchanges and accuracies between the data collector and data provider
(institutions and civil societies). Moreover, with improvements in educational levels,
more-skilled researchers will be available to refine and improve techniques of data
collection, simulation, aggregation and computation, inter alia.

It is important to note that a substantial percentage of the variance in statistical
capacity is not explained by intelligence. This implies that there are other factors
explaining statistical capacity that have been left unexplained, even after improving the
conditioning information set. Hence, policy measures devoted to enhancing statistical
capacity in developing countries should go beyond education and be implemented in
conjunction with improvements in other environments, such as capacity building and
infrastructural development. Accordingly, such initiatives, which are complementary to
the acquisition of intelligence, would improve the ability of sampled developing
countries to acquire new technologies and knowledge, essential for 21% century
economic development, which is centred on the knowledge economy (Asongu, 2015b).
In a nutshell, measures aimed at improving intelligence in order to directly and/or
indirectly promote statistical capacity should not be limited to education, but also
extended to addressing longstanding issues in developing countries, like, inter alia:
limited support for Research & Development, depleting knowledge infrastructure,
brain-drain, outdated curricula and dwarfed linkages between industry and science.
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While government statistics are collected by only a tiny section of the population, the
quality and accuracy of the collected data, which are usually based on surveys and
interviews, depends on the overall country-average IQ. In essence, interviewees and
survey respondents from whom the data are collected across the country need a certain
level of intelligence (required for the understanding of questions and the disclosure of
accurate answers) to provide the information that is collected. Hence, the data collection
process is contingent on country-average 1Q. Therefore, increasing country-average 1Q
has a substantial effect on statistical capacity because the data collection process (and
hence the quality of data collected) depends on the intelligibility of respondents.

Ultimately, the findings are consistent with intuition and the empirical literature. The
average 1Q as reported by Lynn and colleagues (based on Raven’s matrices scores) is
validated by the high correlation between these matrix scores in areas like arithmetic.
Unfortunately, as a caveat, the concern of whether the IQ compilations from Lynn et al.
represent ‘best practice’ for estimating ‘intelligence’ is still open to debate in scholarly
circles. Though some researchers continue to interpret underlying outcomes as reflecting
biological disparities in intelligence (Kodila-Tedika & Asongu, 2015a, b), others are of
the view that IQ scores may be affected by continental specificity (Lynn & Meisenberg,
2010).

Given that Africa is in a comparatively volatile position, compared with other
regions of the world, it is relevant to highlight that there are some concerns about Lynn
et al’s 1Q measurement for the continent. According to Lynn and Meisenberg (2010),
for a more representative African sample the average IQ is low (61), but high (80) for an
elitist sample. Rindermann (2013) has suggested that controlling some continent-specific
factors such as higher schooling age and lower school enrolment could lead to an
average 1Q of about 75. More insight into issues surrounding the validity of IQ
measurements for developing countries can be found in Wicherts et al (2010a, b),
Meisenberg and Woodley (2013) and Rindermann et al (2014). Furthermore, as
documented by Irving er al. (2008) and Klauer and Phye (2008), intelligence training
could also be considered as a means of improving intelligence.

Table 5. Ordinary Least Squares (OLS) estimates with alternative
measures of cognitive human capital

OLS OLS
Cognitive ability 0.54%**
(0.14)
Cognitive skill 5.20
(3.50)
Constant 30.42 24.20%***
(14.49) (51.59)
N 91 36
Adjusted R? 0.60 0.47
P-coefficient for 1Q 0.51 0.28

Standard errors in parentheses; all control variables used in Tables 3 are
included in the estimations.
**xp <0.01.
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Future lines of inquiry could improve the extant literature by examining: (i) the reverse
correlation, (ii) channels via which IQ improves statistical capacity and (iii) which
dimensions of the knowledge economy drive IQ on the one hand and a nation’s statistical
capacity on the other. Moreover, a recurring issue with national IQ measures is spatial
autocorrelation. Hence, assessing the extent to which this issue can affect established
linkages is also an interesting future research direction.
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